A Logical Approach to Interpolation Based on Similarity Relations

Didier Dubois and Henri Prade
Institut de Recherche en Informatique de Toulouse IRIT-CNRS, Université Paul Sabatier, Toulouse, France

Francesc Esteva, Pere Garcia, and Lluís Godo
Institut d'Investigació en Intelligença Artificial IIIA-CSIC, Campus Universitat Autonoma Barcelona, Bellaterra, Barcelona, Spain

ABSTRACT

One of the possible semantics of fuzzy sets is in terms of similarity; namely, a grade of membership of an item in a fuzzy set can be viewed as the degree of resemblance between this item and prototypes of the fuzzy set. In such a framework, an interesting question is how to devise a logic of similarity, where inference rules can account for the proximity between interpretations. The aim is to capture the notion of interpolation inside a logical setting. In this paper, we investigate how a logic of similarity dedicated to interpolation can be defined, by considering different natural consequence relations induced by the presence of a similarity relation on the set of interpretations. These consequence relations are axiomatically characterized in a way that parallels the characterization of nonmonotonic consequence relationships. It is shown how to reconstruct the similarity relation underlying a given family of consequence relations that obey the axioms. Our approach strikingly differs from the logics of indiscernibility, such as the rough-set logics, because emphasis is put on interpolation capabilities. Potential applications are fuzzy rule-based systems and fuzzy case-based reasoning, where notions of similarity play a crucial role. © 1997 Elsevier Science Inc.

KEYWORDS: fuzzy similarity relations, similarity logic, graded consequence relations, interpolation
1. INTRODUCTION

Commonsense reasoning often involves one of three basic epistemic notions, viz. uncertainty, preference, and similarity. Uncertainty has been studied for a long time and is a major topic of artificial-intelligence research. There exists many formal approaches to uncertain reasoning, based on probability theory [33], possibility theory [6], belief functions [40], or nonmonotonic inference (e.g., [25]). Preference modeling has received a lot of attention in decision theory for a long time, using numerical approaches such as utility theory [37], or relational approaches [20, 17]. The notion of similarity has received less attention among study of logical models of reasoning. A certain number of works do exist on the topic, but they are rather scattered in the literature: behavioral studies such as [42], mathematical works that consider graded extensions of equivalence relations [47, 43, 31], a logical treatise describing similarities in a qualitative way [26], and some extensions of it [44], and a few attempts at modeling approximate reasoning based on a notion of similarity [45, 21, 23].

Similarity is the basic tool in at least three cognitive tasks: classification, case-based reasoning, and interpolation. In classification tasks, objects are put in the same class insofar as they are indistinguishable with respect to suitable criteria. Similarity is meant to describe indistinguishability, and an important limiting case is obtained using equivalence relations leading to the partitioning of a set of objects. Classification based on equivalence relations is done in the theory of rough sets [32]. Case-based reasoning [24] exploits the similarity between already solved problems and a new problem to be solved in order to build up a solution to this new problem. When this solution to a new problem is obtained by adapting solutions to already solved problems, the reasoning methodology then comes close to being one of interpolation, whereby the value of a partially unknown function at a given point of a space is estimated by exploiting the proximity of this point to other points for which the value of the function is known. Although interpolative inference is part of usual commonsense reasoning tasks, it has been seldom considered as amenable to logical settings, because it fundamentally relies on a gradual view of proximities that is absent from classical logic. In contrast, uncertain reasoning, which also involves gradual notions, has received a logical treatment. Results in nonmonotonic reasoning show that some form of uncertain reasoning can be captured by equipping the set of interpretations with an ordering structure expressing plausibility [39, 25]. It is thus tempting to model interpolative reasoning by equipping a set of logical interpretations with a proximity structure.

This kind of investigation has been started by Ruspini [36] with a view to casting fuzzy patterns of inference such as the generalized modus ponens
Interpolation Based on Similarity Relations

of Zadeh [48] into a logical setting. Indeed in the scope of similarity modeling, a basic reasoning pattern can be expressed informally as follows,

\[
\begin{align*}
\text{\(p \) is close to being true} \\
\text{\(p \) approximately implies \(q \)} \\
\text{\(q \) is not far from being true}
\end{align*}
\]

where “close,” “approximately,” and “not far” refer to a similarity relation, while \(p \) and \(q \) are classical propositions. This pattern will be referred to as the extrapolaive syllogism (ES), and is in accordance with the generalized modus ponens of Zadeh.

An example of situation where this type of inference pattern looks natural is the following. Consider the expert advice in finance: “if you have saved more than $10,000 (\(p \)), then you should invest 50% of your capital (\(q \)).” Suppose you have $9500 (\(p' \)). Using classical logic, \(p' \not\equiv p \), and thus \(p' \land (p \rightarrow q) \not\equiv q \). But in practice people would not wait to reach the $10,000 threshold and would start investing some percentage of their savings closer to 50% as these savings become closer to $10,000. In that case the similarity stems from the metric structure equipping the monetary scale.

In this paper an attempt is made to equip the above pattern of inference with logical underpinnings. In the first section the concept of a similarity relation is recalled. Then two types of approximate inference based on similarity are defined. They are based on implication measures introduced by Ruspini [36]. It is shown that they are equivalent. A third type of inference, basically due to the lack of truth-functionality of logics of similarity, is also studied. Similarity-based consequence relations are given representation theorems that highlight their characteristic properties. The next section generalizes one of the representation theorems to when the set of interpretations is restricted to a subset of models. Then three distinct approaches to approximate entailment exist. The following section explains how the proposed setting captures the type of interpolative reasoning at work in fuzzy rule-based systems, and suggests gradual rules [8] as a natural notion of fuzzy rules in this context. Some hints are given on the relation between similarity-based consequence relations and Lewis’s logics of counterfactuals. Proofs of main results are gathered in the Appendix.

2. SIMILARITY AND APPROXIMATE SATISFIABILITY

One of the possible semantics of fuzzy sets [46] is in terms of similarity; namely, a grade of membership \(\mu_F(\omega) \) of an element \(\omega \) in a fuzzy set \(F \) can be viewed as the degree of resemblance between \(\omega \) and protoptypes of
the fuzzy set \(F \). One way of proceeding is to start with a set equipped with a similarity relation. Let \(\Omega \) be a finite set, and let \(I \) be the structure of a complete lattice-ordered semi-group, a structure proposed by Goguen [18]. A typical example of such a structure is the unit interval \([0, 1]\) equipped with maximum and minimum, an order-reversing operation \((1 - x)\), and a semigroup operation \(\otimes \) with identity 1, also known as a triangular norm \([38]\). The operation \(\otimes \) is associative, commutative, and non-decreasing in each place; also, \(0 \otimes a = 0 \) and \(1 \otimes a = a \ \forall a \in I \). For simplicity, we shall assume \(I = [0, 1] \) in this paper. A fuzzy relation on \(\Omega \) in the sense of \([47]\) is a function \(S \) from \(\Omega \times \Omega \) to \(I \). The function \(S \) defines a similarity relation if and only if it satisfies the following properties \([43]\):

- **reflexivity**: \(S(\omega, \omega') = 1 \);
- **symmetry**: \(S(\omega, \omega') = S(\omega', \omega) \);
- **\(\otimes \)-transitivity**: \(S(\omega, \omega'') \geq S(\omega, \omega') \otimes S(\omega', \omega'') \).

When \(S(\Omega \times \Omega) \subseteq [0, 1] \), \(S \) is clearly an equivalence relation on \(\Omega \). The operation \(\otimes \) is supposed to be continuous. Typical instances of operations \(\otimes \) are

- \(\otimes = \) minimum. Then \(S \) is a similarity relation in the sense of Zadeh (see \([47]\)). In particular, each level cut \(S_\alpha = \{(\omega, \omega') \mid S(\omega, \omega') \geq \alpha\} \) is an equivalence relation, and \(1 - S \) defines a pseudo-ultrametric.
- \(\otimes = \) product. This type of fuzzy relation goes back to Menger \([28]\) and has been studied by Ovchinnikov \([31]\).
- \(\otimes = \) Łukasiewicz conjunction, i.e., \(a \otimes b = \max(0, a + b - 1) \). This type of fuzzy relation is studied by Ruspini \([35]\) and Bezdek and Harris \([1]\), who call it a likeness relation. Then \(1 - S \) is a pseudometric.

A similarity is thus a notion dual to a distance. In the scope of interpolation it is relevant to reinforce reflexivity as follows: \(S(\omega, \omega') = 1 \) iff \(\omega = \omega' \). Then \(1 - S \) is a generalization of a metric, and the \(1 \)-cut of \(S \) [that is, \(\{(\omega, \omega') \mid S(\omega, \omega') = 1\} \)] is just the equality on \(\Omega \). In this paper, only such similarity relations will be used. Another expression for the transitivity is obtained from the concept of residuation. Namely, let \(\Rightarrow \) \(b = \sup\{c \mid c \otimes a \leq b\} \), where \(\Rightarrow \) is a multiple-valued implication obtained via residuation. The residuation concept enables the following equivalence to be stated:

\[
\text{if } a \Rightarrow b \geq c \text{ iff } c \otimes a \leq b,
\]

and it is obvious that the \(\otimes \)-transitivity of \(S \) is equivalent to stating for all \(\omega, \omega', \omega'' \)

\[
S(\omega, \omega') \otimes S(\omega', \omega'') \geq S(\omega, \omega'').
\]

Similarity relations and fuzzy sets can be closely related. Namely, let \(A \subseteq \Omega \) be a nonempty subset of \(\Omega \). Then a similarity relation \(S \) allows us
to define the nonempty normalized fuzzy set A^* of elements close to A as follows:

$$\mu_{A^*}(\omega) = \max_{\omega' \in A} S(\omega, \omega').$$

A^* is the image of A through the relation S and will be denoted $A \circ S$ as well. Reciprocally, any normalized fuzzy set F on Ω can be viewed as deriving from a similarity relation S and a subset A such that

$$A = \{ \omega \mid \mu_F(\omega) = 1 \} (\neq \emptyset),$$

$$S(\omega, \omega') = \begin{cases} \min(\mu_F(\omega), \mu_F(\omega')) & \text{if } \mu_F(\omega) \neq \mu_F(\omega'), \\ 1 & \text{otherwise}. \end{cases}$$

In the above definition the fuzzy relation is min-transitive. However, it is always possible to get a general \otimes-transitive relation. This is due to Valverde's theorem [43] of representation of similarity relations by fuzzy sets, based on residuation. Then the formula defining S in terms of F generalizes into

$$S(\omega, \omega') = \min(\mu_F(\omega) \otimes \mu_F(\omega'), \mu_F(\omega) \otimes \mu_F(\omega)).$$

When $\otimes = \text{product}$,

$$S(\omega, \omega') = \min_{\mu_F(\omega)} \left(\frac{\mu_F(\omega)}{\mu_F(\omega')}, \frac{\mu_F(\omega')}{\mu_F(\omega)} \right)$$

and S is product-transitive; when \otimes is the Łukasiewicz conjunction, $S(\omega, \omega') = 1 - |\mu_F(\omega) - \mu_F(\omega')|$. This result gives a formal justification for the fact that a degree of membership $\mu_F(\omega)$ in a fuzzy set can be interpreted as a degree of similarity of ω to "prototypes" of F, which form the set A. Moreover it points out that if q is a proposition in a formal propositional language L, of which Ω is the (finite) set of interpretations, then the similarity induces a fuzzy proposition q^* whose (fuzzy) set of models is $[q^*] = [q]^* = [q] \circ S$ defined by means of the fuzzy relation S, where $[q]$ is the set of models of q (the set of interpretations where q is true). Intuitively q^* means "approximately q," "not far from q," where "approximately," "not far from" is mathematically expressed by the similarity relation S.

Clearly, a logic dealing with propositions of the form q^* is a fuzzy logic in the sense of a many-valued logic, whose truth-value set is the range of $S(\omega, \omega')$, for instance $[0, 1]$. The satisfaction relation is graded and denoted $\models_\circ S$; namely,

$$\omega \models_\circ S q \iff \mu_{q^*}(\omega) \geq \alpha.$$
That is, there exists a model \(\omega' \) of \(q \) which is \(\alpha \)-similar to \(\omega \). In other words, \(\omega \) belongs to the \(\alpha \)-cut of \([q^*] \). The degree of approximate satisfaction of \(q \) by \(\omega \) in the sense of \(S \) has been introduced by Ruspini [36], and will be denoted \(I_S(q | \omega) = \max_{\omega' \in S} S(\omega, \omega') \). Note that, identifying each interpretation \(\omega \) of \(\Omega \) with the conjunction of literals made true by \(\omega \), we have that \(I_S(q | \omega) = S(\omega, \omega') \). Thus, one may have \(\omega \vdash_S \omega' \) for \(\omega' \neq \omega \). Indeed, that means that \(\omega \) and \(\omega' \) are close enough to each other in the sense that \(S(\omega, \omega') \geq \alpha \). Note that \(\omega \vdash_S \omega' \) is equivalent to \(\omega' \vdash_S \omega \), since \(S \) is symmetric. For the sake of simplicity, the subscript \(S \) will be omitted from the symbol \(\vdash_S \) whenever no confusion is possible.

One might be tempted to define a multiple-valued logic of similarity, requiring the usual truth-functionality assumptions. Unfortunately such a logic cannot be truth-functional. Namely given \(S \), the truth-value evaluation \(I(q | \omega) \) associated to the interpretation \(\omega \) is truth-functional neither for the negation nor for the conjunction. To see this, notice that if \(A = [q], \overline{A} = [-q] \), then

\[
\mu_{\overline{A}}(\omega) = \max_{\omega' \notin A} S(\omega, \omega'),
\]

while, noticing that the membership of the complement of a fuzzy set \(F \) is \(c(\mu_F) \) where \(c \) is a negation function [decreasing, involutive, \(c(0) = 1, c(1) = 0 \)], here \(c(x) = 1 - x \):

\[
\mu_{\overline{A}}(\omega) = 1 - \max_{\omega \in A} S(\omega, \omega') = \min_{\omega \in A} 1 - S(\omega, \omega').
\]

The latter expression is clearly unrelated to the former, and is called the lower approximation of \(\overline{A} \), denoted \((\overline{A})_\downarrow \) [9]. It is easy to check that \(A_\downarrow \subseteq A \subseteq A^\star \), so that the fuzzy proposition \(A^\star \) is the "interior" of \(A \), while \(A^\star \) encompasses its neighborhood.

For conjunction notice that generally

\[
\max_{\omega' \in A \cap B} S(\omega', \omega)
\]

is not a function of \(\max_{\omega' \in A} S(\omega, \omega') \) and \(\max_{\omega' \in B} S(\omega, \omega') \). For instance, if \(A = \{ \omega_1 \}, B = \{ \omega_2 \} \), then \([A \cap B]^\star = \emptyset \) (empty set) but \(A^\star \cap B^\star = \emptyset \) choosing \(\omega_1 \) and \(\omega_2 \) such that \(S(\omega_1, \omega_2) > 0 \). However, for disjunction we do have that \([p \lor q]^\star = [p]^\star \cup [q]^\star \), where \(\cup \) translates into the maximum of the truth value of \(p^\star \) and the truth value of \(q^\star \), since

\[1\text{ From now on, and for the sake of simplicity, we shall use the same symbol } \omega \text{ to denote both an interpretation of the language } L \text{ and the proposition which is the conjunction of literals made true by } \omega.\]
\[\max_{\omega' \in A \cup B} S(\omega', \omega) = \max(\max_{\omega' \in A} S(\omega', \omega), \max_{\omega' \in B} S(\omega', \omega)). \]

Hence

\[I_S(p \lor q \mid \omega) = \max(I_S(p \mid \omega), I_S(q \mid \omega)). \]

This fact stresses the difference between similarity logic and other logics underlying fuzzy sets such as Łukasiewicz logic or the more recent family of monoidal logics \[19\]. The reason for the lack of truth-functionality is that here all fuzzy propositions are interpreted in the light of a single similarity relation. This fact puts a severe constraint on the set of fuzzy propositions, so that there are in some sense less fuzzy propositions here than in most standard many-valued calculi. Similarity logic is more constrained, since the set of fuzzy subsets of \(\Omega\) corresponding to classical propositions \([q^*] \mid q \in L\) is only a proper subset of the set \([0, 1]^\Omega\) of all fuzzy subsets of \(\Omega\). This lack of truth-functionality has also been noticed in the theory of rough sets \[32\]. Rough sets are a theory of similarity based on equivalence relations that handles upper and lower approximations \(A_*\) and \(A^*\) of sets. The lack of truth-functionality is thus not due to the fuzziness of similarity.

A more natural logical setting for similarity-based reasoning is that of modal logics, which is tailored to account for relations on the set of interpretations. The similarity relation \(S\) can be considered as a family of nested accessibility relations \(R_\alpha\) on the set of possible worlds \(\Omega\) defined as

\[\omega R_\alpha \omega' \iff S(\omega, \omega') \geq \alpha. \]

Therefore, enlarging the logical language, we can define, for each \(\alpha\), a usual pair of dual modal operators \(\Box_\alpha\) and \(\Diamond_\alpha\) with the following standard semantics:

\[\omega \models \Box_\alpha p \iff \text{there exists } \omega' \text{ such that } \omega R_\alpha \omega' \text{ and } \omega' \models p, \]

\[\omega \models \Diamond_\alpha p \iff \text{for every } \omega' \text{ such that } \omega R_\alpha \omega', \text{ one has } \omega' \models p. \]

If the similarity relation is min-transitive, i.e., \(S(\omega, \omega') \geq \min(S(\omega, \omega''), S(\omega'', \omega'))\), then the accessibility relations \(R_\alpha\) are equivalence relations, and therefore, for each \(\alpha\), \(\Box_\alpha\) and \(\Diamond_\alpha\) are a pair of dual S5 modal operators. These types of modal logics generalize rough set logics \[30\] and have been studied by Nakamura in \([29]\). It is easy to check that the above-defined graded satisfaction \(\models^\alpha\) is directly related to the possibility operator \(\Diamond_\alpha\) in the sense that if \(q\) is a nonmodal proposition, then the following equivalence holds:

\[\omega \models^\alpha q \iff \omega \models \Diamond_\alpha q. \]
However, rather than developing a full-fledged multimodal logic (see [34] for a preliminary investigation), we choose to study what types of consequence relations make sense in the presence of similarity relations. Thus our purpose differs from the program of rough-set logics and their extensions. In the latter the basic concept is indistinguishability, and the approximate description of objects or concepts that results from blurring effects. On the contrary, our emphasis is on interpolation, that is, exploiting the proximity of situations in order to make inference more powerful, and extrapolate about situations not strictly covered by the available knowledge.

3. Approximate Entailment

The previous graded satisfaction relation can be extended to a graded semantic entailment relation between classical propositions:

Definition 1 A proposition p approximately entails a proposition q at degree α, written $p \models^{\alpha} q$, if and only if each p-word makes q^* at least α-true:

$$p \models^{\alpha} q \iff [p] \subseteq [q^*]_{\alpha}.$$

When $\alpha > 0$, $p \models^{\alpha} q$ means that when p is true, q is close to being true, or in other words that p entails a proposition approximately equivalent to q. The meaning of this inference is made clear in Figure 1. The condition of this entailment relation can be also expressed using Ruspini’s implication measure [36] when $p \neq \bot$, $q \neq \bot$, as

$$p \models^{\alpha} q \iff I_S(q \mid p) = \min_{\omega \models p} \max_{\omega' \models q} S(\omega, \omega') \geq \alpha.$$

If $p = \bot$ then $I_S(q \mid \bot) = 1$. If $q = \bot$ and $p \neq \bot$ then $I(\bot \mid p) = 0$, by convention. A companion to this measure is the so-called consistency

![Figure 1. Approximate entailment $p \models^{\alpha} q$.](image-url)
measure defined as $C_S(q | p) = \max_{\omega = p} \max_{\omega' = q} S(\omega, \omega')$, which will play a minor role in this paper. It is easy to verify that

$$I_S(q | p) = \min_{\omega = p} I_S(q | \omega).$$

It is obvious that $(\vdash^\alpha)_{\alpha \in [0, 1]}$ is a nested family: $p \vdash^\alpha q$ implies $p \vdash^\beta q$ for any $\beta \leq \alpha$. This is due to the nestedness property of level cuts. Besides, it is continuous from below: if $p \vdash^\beta q$ for every $\beta < \alpha$, then $p \vdash^\alpha q$. Moreover, \vdash^1 is just the classical logic consequence relation. Indeed, $p \vdash^1 q$ means that $\min_{\omega = p} \max_{\omega' = q} S(\omega, \omega') = 1$, and this in turn means that $\{p\} \subset \{\omega' \vdash q | S(\omega, \omega') = 1\}$. But the similarity relations considered here are such that $S(\omega, \omega') = 1$ implies $\omega = \omega'$. Hence $\{\omega' \vdash q | S(\omega, \omega') = 1\} = [q]$. Of course, the inference \vdash^0 is the universal one, because $I_S(q | p) \geq 0$ always holds.

Remarkable properties of the approximate entailment relation \vdash^α are pointed out in [11, 4]:

- **\otimes-Transitivity:** If $p \vdash^\alpha r$ and $r \vdash^\beta q$ then $p \vdash^{\alpha \otimes \beta} q$, where \otimes is the t-norm, for which the underlying similarity relation is transitive.

- **Reflexivity:** $\forall \alpha, p \vdash^\alpha p$.

- **Right weakening:** If $q \vdash r$ and $p \vdash^\alpha q$ then $p \vdash^\alpha r$.

- **Left strengthening:** If $p \vdash r$ and $r \vdash^\alpha q$ then $p \vdash^\alpha q$ (monotonicity).

- **Left OR:** $p \lor q \vdash^\alpha r$ iff $p \vdash^\alpha r$ and $q \vdash^\alpha r$.

- **Right OR:** If r has a single model, $r \vdash^\alpha p \lor q$ iff $r \vdash^\alpha p$ or $r \vdash^\alpha q$.

- **Consistency preservation:** If $p \not= \perp$ then $p \vdash^\alpha \perp$ only when $\alpha = 0$.

The most remarkable property is the \otimes-transitivity, which requires that \otimes be continuous. It follows from the \otimes-transitivity of S and has been proved by Ruspini [36, Theorem 1]:

$$I_S(r | p) \geq I_S(r | q) \otimes I_S(q | p).$$

This result entirely depends on the existence of a unique similarity structure on Ω. Generally, it does not hold that for any set A and any two fuzzy sets $F = B \circ S$ and $G = C \circ S'$, induced by similarity relations S and S',

$$\min_{\omega \in A} \mu_F(\omega) = \alpha \text{ and } \min_{\omega \in B} \mu_G(\omega) = \beta \text{ imply } \min_{\omega \in A} \mu_G(\omega) = f(\alpha, \beta) > 0.$$

To see this, using the modal notation $p \vdash^{\boxdot^\alpha} q$, notice that $q \vdash^{\boxdot^\alpha} q$ but the converse $\boxdot^\alpha q \vdash q$ does not hold, so that formally one does not expect anything informative from $p \vdash^{\boxdot^\alpha} q$ and $q \vdash^{\boxdot^\beta} r$, in general, if nothing
relates the modalities. Of course, it is possible to infer \(p \models \diamond \diamond \beta r \), but no reduction of modalities may take place. In S, \(p \models \diamond q \) and \(q \models \diamond r \) imply \(p \models \diamond r \), because \(\diamond \diamond r \) coincides with \(\diamond r \). So if \(S = S' \) is a min-transitive relation, then \(\diamond \diamond \) is nothing but \(\diamond \). For other \(\otimes \)-transitive similarities, the transitivity property is weaker than usual, and the graceful degradation of the strength of entailment it expresses is rather natural [18]. The right weakening and left strengthening properties are consequences of the \(\otimes \)-transitivity property.

The left OR is necessary to handle disjunctive information and is easily derived as follows:

\[
I_s(q \mid p \lor r) = \min_{\omega = p \lor r} \max_{\omega' = q} S(\omega, \omega')
\]

\[
= \min \left(\min_{\omega = p} \max_{\omega' = q} S(\omega, \omega'), \min_{\omega = r} \max_{\omega' = q} S(\omega, \omega') \right)
\]

\[
= \min(I_s(q \mid p), I_s(q \mid r)).
\]

The right OR is a consequence of the truth-functionality for the disjunction connective in similarity logic. It must be noticed that \(\models^\alpha \) does not satisfy the right AND property, i.e., from \(p \models^\alpha q \) and \(p \models^\alpha r \) it does not follow in general that \(p \models^\alpha q \land r \). Hence the set of consequences of \(p \) in the sense of \(\models^\alpha \) will be neither deductively closed nor consistent (it is possible to have both \([p] \subseteq [q]*[\alpha] \) and \([p] \subseteq [\neg q]*[\alpha] \). But what will be exploited for the purpose of interpolative reasoning is not so much the set \([q \mid p \models^\alpha q] \) of \(\alpha \)-consequences of \(p \), but the fuzzy set of approximate conclusions \(\{([q]*[\alpha], \alpha) \mid \exists \alpha > 0, \ p \models^\alpha q \} \). Note that while \([q \mid p \models^\alpha q] \) is generally inconsistent, the set \(\{([q]*[\alpha], \alpha \mid \exists \alpha > 0, \ p \models^\alpha q \} \) is consistent in the sense that the set of interpretations \(\cap \{([q]*[\alpha], \alpha \mid \exists \alpha > 0, \ p \models^\alpha q \} \) is nonempty.

Lastly, as indicated also in (Dubois and Prade, 1995), another property, the so-called cut, which holds for classical semantical entailment, does not hold either for \(\models^\alpha \), that is,

\[p \models^\alpha r \text{ and } p \land r \models^\beta q \text{ do not imply } p \models^{f(\alpha, \beta)} q \]

with \(\alpha > 0, \beta > 0, \) and \(f(\alpha, \beta) > 0 \). Indeed, consider the case where \([p] \cap [r] = \emptyset \); then \(I_s(q \mid p \land r) = 1 \). In general there exists \(q \) such that \(I_s(q \mid p) = 0 \) while there exist \(p \) and \(r \) such that \(I_s(q \mid p \land r) \otimes I_s(r \mid p) = 1 \otimes I_s(r \mid p) > 0 \), i.e., \(\exists [q] \subseteq [r] \otimes S_\alpha \) (with \([p] \cap [r] = \emptyset \)). Indeed, \(I_s(r \mid p) > \alpha \) only expresses the inclusion of the set of models of \(p \) in the set of neighbors of the models of \(q \), not necessarily in the subset of the models of \(q \).
A first result towards a characterization of the similarity-based approximate entailment in terms of the above properties is given in the next theorem, where a consequence relation $p \vdash^\alpha q$ means "p entails approximately q", "p entails that q is not far from being true"; and α is a level of strength, expressing closeness to truth.

Theorem 1 (Characterization of the approximate entailment) Let L be a finite Boolean algebra of propositions. Suppose we have a family of consequence relations $\{\vdash^\alpha\}_{\alpha \in [0,1]}$ (i.e., $\vdash^\alpha \subset L \times L$) fulfilling the following properties:

1. $\{\vdash^\alpha\}_{\alpha \in [0,1]}$ is a nested family: $p \vdash^\alpha q$ implies $p \vdash^\beta q$ for any $\beta \leq \alpha$.
2. \vdash^1 is exactly the classical logic consequence relation, and \vdash^0 is the universal one.
3. Symmetry: $\omega \vdash^\alpha \omega' \iff \omega' \vdash^\alpha \omega$ for any pair of interpretations.
4. \otimes-Transitivity: $p \vdash^\alpha q$ and $q \vdash^\beta r$ implies $p \vdash^{\alpha \otimes \beta} r$.
5. Left OR: $p \vee r \vdash^\alpha q$ iff $p \vdash^\alpha q$ and $r \vdash^\alpha q$.
6. Right OR: If r has a single model, $r \vdash^\alpha p \vee q$ iff $r \vdash^\alpha p$ or $r \vdash^\alpha q$.
7. Consistency preservation: If $p \neq \perp$, then $p \vdash^\alpha \perp$ only if $\alpha = 0$.
8. Continuity from below: If $p \vdash^\beta q$ for every $\beta < \alpha$, then $p \vdash^\alpha q$.

Then there exists a \otimes-similarity relation S on the set Ω such that $p \vdash^\alpha q$ iff $I_S(q | p) \geq \alpha$ for each $\alpha \in [0,1]$. And conversely, for any \otimes-similarity S on Ω, the consequence relation defined as $p \vdash^\alpha q$ iff $I_S(q | p) \geq \alpha$ verifies the above set of properties.

The basic step in the proof, given in the Appendix and abusing notation, is the postulated identity between $S(\omega, \omega') \geq \alpha$ and $\omega \vdash^\alpha \omega'$. So it is natural to define $S(\omega, \omega') = \sup\{\alpha | \omega \vdash^\alpha \omega'\}$, and to check that the axioms make it a similarity relation, the one that generates the family $\{\vdash^\alpha\}$. The continuity condition makes it sure that $\omega \vdash^\alpha \omega'$ can be derived from $S(\omega, \omega') \geq \alpha$. This assumption would be not necessary if only a finite set of nested consequence relations $\{\vdash^\alpha\}_{\alpha \in G}$ were considered, where G is a finite subset of $[0,1]$ containing 0 and 1, and (G, \otimes) is a finite totally ordered semi-group that is not necessarily the restriction of a t-norm. In that case, a \otimes-similarity relation S should be understood as a reflexive, symmetric, and \otimes-transitive relation $S : \Omega \times \Omega \rightarrow G$.

Using again the modal logic setting, an alternative entailment in similarity logic would be $p \models \square_{\alpha} q$. By definition, we get that $p \models \square_{\alpha} q$ iff $[p^*]_{\alpha} \subset [q]$. This means that not only does p imply q, but also q holds in the vicinity of p. As usual in modal logics, this notion of entailment is stronger than the classical entailment, the two being equivalent only in the case $\alpha = 1$, and thus it does not correspond to the idea of approximate inference. Finally, notice that the implication and consistency measures
$I_S(q \mid p)$ and $C_S(q \mid p)$ can also be expressed in terms of the modal entailments [13]:

$$I_S(q \mid p) = \sup \{ \alpha \mid p \models \Diamond \alpha q \},$$

$$C_S(q \mid p) = \sup \{ \alpha \mid p \land \Diamond \alpha q \neq \bot \}.$$

4. PROXIMITY ENTAILMENT: ANOTHER VIEW OF SIMILARITY-BASED INFERENCE

The considered approximate entailment evaluates to what extent p is close to being true in the extrapolative syllogism, given that another proposition p' is known to hold. Now we turn to the representation of the second premise of the extrapolative syllogism. One way of modeling it is to attach a weight β to this premise and to interpret “p approximately implies q” as $p \models^\beta q$. However, there is another understanding of the second premise, namely: p implies q, and if p is close to being true, then q is close to being true as well. In other words, the neighborhood of the models of p should lie in the neighborhood of the models of q. This can be formally expressed as $[p^*] \subseteq [q^*]$, where the inclusion is in the sense of Zadeh [46]. This inference is denoted as $p \models q$. Obviously, $p \models q$ iff $\forall \omega$, $I_S(p \mid \omega) \leq I_S(q \mid \omega)$, or equivalently,

$$\forall \omega, \quad \max_{\omega' = p} S(\omega, \omega') \leq \max_{\omega' = q} S(\omega, \omega').$$

The name “proximity entailment” expresses that the implication not only relates the models of p to the models of q, but also involves the interpretations close to the models of p; see Figure 2.

![Figure 2. Proximity entailment $p \models q$.](image)
It can also be expressed in terms of a multiple-valued implication \rightarrow, called Rescher-Gaines implication, such that $a \rightarrow b = 1$ if $a \leq b$ and 0 otherwise. Then $p^* \rightarrow q^*$ is a classical proposition and $p \models q$ iff $\Omega \subseteq [p^* \rightarrow q^*].$ However this definition does not look exciting in itself. First note that $[\neg p \lor q]$ contains $[p^* \rightarrow q^*]$ as a subset. Indeed, consider $\omega \models \neg p \land \neg q$ such that

$$\max_{\omega : p} S(\omega, \omega') = \alpha > 0 \quad \text{and} \quad \max_{\omega : q} S(\omega, \omega') = 0.$$

Then ω is in the vicinity of $[p]$ but far from $[q].$ So $\omega \not\in [p^* \rightarrow q^*]$ while $\omega \models \neg p \lor q.$ Now if $\omega \in [p^* \rightarrow q^*],$ either $\omega \models \neg p$ and $\omega \models \neg p \lor q,$ or $\omega \models p.$ In the latter case, $\max_{\omega : q} S(\omega, \omega') = 1;$ hence $\omega \models q,$ since $S(\omega, \omega') = 1$ only when $\omega = \omega'.$ As a consequence the entailment $p \models q$ is equivalent to the classical entailment, since if $\Omega = [p^* \rightarrow q^*], \text{then } [\neg p \lor q] = [p^* \rightarrow q^*] = \Omega.$ This is due to the fact that the same similarity relation is used for exploiting the neighborhood of p and $q.$ However, viewing $p^* \rightarrow q^*$ as a constraint, restricting to the interpretations where the formula $p^* \rightarrow q^*$ is true, is more demanding than material implication.

The set of models of $[p^* \rightarrow q^*]$ can be extended to a fuzzy set of models if we use a residuated implication $\otimes \rightarrow$ and let

$$\mu_{[p^* \otimes \rightarrow q^*]}(\omega) = \sup \left\{ \alpha \mid \alpha \otimes \mu_{[p^*]}(\omega) \leq \mu_{[q^*]}(\omega) \right\}$$

and

$$= \sup \left\{ \alpha \mid \mu_{[p^*]}(\omega) \otimes \mu_{[q^*]}(\omega) \geq \alpha \right\}.$$

Then $[p^* \otimes \rightarrow q^*]$ is just the core of $[p^* \otimes \rightarrow q^*].$ In fact $p^* \rightarrow q^*$ coincides with a gradual rule [8] of the form the "the closer to truth is $p,$ the closer to truth is $q."$ It is easy to figure out that $[p^* \otimes \rightarrow q^*] = \bigcap_{\alpha \in [0, 1]} [p^*]_{\alpha} \cup [q^*]_{\alpha}.$ We also get a similar expression when we consider the residuated implication $\otimes \rightarrow.$ Namely,

$$[p^* \otimes \rightarrow q^*]_{\alpha} = \bigcap_{\beta \in [0, 1]} [p^*]_{\beta} \cup [q^*]_{\alpha \otimes \beta},$$

since it holds that $x \otimes \rightarrow y \geq \alpha$ iff $x \geq \beta$ implies $y \geq \alpha \otimes \beta$ for all $\beta.$ In particular, when $\otimes = \text{minimum}$ this expression reduces to

$$[p^* \otimes \rightarrow q^*]_{\alpha} = \bigcap_{\beta \leq \alpha} [p^*]_{\beta} \cup [q^*]_{\beta}.$$

Hence, the proximity entailment summarizes several classical entailment relations.
Using the fuzzy implication operation, the proximity entailment can be graded as well, and then it differs from the classical one:

Definition 2 The α-proximity entailment $p \trianglerighteq^\alpha q$ defined by

$$p \trianglerighteq^\alpha q \iff \Omega \subseteq [p^* \Rightarrow q^*]_\alpha.$$

Equivalently,

$$p \trianglerighteq^\alpha q \iff \forall \omega, \quad \alpha \otimes I_S(p \mid \omega) \leq I_S(q \mid \omega),$$

since $a \Rightarrow b \geq \alpha$ is equivalent to $a \otimes \alpha \leq b$. The corresponding graded satisfiability relation is thus

$$\omega \trianglerighteq^\alpha q \iff S(\omega, \omega') \otimes \alpha \leq I_S(q \mid \omega') \quad \forall \omega' \in \Omega.$$

Strictly speaking, this is not a usual satisfiability relation, since it also involves interpretations in the vicinity of ω. It means that for any ω' in the vicinity of ω, there is a model of q, say ω'', that is close to ω' at level $\alpha \otimes S(\omega, \omega')$ at least. The proximity entailment relation, like the approximate entailment, can be related to an implication measure $J_S(q \mid p) = \min_{\omega \in \Omega} I_S(p \mid \omega) \Rightarrow I_S(q \mid \omega)$, in the sense that

$$p \trianglerighteq^\alpha q \iff J_S(q \mid p) \geq \alpha.$$

The implication measure $J_S(q \mid p)$ is strongly related to Ruspini’s “conditional necessity distributions” [36, Definition 6], and it is a particular case of the “conditional implication measure” introduced in [15]. The following proposition shows the proximity entailment is in fact the same as the approximate entailment.

Proposition 1 $J_S(q \mid p) = I_S(q \mid p)$

Proof Let us first show that $J_S(q \mid p) \leq I_S(q \mid p)$. Indeed:

$$J_S(q \mid p) = \min_{\omega \in \Omega} I_S(p \mid \omega) \Rightarrow I_S(q \mid \omega)$$

$$\leq \min_{\omega \in \Omega} 1 \Rightarrow I_S(q \mid \omega) \quad \text{[since $I_S(p \mid \omega) = 1$ when $\omega \models p$]}$$

$$= \min_{\omega \in \Omega} I_S(q \mid \omega) \quad \text{[since $1 \Rightarrow a = a$]}$$

$$= I_S(q \mid p).$$

Now for the converse, develop $J_S(q \mid p)$ as

$$J_S(q \mid p) = \min_{\omega \in \Omega} \left(\max_{\omega' \models p} S(\omega', \omega) \right) \Rightarrow \left(\max_{\omega'' \models q} S(\omega'', \omega) \right)$$

$$= \min_{\omega \in \Omega} \min_{\omega' \models p} \max_{\omega'' \models q} S(\omega', \omega) \Rightarrow S(\omega'', \omega).$$
(since the implication is decreasing in the wide sense in the first argument and increasing in the second one)

\[\geq \max_{\omega' \models q} \min_{\omega \in \Omega} \min_{\omega' \models p} S(\omega', \omega) \otimes S(\omega'', \omega) \]

\[\geq \max_{\omega' \models q} \min_{\omega' \models p} S(\omega', \omega'') \quad \text{(using transitivity)} \]

\[= I_S(q \mid p). \]

Consequently, the proximity entailment \(\models^\alpha \) is equivalent to the approximate entailment \(\models^a \). Note that this equivalence holds due to the transitivity of \(S \). Without this property, \(p \models^a q \) implies \(p \models^a q \) only, because \(I_S(q \mid p) \leq I_S(q \mid p) \) still holds.

5. YET ANOTHER DEFINITION OF APPROXIMATE ENTAILMENT

In classical logic, \(p \models q \) is equivalent to \(p \models p \land q \), as a consequence of the closure of sets of consequences under the conjunction. However, in similarity logic such a closure is not valid. It is thus possible to define an alternative approximate entailment notion that exploits this fact:

\[P \models^\alpha q \iff p \models^a p \land q \iff I_S(p \land q \mid p) \geq \alpha. \]

This definition also means that \(p \models^a q \) is equivalent to \(p \lor q \models^\alpha q \), since the latter means \(I_S(q \mid p \lor q) = \min(I_S(q \mid q), I_S(q \mid p)) = I_S(q \mid p) \geq \alpha \). So, when \(q \models p \), \(p \models^a q \) is equivalent to \(p \models^a q \), and in general \(p \models^a q \) is equivalent to \(p \models^a p \land q \). The new concept is however more demanding than the old one.

Proposition 2 \(p \models^a q \) implies \(p \models^a q \). For \(\alpha \neq 0, 1 \), the converse is false.

Proof Just use the right weakening property for \(\models^a \). For the converse, assume \(\alpha \neq 0, 1 \) (otherwise we get the usual kinds of consequence relations). It is obvious that one may have \(p \land q = \bot \) and \(p \models^a q \). But \(p \models^a q \) then means \(p \models^a \bot \), which is not valid.

Interestingly, \(\omega \models^\alpha \omega \) never holds for \(\omega \neq \omega' \). However, we may have \(\omega \lor \omega' \models^\land \omega \), where for simplicity \(\omega \) denotes an interpretation as well as the formula whose unique interpretation is \(\omega \). It is easy to verify that \(\omega \lor \omega' \models^\land \omega \) is equivalent to \(\omega \lor \omega' \models^\land \omega' \) using the previously defined approximate entailment. Now, \(I_S(\omega' \mid \omega \lor \omega') = \min(S(\omega, \omega'), S(\omega', \omega')) = S(\omega, \omega') \). Hence \(\omega \lor \omega' \models^\land \omega' \) is equivalent to \(\omega \models^\land \omega' \), which is a symmetric notion. Hence \(\omega \lor \omega' \models^\land \omega' \) is also equivalent to
\(\omega \lor \omega' \models^\alpha_{\land} \). So \(\omega \lor \omega' \models^\alpha_{\land} \omega' \) is another way of writing \(S(\omega, \omega') \geq \alpha \).

Obvious properties of the approximate entailment relation \(\models^\alpha_{\land} \) are reflexivity, right weakening, and cut. The latter reads

\[p \models^\alpha_{\land} q \text{ and } p \land q \models^\beta_{\land} r \text{ imply } p \models^{\alpha \land \beta}_{\land} r. \]

Indeed, this property also reads

\[p \models^\alpha p \land q \text{ and } p \land q \models^\beta p \land q \land r \text{ imply } p \models^{\alpha \land \beta} p \land r, \]

which holds by transitivity of \(\models^\alpha \) and using the right weakening. The price paid is the lack of transitivity of \(\models^\alpha_{\land} \). Indeed, \(p \models^\alpha q \) and \(q \models^\beta r \) do not imply \(p \models^{\alpha \land \beta}_{\land} r \), since the two previous conditions do not exclude the case when \(p \land r = \bot \). The left OR property is restricted to:

Proposition 3 \(p \lor q \models^\alpha_{\land} r \) is equivalent to \(p \models^\alpha_{\land} r \) and \(q \models^\alpha_{\land} r \), if and only if \(r \land p = r \land q \neq \bot \).

Proof \(p \lor q \models^\alpha_{\land} r \) means \(p \lor q \models^\alpha r \land (p \lor q) \), which is equivalent to \(p \models^\alpha r \land (p \lor q) \) and \(q \models^\alpha r \land (p \lor q) \). Now \(p \models^\alpha r \land (p \lor q) \) is equivalent to \(p \models^\alpha r \land p \) if and only if \((r \land p) \lor (r \land q) = r \land p \neq \bot \). The other condition \(q \models^\alpha r \) equivalent to \(q \models^\alpha r \land (p \lor q) \) leads to \((r \land p) \lor (r \land q) = r \land q \neq \bot \). The required condition is thus the equivalence between \(r \land p \) and \(r \land q \) and their noncontradiction.

Again the left OR property holds if the possibility that \(r \land p = \bot \) or \(r \land q = \bot \) is ruled out. However, the following weaker property holds unconditionally:

Proposition 4 If \(p \models^\alpha_{\land} r \) and \(q \models^\alpha_{\land} r \) then \(p \lor q \models^\alpha_{\land} r \).

Proof We have to prove that \(p \models^\alpha p \land r \) and \(q \models^\alpha q \land r \) imply \(p \lor q \models^\alpha r \land (p \lor q) \). Now, this is just a consequence of a more general property of \(\models^\alpha \), namely: \(p \models^\alpha q \) and \(p' \models^\alpha q' \) imply \(p \lor p' \models^\alpha q \lor q' \). This property is a consequence of the left OR and right weakening properties of \(\models^\alpha \), applying left OR to \(p \models^\alpha q \lor q' \) and \(p' \models^\alpha q \lor q' \).

Lastly, it also holds that

\[\forall \omega, \quad (\omega \lor p \models^\alpha p \text{ or } \omega \lor q \models^\alpha q) \iff \omega \lor p \lor q \models^\alpha p \lor q. \]

This is due to the right OR property of the approximate entailment \(\models^\alpha \), since \(\omega \lor p \models^\alpha p \) becomes \(\omega \models^\alpha p \). Of course, the AND rule fails for \(\models^\alpha \) just as for \(\models^\alpha_{\land} \), and for the same reason. Lastly note that \(\omega \models^\alpha p \) either holds trivially with \(\alpha = 1 \) (when \(\omega \models p \), since it is equivalent to \(\omega \models^\alpha \omega \)) or fails (\(\alpha = 0 \)) if \(\omega \models \neg p \). Let us characterize the strong approximate entailment \(\models^\alpha_{\land} \).
THEOREM 2 (Characterization of strong approximate entailment) Let L be a finite Boolean algebra of propositions, and let $\{\vdash^\alpha | \alpha \in [0,1]\}$ be a family of consequence relations on L satisfying the following properties:

1. $p \vdash^\alpha q$ implies $p \vdash^\beta q$ for every $\beta \leq \alpha$.
2. \vdash^1 is the classical logical consequence, and \vdash^0 the universal one.
3. Consistency preservation: $p \vdash^\alpha \bot \text{ only if } \alpha = 0$ or $p = \bot$.
4. Cut: $p \vdash^\alpha q$ and $p \land q \vdash^\beta r$ imply $p \vdash^{\alpha \land \beta} r$.
5. $p \vdash^\alpha q$ is equivalent to $p \vdash^\alpha p \land q$.
6. Restricted left OR: $p \vdash^\alpha r$ and $q \vdash^\alpha r$ imply $p \lor q \vdash^\alpha r$, and is implied by $r \land p = r \land q \neq \bot$.
7. Disjunction on both sides: $\omega \lor p \lor q \vdash^\alpha q$ iff $\omega \lor p \vdash^\alpha r$ or $\omega \lor q \vdash^\alpha r$.
8. Disjunctive symmetry: $\omega \lor \omega' \vdash^\alpha \bot \Rightarrow \omega \lor \omega' \vdash^\alpha \omega'$.
9. Continuity from below: If $p \vdash^\beta q$ for every $\beta < \alpha$, then $p \vdash^\alpha q$.

Then there exists a strong approximate entailment family $\{\vdash^\alpha\}_{\alpha \in [0,1]}$ induced by a similarity relation S, such that \vdash^α coincides with $\vdash^\alpha \land \forall \alpha$.

First we need the following lemmas:

LEMMA 1 If $\{\vdash^\alpha | \alpha \in [0,1]\}$ satisfies (ii) and (iv), then it satisfies the right weakening property: $p \vdash^\alpha q$ and $q \vdash^\beta r$ imply $p \vdash^\alpha r$.

Proof If $q \vdash^\beta r$, then it also holds that $p \land q \vdash^\beta r$, and thus, by (ii), we have $p \land q \vdash^\alpha r$. Therefore, from $p \vdash^\alpha q$ and $p \land q \vdash^\alpha r$, by (iv), one has $p \vdash^{\alpha \lor \beta} r$, where $\alpha \lor \beta = \alpha$. \qed

LEMMA 2 If $\{\vdash^\alpha | \alpha \in [0,1]\}$ satisfies conditions (i), (ii), (v), (vi) of Theorem 3, then $p \vdash^\alpha q$ implies $p \lor r \vdash^\alpha q \lor r$.

Proof Indeed, $p \lor r \vdash^\alpha q \lor r$ iff $p \lor r \vdash^\alpha (q \lor r) \land (p \lor r)$, by (v), that is, $p \lor r \vdash^\alpha r \lor (p \land q)$. Since $r \vdash^1 r$ holds, $r \vdash^\alpha r$ holds by (i) and $r \vdash^\alpha r \lor (p \land q)$ by right weakening; and if $p \vdash^\alpha q$, we can derive $p \vdash^\alpha (p \land q) \land r$ by (v) and right weakening; hence $p \lor r \vdash^\alpha r \lor (p \land q)$ by left OR (vi). \qed

Proof of Theorem 2 It has been shown above that given S and $\vdash^\alpha \land \forall \alpha$ induced by S, then all properties (i)–(ix) hold. Conversely, given $\{\vdash^\alpha\}_{\alpha \in [0,1]}$, define $S(\omega, \omega') = \sup\{\alpha \mid \omega \lor \omega' \vdash^\alpha \omega\}$. This relation is symmetric from (viii) and reflexive because $\omega \vdash^1 \omega$ always holds. $S(\omega, \omega') = 1$ implies $\omega = \omega'$. Moreover, the continuity condition again makes it sure that $\omega \lor \omega' \vdash^\alpha \omega$ derives from $S(\omega, \omega') \geq \alpha$. Let us prove that S is transitive:

$$S(\omega, \omega') \otimes S(\omega', \omega'') = \sup\{\alpha \mid \omega \lor \omega' \vdash^\alpha \omega'\} \otimes \sup\{\beta \mid \omega' \lor \omega'' \vdash^\beta \omega''\} = \sup\{\alpha \otimes \beta \mid \omega \lor \omega' \vdash^\alpha \omega', \text{ and } \omega' \lor \omega'' \vdash^\beta \omega''\}$$

(continuity of \otimes)
\[\leq \sup\{\alpha \otimes \beta \mid \omega \lor \omega' \lor \omega'' \vdash^\alpha \omega' \lor \omega'' \text{ and } \omega' \lor \omega'' \vdash^\beta \omega''\} \]

(Lemma 2)

\[\leq \sup\{\alpha \otimes \beta \mid \omega \lor \omega' \lor \omega'' \vdash^\alpha \otimes^\beta \omega''\} \quad \text{(cut)} \]

\[\leq \sup\{\gamma \mid \omega \lor \omega'' \vdash^\gamma \omega''\} \quad \text{(restricted left OR)} \]

\[= S(\omega, \omega''), \]

using \(\omega'' \land (\omega \lor \omega'') = \omega'' \land (\omega' \lor \omega'') \neq \perp \) when applying (vi). Now consider the approximate entailment defined by \(p \equiv^\alpha q \) if and only if \(I_5(p \land q \mid p) \geq \alpha \). Assume \(q \neq \perp \) and \(p \neq \perp \). Then

\[p \equiv^\alpha q \iff p \equiv^\alpha p \land q \quad \text{(v)} \]

\[\text{iff } \forall \omega \models p, \omega \lor (p \land q) \vdash^\alpha p \land q \quad \text{(vi)} \]

(since \([\omega \lor (p \land q)] \land p \land q = p \land q \neq \perp \), and \(\omega \lor (p \land q) \vdash^\alpha p \))

\[\text{iff } \forall \omega \models p, \exists \omega' \models p \land q, \omega \lor \omega' \vdash^\alpha \omega' \quad \text{(vii)} \]

\[\text{iff } \forall \omega \models p, \exists \omega' \models p \land q, S(\omega, \omega') \geq \alpha \]

\[\text{iff } I_5(p \land q \mid p) \geq \alpha \text{ iff } p \equiv^\alpha q. \]

Consistency preservation ensures that this equivalence holds even when \(p \neq \perp \) and \(q = \perp \).

Actually, the properties of \(\equiv^\alpha \) are induced by \(\equiv^\alpha \), in the sense that \(\equiv^\alpha \) is expressible in terms of \(\equiv^\alpha \). The set \(\{(p, q) \mid p \equiv^\alpha q\} \) is indeed a subset of \(\{(p, q) \mid p \equiv^\alpha_\land q\} \). Theorem 2 suggests that the similarity relation underlying \(\equiv^\alpha \) can be characterized by a subpart of it, i.e., \(\{(p, q) \mid p \equiv^\alpha q, q \equiv_\land p\} \), using (v).

6. SIMILARITY-BASED CONSEQUENCE RELATIONS WITH BACKGROUND KNOWLEDGE

A natural question about the similarity-based entailment is how to deal with some prior information which is available under the form of a set \(K \) of formulas or a subset of worlds \(E = [K] \) (the so-called evidential set in Ruspini’s paper [36]). Several extensions of the entailment notions studied above can be envisaged. In particular, we shall consider through this section three ways of defining the inference of \(q \) by \(p \), restricted to the models of \(K \). These definitions coincide in propositional logic: \(p \equiv_K q \) iff \(K \land p \equiv q \) iff \(K \models \neg p \lor q \). Moreover, although the approximate and
proximity entailments coincide when no background knowledge is considered, they will differ when K is involved.

The first and direct option is just to take the set K as a restriction on the set of p-worlds, and thus consider the extension \models_k^α of the approximate entailment, defined as follows:

\[
p \models_k^\alpha q \iff K \land p \models q.
\]

In other words, we have that $p \models_k^\alpha q$ iff $I_S(q \mid K \land p) \geq \alpha$. This amounts to expressing that $[q]$ must be stretched to the degree α (at least) in order to encompass the models of K which are models of p. A natural question is whether some form of deduction theorem would still hold, namely by comparing $I(q \mid p \land K)$ and $I(\neg p \lor q \mid K)$. Unfortunately, it only holds that

\[
I(q \mid p \land K) \geq \max(I(q \mid p), I(q \mid K)),
\]

\[
I(\neg p \lor q \mid K) \geq \max(I(\neg p \mid K), I(q \mid K)).
\]

Hence there is apparently no way of getting the deduction theorem using approximate entailment. This is in total contrast with possibilistic logic (see [11]), where given a set K of necessity-weighted formulas, q is a consequence of $p \land K$ with necessity degree α if and only if $\neg p \lor q$ is a consequence of K with necessity degree α.

Although entailment \models_k verifies properties such as reflexivity, right weakening, and left strengthening as \models^α does, it does not satisfy the \otimes-transitivity property; even the restricted form of transitivity

\[
\text{if } p \models_k r \text{ and } r \models_k q \text{ then } \models_k^{\alpha \otimes \beta} q
\]

does not hold, due to the failure of the inequality $I_S(q \mid p) \geq I_S(q \mid p \land r) \otimes I_S(r \mid p)$, which is in turn due to the failure of the cut property for the entailment relation \models^α (see [11]). Only the following restricted form of transitivity holds:

\textbf{Restricted Transitivity} \hspace{1cm} \text{If } p \models_k r \text{ and } r \models_k q \text{ then } p \models_k^{\alpha \otimes \beta} q, \hspace{1cm} \text{provided that } r \models K.

This is obvious because then it comes down to checking the transitivity of \models^α with propositions $p \land K$, r (equivalent to $r \land K$), and q separately. \models_k^α also satisfies a variant of transitivity in a particular case of formulas with a single model:

\[
\omega \models_k^\alpha \omega'', \hspace{1cm} \omega' \models_k^\beta \omega'' \hspace{1cm} \text{imply} \hspace{1cm} \omega \models_k^{\alpha \otimes \beta} \omega' \hspace{1cm} \text{when } \omega \models K \text{ and } \omega' \models K.
\]

This is because $\omega \models_k^\alpha \omega''$ just expresses $S(\omega'', \omega) \geq \alpha$, and similarly for $\omega' \models_k^\beta \omega''$. Symmetry of $\omega \models_k^\alpha \omega'$ is also restricted to when $\omega \models K$ and
\(\omega' \models K \). Other properties of \(\models^\alpha \) hold. A full characterization of \(\models^\alpha_k \), which is an extension of the previous one for \(\models^\alpha \), is given in the next theorem.

Theorem 3 Let \(L \) be a finite Boolean algebra of propositions, \(\{ \models^\alpha \}_{\alpha \in [0, 1]} \) a family of nested binary relations on \(L \) (i.e., \(\models^\alpha \subseteq L \times L \) and \(p \models^\alpha q \) implies \(p \models^\beta q \) for any \(\beta \leq \alpha \)), and \(p_0 \) a proposition of \(L \) different from \(\bot \). Suppose \(\{ \models^\alpha \}_{\alpha \in [0, 1]} \) is a family of consequence relations with the following properties:

1. \(p \models^\alpha q \iff p \wedge p_0 \models q \); \(\models^0 \) is the universal consequence relation.
2. Restricted symmetry: \(\omega \models^{\alpha} \omega' \iff \omega' \models^{\alpha} \omega \), for \(\omega \models p_0 \) and \(\omega' \models p_0 \).
3. Restricted transitivity:
 - (i) \(p \models^\alpha r \) and \(r \models^\beta q \) then \(p \models^\alpha \beta q \), provided that \(r \models p_0 \);
 - (ii) \(\omega \models^{\alpha} \omega'' \) and \(\omega' \models^\beta \omega'' \) implies \(\omega \models^{\alpha \beta} \omega' \), for \(\omega \models p_0 \) and \(\omega' \models p_0 \).
4. Left OR: \(p \lor r \models^\alpha q \iff p \models^\alpha q \) and \(r \models^\alpha q \).
5. Decomposition: \(\omega \models^{\alpha} p \lor q \iff \omega \models^{\alpha} p \) or \(\omega \models^{\alpha} q \).
6. Coherence: \(p \models^{\alpha} q \iff p \wedge p_0 \models q \).
7. Continuity from below: if \(p \models^\beta q \), for every \(\beta < \alpha \), then \(p \models^\alpha q \).

Then there exists a \(\otimes \)-similarity relation \(S \) on a set of worlds \(\Omega \) such that \(p \models^\alpha q \) iff for each \(\alpha \in [0, 1] \) one has \(p \wedge p_0 \models^\alpha q \), with \(K = \{ p_0 \} \); and conversely, for any \(\otimes \)-similarity \(S \) on \(\Omega \) and any subset of formulas \(K \), the consequence relations \(\models^\alpha_{K,S} \) verify these properties.

Proof (sketch) On restricting \(L \) to \(L_K = \{ p \mid p = p_0 \} \), Theorem 1 says that there exists a similarity \(S \) on \([p_0] \), such that \(p \models^\alpha q \iff p \models^\alpha S \) if \(p \models p_0 \) and \(q \models p_0 \), because the conditions of Theorem 4 then reduce to conditions of Theorem 1. Then, if \(p \models p_0 \), one has \(p \models^\alpha q \) if and only if \(p \wedge p_0 \models^\alpha q \) holds. Now let \(\omega' \models \neg p_0 \). Let \(S(\omega', \omega) = S(\omega', \omega') = \sup(\alpha \mid \omega \models^{\alpha} \omega') \) for \(\omega \models p_0 \), and \(S(\omega', \omega'' \models) = \max(\omega \models p_0 \wedge S(\omega', \omega) \otimes S(\omega', \omega'') \wedge \wedge) \) otherwize. The lengthiest step is to prove that \(S \) is a similarity relation. Symmetry is obvious, but transitivity requires some calculation for \(\omega \models p_0 \), \(\omega' \models \neg p_0 \), and when \(\omega \lor \omega' \models \neg p_0 \). This is done by using the restricted transitivity conditions 3 as described in Lemma A1 (Appendix).

Let \(p \) and \(q \in L \). Then

\[
\begin{align*}
p \models^\alpha q & \iff p \wedge p_0 \models^\alpha q \quad \text{(property 6)} \\
& \iff \omega \models^{\alpha} q, \forall \omega \models p \wedge p_0 \quad \text{(left OR)} \\
& \iff \forall \omega \models p \wedge p_0 \exists \omega' \models q, \quad \omega \models^{\alpha} \omega'.
\end{align*}
\]

Whether \(\omega' \models p_0 \) or not, and using continuity from below, \(\omega \models^{\alpha} \omega' \) means \(S(\omega', \omega) \geq \alpha \) and hence is equivalent to \(\omega \models^{\alpha} \omega' \). So \(p \models^\alpha q \iff p \wedge p_0 \models^\alpha q \).

\[\square \]
So far we have an extension of the approximate entailment \(\models^a \) to deal with background knowledge \(K \). Now, we turn our attention to the proximity entailment \(\models^\alpha \) and consider how it can be extended in order to cope with the same problem. From the definition of \(\models^\alpha \), the following seems a natural definition, in order to restrict the worlds to those satisfying \(K \):

\[
p \models^\alpha_{K} q \quad \text{iff} \quad [K] \subseteq [p^* \rightarrow q^*]_\alpha.
\]

In terms of measures, this entailment relation is related to the conditional implication measure \(J_{K,s}(q \mid p) = \min_{\omega \models K} I_s(p \mid \omega) \otimes I_s(q \mid \omega) \), introduced in [15], in the sense that

\[
p \models^\alpha_{K} q \quad \text{iff} \quad J_{K,s}(q \mid p) \geq \alpha.
\]

If \(p = \top \) then \(J_{K,s}(q \mid p) = I_s(p \mid K) \), so that \(\top \models^\alpha_{K} q \) iff \(K \models^\alpha q \); this also means that \(K \subseteq \{q \mid \top \models^\alpha_{K} q\} \), and more precisely, the set of models of \(K \) is the set of models of \(\{q \mid \top \models^\alpha_{K} q\} \). For \(\alpha = 1 \), it can be seen that \(p \models^\alpha_{K} q \) iff \(K \models^\alpha q \). Notice that obviously \(p \models^\alpha_{K} q \) is now a stronger notion than \(K \models^\alpha p \models^\alpha q \). Indeed

\[
p \models^\alpha_{K} q \quad \text{iff for all} \quad \omega \models K, \quad I_s(p \mid \omega) \otimes I_s(q \mid \omega) \geq \alpha \quad \text{iff for all} \quad \omega \models K, \quad I_s(q \mid p) \otimes I_s(q \mid \omega) \geq \alpha \quad \text{iff for all} \quad \omega \models K, \quad I_s(q \mid K \land p) \otimes I_s(q \mid K \land p) \).
\]

which implies that for all \(\omega \models K \land p \), \(I_s(q \mid \omega) \geq \alpha \), that is, \(K \land p \models^\alpha q \). Hence \(J_{K,s}(q \mid p) \leq I_s(q \mid K \land p) \). But the converse does not hold in general except for \(\alpha = 1 \), or when \(K = \{\Omega\} \), since \(p \models^\alpha q \) iff \(p \models^\alpha q \), as noticed in Section 4. Indeed, if we rewrite the second part of the proof of Proposition 1 for \(J_{K,s}(q \mid p) \), we end up with \(J_{K,s}(q \mid p) \geq I_s(q \mid p) \) only. So the restricted forms of the proximity and approximate entailments no longer coincide.

The underlying reason in [36] for considering such a conditional measure as \(J_{K,s} \) was to model, in its simplest form, the so-called generalized modus ponens in fuzzy logic [48] that can be expressed using \(\models^\alpha_{K} \) as follows:

\[
\text{From } \models^\alpha_{K} r \text{ and } r \models^\beta_{K} q \text{ infer } \models^{\alpha \otimes \beta}_{K} q.
\]

However, this is rather misleading, since in the generalized modus ponens written as the transitivity pattern "\(K \models^\alpha r, r \models^\beta_{K} q \), implies \(K \models^\alpha \otimes \beta_{K} q \)," \(K \) is the input observation, and is not the background knowledge as the notation \(\models^\alpha_{K} \) suggests. Generalizations of such an inference pattern have been considered in [14]. Indeed, a stronger form of transitivity holds, namely:

\[
\text{TRANSITIVITY \ From } p \models^\alpha_{K} r \text{ and } r \models^\beta_{K} q \text{ infer } p \models^{\alpha \otimes \beta}_{K} q.
\]
This property is a direct consequence of the transivity of the conditional implication measure, i.e.,

Lemma 3 \(J_{K,S}(q \mid p) \geq J_{K,S}(r \mid p) \otimes J_{K,S}(q \mid r) \).

Proof \(J_{K,S}(r \mid p) \otimes J_{K,S}(q \mid r) \) is of the form

\[
\min_{\omega' \in K} \{ I(p \mid \omega') \otimes \rightarrow I(r \mid \omega') \} \otimes \min_{\omega \in K} \{ I(r \mid \omega) \otimes \rightarrow I(q \mid \omega) \}
\]

\[
\leq \min_{\omega \in K} \{ (I(p \mid \omega) \otimes \rightarrow I(r \mid \omega)) \otimes (I(r \mid \omega) \otimes \rightarrow I(q \mid \omega)) \}
\]

\[
\leq \min_{\omega \in K} \{ I(p \mid \omega) \otimes \rightarrow I(q \mid \omega) \} = J_{K,S}(q \mid p).
\]

The latter inequality is due to the \(\otimes \)-transitivity of residuated implications.

However, the relation \(\omega \models^\alpha_K \omega' \) is generally not symmetric. The consequence operators \(\models^\alpha_K \) also form a nested family, since \(p \models^\beta_K q \) implies \(p \models^\alpha_K q \) for every \(\beta \leq \alpha \). The operator \(p \models^1_K q \) coincides with the classical logical consequence \(K \land p \models q \), and \(\models^0_K \) is the universal one. Lastly, \(\models^\alpha_K \) satisfies the left-OR property:

Proposition 5 \(p \lor r \models^\alpha_K q \) iff \(p \models^\alpha_K q \) and \(r \models^\alpha_K q \).

Proof It follows from the fact that \(I_S(p \lor r \mid \omega) = \max(I_S(p \mid \omega), I_S(r \mid \omega)) \) and that \(\min(a \otimes \rightarrow b, c \otimes \rightarrow b) = \max(a, c) \otimes \rightarrow b \) for residuated implications. Then

\[
J_{K,S}(q \mid p \lor r)
\]

\[
= \min_{\omega \in K} I_S(p \lor r \mid \omega) \otimes \rightarrow I_S(q \mid \omega)
\]

\[
= \min_{\omega \in K} \min\{(I_S(p \mid \omega) \otimes \rightarrow I_S(q \mid \omega)), (I_S(r \mid \omega) \otimes \rightarrow I_S(q \mid \omega))\}
\]

\[
= \min_{\omega \in K} \left(\min_{\omega \in K} \left[I_S(p \mid \omega) \otimes \rightarrow I_S(q \mid \omega) \right] \right)
\]

\[
= \min(J_{K,S}(q \mid p), J_{K,S}(q \mid r)).
\]

Now the left OR just says that \(\min(a, b) \geq c \) iff \(a \geq c \) and \(b \geq c \).
However, \models^a_K so defined does not verify the cut property. The decomposition does not hold either, that is, it may be that $\omega \models^a_K p \lor r$ without $\omega \models^a_K p$ nor $\omega \models^a_K r$ being true. Indeed, $\omega \models^a_K p \lor r$ means

$$\forall \omega' \models K, \quad S(\omega, \omega') \otimes \alpha \leq I_s(p \lor \omega') = \max(I_s(p \mid \omega'), I_s(q \mid \omega')).$$

So, $\forall \omega' \models K$, $S(\omega, \omega') \otimes \alpha \leq I_s(p \mid \omega')$ or $S(\omega, \omega') \otimes \alpha \leq I_s(q \mid \omega')$, which does not entail $\forall \omega' \models K, S(\omega, \omega') \otimes \alpha \leq I_s(p \mid \omega')$ or $\forall \omega' \models K, S(\omega, \omega') \otimes \alpha \leq I_s(q \mid \omega')$.

Consider a family of inference relations $\{ \vdash^\alpha \mid \alpha \in [0, 1] \}$ on L satisfying the following properties:

(i) $p \vdash^\alpha q$ implies $p \vdash^\beta q$ for every $\beta \leq \alpha$.

(ii) $p \vdash^1 q$ if $p \land K \models q$, where $K = \{ r, \top \} \vdash$ is the universal consequence relation.

(iii) \otimes-transitivity: $p \vdash^\alpha q$ and $q \vdash^\beta r$ imply $p \vdash^{\alpha \otimes \beta} r$.

(iv) Left OR: $p \lor r \vdash^\alpha q$ if $p \vdash^\alpha q$ and $r \vdash^\alpha q$.

(v) Weak right OR: $\omega \vdash^\alpha p$ or $\omega \vdash^\alpha r$ implies $\omega \vdash^\alpha p \lor r$.

Starting from these, it is difficult to find a similarity relation S such that \vdash^α coincides with \models^a_K generated by S. Of course one can define S by symmetrizing \vdash^α as follows:

$$S(\omega, \omega') = \min(\sup(\alpha \mid \omega \vdash^\alpha \omega'), \sup(\beta \mid \omega' \vdash^\beta \omega')).$$

Then S is \otimes-transitive, just like \vdash^α. However, it looks hopeless to obtain a result stating that whenever for all $\omega \models K$ one has $S(\omega', \omega) \geq \alpha \otimes S(\omega'', \omega)$, it follows that $\omega'' \vdash^\alpha \omega'$, or the converse. Such a result was indeed obtained by assuming that $\omega_0 \vdash^\alpha q$ iff for all $\omega \in [K]$ there exists $\omega_0' \models q$ such that $S(\omega, \omega_0') \geq S(\omega, \omega_0) \otimes \alpha$ for the above-defined S (see [4]). But this requirement sounds somewhat artificial.

Similarly, we can consider extensions of \vdash^α using background knowledge K, as well as of \models^a_K. The latter can be found in [15], where a modified version of the conditional measure $J_{K,S}(p \mid q)$ is proposed by defining

$$J_{K,S}(q \mid r) = J_{K,S}(q \land r \mid r) = \min_{\omega=K} I_s(r \mid \omega) \otimes- I_s(q \land r \mid \omega),$$

which is close to what a conditional possibility is. Actually, when $\otimes = \min$, $J_{K,S}(q \mid r)$ can be interpreted as the infimum of the family of conditional possibility measures $\{ \Pi_\omega(q \mid r) \}_{\omega=K}$, where $\Pi_\omega(p) = I_s(p \mid \omega)$ [15]. Notice that when r is a tautology \top, we also have $J_{K,S}(q \mid \top) = I_s(q \mid K)$. Moreover, $J_{K,S}$ verifies the inequalities corresponding to reflexivity, right weakening, left AND, and right OR, and although it does not verify the transitivity property in general, the following restricted form of transitivity holds.
PROPOSITION 6 \[I_S(q | K) \geq I_S(p | K) \otimes J_{K,S}(q | p). \]

Proof

\[I_S(p | K) \otimes J_{K,S}(q | p) \]

\[= I_S(p | K) \otimes \min_{\omega=K} I_S(p | \omega) \otimes I_S(q \land p | \omega) \]

\[\leq I_S(p | K) \otimes \min_{\omega=K} I_S(p | K) \otimes I_S(q \land p | \omega) \]

(since \(I_S(p | \omega) \geq I_S(p | K) \))

\[\leq \min_{\omega=K} I_S(p | K) \otimes (I_S(p | K) \otimes I_S(q \land p | \omega)) \]

\[\leq \min_{\omega=K} I_S(q \land p | \omega) \quad \text{since } \alpha \otimes (\alpha \otimes \beta) \leq \beta \]

\[= I_S(q \land p | K) \leq I_S(q | K). \]

\[\square \]

For a given similarity relation \(S \) and a subset of formulas \(K \), it is natural to consider a new entailment:

\[p \models^a_{\wedge,K} q \iff [K] \subseteq [p^* \Rightarrow (p \land q)^*]_a, \quad \text{or equivalently,} \]

\[\iff J_{K,S}(q | p) \geq a. \]

Entailment \(\models^a_{\wedge,K} \) based on \(J_{K,S}(q | r) \) has been characterized in [4] with the same kind of construct as for \(\models^a_K \).

7. APPLICATION TO INTERPOLATIVE REASONING

Let us consider a simple interpolation problem, which is paradigmatically tackled with the techniques of fuzzy control. Suppose a two-dimensional domain \(U \times V \), with two variables \(X \) (input) and \(Y \) (output) over \(U \) and \(V \) respectively. Assume that all it is known about the relationship between the two variables is these two pieces of knowledge:

- if \(X \) is in \(A_1 \) then \(Y \) is in \(B_1 \),
- if \(X \) is in \(A_2 \) then \(Y \) is in \(B_2 \),

where \(A_1 \) and \(A_2 \) are subsets of \(U \), and \(B_1 \) and \(B_2 \) subsets of \(V \). This is obviously an incomplete description of a mapping. The problem is how to guess a value for variable \(Y \) if we know for instance that the variable \(X \) has a value \(X = x_0 \), where \(x_0 \) does not belong to \(A_1 \) or \(A_2 \). The intuition says if \(x_0 \) is close to \(A_1 \), then the value of \(Y \) will be close to \(B_1 \), and if it is
close to A_2, the value of Y will be close to B_2. But this is easy to model if we equip $U \times V$ with a similarity relation. One can consider, for instance, a \circ-transitive similarity S_U and U and a \circ-transitive similarity s_V on V, and then combine them into the product similarity $S = S_U \times S_V$ on the product space $U \times V$, defined as $S_U \times S_V((x, y), (x', y')) = \min(S_U(x, x'), S_V(y, y'))$.

Let $p = "X = x_0", q_i = "X \in A_i", r_i = "Y \in B_i", i = 1, 2$. Assume we have a knowledge base K consisting of two “extrapolative” or “gradual” rules:

- “if q_1 then r_1” modeled by $q_1^* \rightarrow r_1^*$,
- “if q_2 then r_2” modeled by $q_2^* \rightarrow r_2^*$,

expressing that “the closer X is to A_i, the closer Y is to B_i” for $i = 1, 2$, in the sense of Section 4. Actually, the exact meaning of these rules is that, if $X = x$, then Y is allowed to take any value y fulfilling $\mu_{A_i^*}(x) \leq \mu_{B_i^*}(y)$, i.e., the similarity of X to A_i, acting as a lower bound, constrains the similarity of Y to B_i. Then one can compute the highest degrees in which the proposition “X is x_0” entails the proposition “X is in A_1” and the proposition “X is in A_2”. So we have in the domain U:

- “$p \models^\alpha q_1$” with $\alpha = I_{S_U}(q_1 | p)$,
- “$p \models^\beta q_2$” with $\beta = I_{S_V}(q_2 | p)$.

What we are looking for is the most specific subset $B_0 \subseteq V$ such that the proposition “Y is B_0” can be derived from the above information. Now what we expect is the following type of reasoning: Since p is close to q_1, given the “extrapolative” knowledge in K, we can infer, from p, approximately r_i, that is, Y has to be in the vicinity of B_i. Then, the interpolation process comes from considering that Y has to be in the vicinity of both B_1 and B_2. The key point in the interpolation procedure is to properly encode the interpolative information, under the form $q_1^* \rightarrow r_1^*$. The modeling of “given the extrapolative knowledge in K, we can infer, from p, approximately r_i” is achieved by the following pattern of inference justified by the previous results:

$$p \models^\alpha q_1; p \models^\beta q_2$$

$$K = \{q_1^* \rightarrow r_1^*; q_2^* \rightarrow r_2^*\}$$

$$p \models^\circ r_1 \text{ and } p \models^\circ r_2$$

—thus, the knowledge or context K explicitly appears. The above pattern can be called an interpolation syllogism (IS). This reasoning method
exactly corresponds to fuzzy inference based on gradual rules [8, 5] and is of the kind at work in fuzzy control. The fuzzy sets of values close to B_1 and close to B_2 (B_1^* and B_2^*) play the role of fuzzy conclusions of fuzzy rules. Namely, we could write the above pieces of knowledge in the style of fuzzy sets as follows:

$$X = x_0,$$

the more X is F_i, the more Y is G_i,

where $F_i = A_i^*$, $G_i = B_i^*$, and with $\alpha = \mu_{A_i^*}(x_0)$, $\beta = \mu_{A_i^*}(x_0)$. Then we conclude $Y \in B_0$, where $B_0 = [G_1]_\alpha \cap [G_2]_\beta$ (see Figure 3). This example is only for the sake of illustration. Indeed, the interpolative syllogism makes sense on nonnumerical universes, where similarity is graded on an abstract scale (e.g., ordinal if $\otimes = \text{min}$).

We may be more flexible by only requiring that the background knowledge K have a fuzzy set of models induced by fuzzy rules modeled using the multiple-valued implication $\otimes \rightarrow$. Then assume that

![Figure 3](image-url)
Interpolation Based on Similarity Relations

$q_1 \models^\gamma r_1$ and $q_2 \models^\delta r_2$, and use the following fact that provides a formulation of the extrapolative syllogism introduced in Section 1.

PROPOSITION 7 $p \models^\alpha q$ and $q \models^\beta r$ imply $p \models^{\alpha \otimes^\beta} r$.

Proof On the one hand, $p \models^\alpha q$ expresses that $I(q | \omega) \geq \alpha$ for each $\omega \models p$. On the other hand, $q \models^\beta r$ expresses that $I(q | \omega) \otimes \rightarrow I(r | \omega) \geq \beta$ for each $\omega \models K$. Therefore, for each $\omega \models p \land K$ we have that $I(r | \omega) \geq \alpha \otimes \beta$, that is, it holds that $p \land K \models^{\alpha \otimes^\beta} r$, in other words, it holds that $p \models^{\alpha \otimes^\beta} r$. ■

On the whole we can make the following inference, by means of \otimes-transitivity:

$$
\frac{p \models^\alpha q_1; p \models^\beta q_2}{q_1 \models^\gamma r_1; q_2 \models^\delta r_2} (IS)
$$

We conclude that $[p \land K] \subset [r_1^*]_{\alpha \otimes \gamma}$ and $[p \land K] \subset [r_2^*]_{\beta \otimes \delta}$, which yields $Y \in [B_1^*]_{\alpha \otimes \gamma} \cap [B_2^*]_{\beta \otimes \delta}$.

Note that in this example, q_i and r_i are logically independent, so that $(q_i \land r_i)^* = q_i^* \land r_i^*$. As a consequence $q_i \models^\gamma r_i$ is equivalent to $q_i \models^\gamma r_i \land q_i$ in that particular situation. This phenomenon always appears when $[p \land q]$ can be written as a Cartesian product of interpretations on disjoint languages.

Due to the definition of the approximate entailment \models^α_K, Proposition 7 admits an even more attractive formulation, allowing us to deal with different background knowledges in the approximate and the proximity entailments.

COROLLARY 1 $p \models^\alpha_K q$ and $q \models^\beta_K r$ imply $p \models^{\alpha \otimes^\beta_K} r$.

The above results are a first step towards a logical representation of interpolative reasoning and contrast with Klawonn and Kruse’s [22] similarity-based justification of another fuzzy reasoning method (the one of Mamdani [27]) that does not involve interpolation at all, since in the case of Figure 3, the fuzzy conclusion is a weighted disjunction of B_1^* and B_2^*. In this fuzzy control method, interpolation is carried out extra-logically, as a final “defuzzification” step. Klawonn and Kruse’s [22] justification is based on acknowledging A_i^*, A_i^*, B_i^*, B_i^* as generalized equivalence classes of some similarity relations, without reference to interpolation as such. See [10] for a discussion.
8. SEMANTICS OF SIMILARITY LOGIC IN TERMS OF SPHERE SYSTEMS

A fuzzy relation R on $\Omega \times \Omega$, in particular a similarity relation, can also be viewed as a ternary relation (on Ω^3), i.e., a collection $\{ \geq_{w} | w \in \Omega \}$ of binary relations that are complete preorderings. Then $\mu_R(\omega, \omega') \geq \mu_R(\omega, \omega'')$ can represent a situation where $\omega' \geq_{\omega} \omega''$, which reads: ω' is closer to ω than ω''. These structures are common in conditional logics of counterfactuals [26]. They strongly suggest that conditional logics might be an even more suitable framework for similarity reasoning than modal logics are. In this context, the similarity relation is viewed as a “system of spheres.” However, it is worth noticing that the relationship between similarity relations and systems of spheres only works in one direction, i.e., while a fuzzy similarity relation R on $\Omega \times \Omega$ induces a collection $\{ \geq_{w} | w \in \Omega \}$ of classical binary relations, the converse is not true in general. Indeed, similarity relations make it possible to express that ω_1 is closer to ω_2 than ω_3 is to ω_4 as $S(\omega_1, \omega_2) > S(\omega_3, \omega_4)$, with $\omega_1 \neq \omega_3$. This is not possible within a set of relations $\{ > w | w \in \Omega \}$.

Let S be a \otimes-similarity relation on Ω. The sphere system associated to S is defined in the obvious way: For every ω, Σ_{ω} is the set of open and closed α-cuts of the fuzzy set ω^* of models close to ω, whose membership function is defined by $\mu_{\omega^*}(\omega') = S(\omega, \omega')$. Namely,

$$
\Sigma_{\omega} = \{ A_{\alpha} \ | \ \alpha \in (0, 1) \} \cup \{ A_{\alpha} \ | \ \alpha \in [0, 1) \},
$$

being

$$
A_{\alpha}^{\omega} = \{ \omega' | S(\omega, \omega') \geq \alpha \},

A_{\alpha}^\omega = \{ \omega' | S(\omega, \omega') > \alpha \}.
$$

In this case the set of accessible worlds from ω is $A_{\omega}^0 = \{ \omega' | S(\omega, \omega') > 0 \}$. This system is obviously centered. We show next how Lewis’s concepts of counterfactual possibility and necessity can be formulated in such a sphere system and related to similarity-based indices. In the following Poss_{ω} will denote the possibility measure induced by the fuzzy set ω^*, i.e.,

$$
\text{Poss}_{\omega}(p) = \max_{\omega' = p} S(\omega, \omega') = I_S(p | \omega).
$$

Therefore we can write $I_S(q | p) = \min_{\omega' = q} \text{Poss}_{\omega}(p)$.

The definition of counterfactual necessity, i.e.,

$$
\omega \models p \rightarrow q \quad \text{iff} \quad \text{either there does not exist any world } \omega' \in A_{\omega}^0 \text{ such that } \omega' \models p,
$$

or there exists a sphere $S' \in \Sigma_{\omega}$ such that $[p]$ overlaps S' (i.e., $\exists \omega'' \in S \text{ s.t. } \omega'' \models p$) and $\omega' \models \neg p \lor q$ for every $\omega' \in S'$,
can be now equivalently expressed in the framework of similarity logic, for nonmodal propositions, as
\[\omega \models p \rightarrow q \quad \text{iff} \quad \text{either} \quad \text{Poss}_\omega(p) = 0, \]
\[\text{or} \quad \text{Poss}_\omega(p \land q) > \text{Poss}_\omega(p \land \neg q), \]
that is,
\[I_S(p \land q \mid \omega) > I_S(p \land \neg q \mid \omega). \]

If \(\text{Poss}_\omega(q \mid p) \) denotes the conditional possibility
\[\text{Poss}_\omega(q \mid p) = \begin{cases}
1 & \text{iff} \quad I_S(p \land q \mid \omega) = I_S(p \mid \omega), \\
I_S(p \land q \mid \omega) & \text{otherwise}
\end{cases} \]
and \(\text{Nec}_\omega(q \mid p) = 1 - \text{Poss}_\omega(\neg q \mid p) \) is the conditional necessity, then
\[\omega \models p \rightarrow q \iff \text{Nec}_\omega(q \mid p) > 0 \]
whenever \(\text{Poss}_\omega(p) > 0 \). This means that when \(\omega \models p \), \(\omega \) is closer to \(q \) than to \(\neg q \). Hence more generally, \(K \models p \rightarrow q \) iff \(\forall \alpha > 0, K \models^\alpha \neg q \land p \) implies \(\exists \beta > \alpha, K \models^\beta q \land p \). Analogously, for the counterfactual possibility we have that
\[\omega \models p \diamondrightarrow q \iff \text{Poss}_\omega(p) > 0 \text{ and } \text{Poss}_\omega(q \mid p) = 1. \]
Therefore, it is straightforward to notice that \(\omega \models p \diamondrightarrow q \) iff \(I_S(p \land q \mid \omega) = I_S(p \mid \omega) > 0 \). More generally, the following result relating conditional logics and similarity logic holds:
\[K \models p \diamondrightarrow q \quad \text{iff} \quad J_{K,S}(p \land q \mid p) = 1 \quad \text{and} \quad I_S(p \mid K) > 0, \quad \text{i.e.} \]
\[\text{iff} \quad p \models^1_{\land K} q \text{ and } K \models^\alpha p \text{ for some } \alpha > 0. \]

Conditional logic as such is thus not expressive enough to describe similarity logic, because it does not handle spheres explicitly. One should have a multilevel conditional logic.

9. DISCUSSION

The approximate entailments based on similarity are quite different from the preferential entailment \(\models^\pi \) of possibilistic logic [6]. In the latter case, \(\Omega \) is equipped with a complete preordering that expresses how plausible interpretations are, and is encoded as a possibility distribution \(\pi \). Then \(p \models^\pi q \) means that \(q \) is true in all the best models of \(p \), which correspond to shrinking \(p \) (instead of stretching \(q \) as here). The inference relation \(\models^\pi \) satisfies properties different from those of \(\models^\alpha \) (see [11]). However, as indicated by Esteva et al. [13], \(\pi \) can always be constructed from a given subset \(A \), taken as background information, and the similar-
ity relation S, such that $\pi = \mu_A$. Then $p \Vdash q$ can be interpreted as follows: all models of p that are as close as possible to A are models of q, where "as close as possible to A" means "close to normal." Moreover, from the sphere semantics perspective it is very clear what possibilistic and similarity logics have in common and what discriminates them. From the model construction point of view, possibilistic logic is built upon a unique complete preordering on the worlds which determines an absolute system of spheres (see [16]), whereas a similarity relation corresponds to a complete preordering attached to each world, and thus it leads to a centered system of spheres. From the inferential point of view, possibilistic inference is related to the counterfactual necessity, whereas a form of proximity entailment is more directly related to the counterfactual possibility.

Also of interest is the study of the links between similarity-based entailments and various graded extensions of consequence relations in multiple-valued logic, as studied by Chakraborty [3] and Castro et al. [2]. This is a topic for further research.

The long-term perspective of this work could be to provide logical foundations for some forms of "fuzzy logic," and also case-based reasoning where similarity plays a basic role. The next step would be to start from a set of conditional statements of the form "p is not far from implying q" that forms a conditional similarity-oriented knowledge base, and to reconstruct the underlying similarity measure. This has been done in the characterization theorems, albeit with a complete set of such statements, sufficient to define a single similarity relation. It would be worthwhile to do the same with an incomplete such set, given by a domain expert, using the characteristic axioms as inference rules so as to help constructing a "least committed" similarity relation, by analogy to the treatment of conditional knowledge bases in nonmonotonic reasoning.

APPENDIX

Proof of Theorem 1 We only prove the first claim; the second is proved in the main text. Take Ω as the set of all interpretations of L, and define $S(\omega, \omega') = \sup\{\alpha \mid \omega \vdash^\alpha \omega'\}$. This supremum always exists, because the set \{\alpha \mid \omega \vdash^\alpha \omega'\} is never empty, since 0 always belongs to it. Notice that with this definition, and due to the continuity assumption, we have $S(\omega, \omega') \geq \alpha$ iff $\omega \vdash^\alpha \omega'$. Moreover, S so defined is a \otimes-similarity relation on the set Ω:

1. S is reflexive:

$$S(\omega, \omega) = \sup\{\alpha \mid \omega \vdash^\alpha \omega\} = 1,$$

since $\omega \vdash^1 \omega$.

2. S is symmetric:

$$S(\omega, \omega') = \sup\{\alpha \mid \omega \vdash^\alpha \omega'\} = \sup\{\alpha \mid \omega' \vdash^\alpha \omega\} = S(\omega', \omega),$$

since $\omega \vdash^\alpha \omega'$ iff $\omega' \vdash^\alpha \omega$.

3. S is \otimes-transitive:

$$S(\omega, \omega') \otimes S(\omega', \omega'') = \sup\{\alpha \mid \omega \vdash^\alpha \omega'\} \otimes \sup\{\beta \mid \omega' \vdash^\beta \omega''\}$$

$$= \sup\{\alpha \otimes \beta \mid \omega \vdash^\alpha \omega' \text{ and } \omega' \vdash^\beta \omega''\}$$

$$\leq \sup\{\alpha \otimes \beta \mid \omega \vdash^\alpha \otimes^\beta \omega''\} = S(\omega, \omega'').$$

Moreover,

4. $S(\omega, \omega') = 1$ iff $\omega = \omega'$:

$$\sup\{\alpha \mid \omega \vdash^\alpha \omega'\} = 1 \iff \omega \vdash^1 \omega' \iff \omega = \omega' \iff \omega = \omega'.$$

Now we have to check that $p \vdash^\alpha q$ iff $I_\delta(q \mid p) \geq \alpha$. This is proved as follows. Suppose $I_\delta(q \mid p) \geq \alpha$. By definition, this means that for every interpretation ω such that $\omega \models p$, there exists an interpretation ω' such that $\omega' \models q$ and $S(\omega, \omega') \geq \alpha$ (or equivalently $\omega \vdash^\alpha \omega'$). Since, by the right or property, any proposition is equivalent to a unique disjunction of interpretations, the former statement is equivalent to $\omega \vdash^1 q$ for all interpretations proving p, and finally, by the left or property, equivalent to $p \vdash^\alpha q$. Consistency preservation implies that this equivalence holds even if $q = \perp$. \hfill \blacksquare

Lemma A1 Let E be a subset of Ω. Assume that $\{\vdash^\alpha\}_{\alpha \in [0,1]}$ is a nested family such that the conditions of Theorem 3 hold, and define a fuzzy relation S such that

$$S(\omega, \omega') = \begin{cases}
\sup\{\alpha \mid \omega \vdash^\alpha \omega'\} & \text{for } \omega \in E, \\
\sup\{\alpha \mid \omega' \vdash^\alpha \omega\} & \text{for } \omega' \in E, \omega \not\in E, \\
1 & \text{if } \omega = \omega' \not\in E, \\
\max_{x \in E} S(\omega, x) \otimes S(x, \omega') & \text{otherwise}.
\end{cases}$$

Then S is a similarity relation on Ω.

Proof S is clearly reflexive and symmetric. For transitivity we shall consider three cases according to the location of ω and ω' in or out of E. and due to symmetry.
1. $\omega \in E$, $\omega' \in E$:

$$\max_x S(\omega, x) \otimes S(x, \omega')$$

$$= \max \left(\max_{x \notin E} \sup_\alpha \beta \mid \omega \vdash^\alpha x \text{ and } \omega' \vdash^\beta x \}, \right.$$

$$\max_{x \in E} \sup_\alpha \beta \mid \omega \vdash^\alpha x \text{ and } x \vdash^\beta \omega' \right) \right)$$

$$\leq \sup_\gamma \omega \vdash^\gamma \omega' = S(\omega, \omega'),$$

using 3(ii) and 3(i) of Theorem 3 respectively.

2. $\omega \in E$, $\omega' \notin E$:

$$\max_x S(w, x) \otimes S(x, \omega')$$

$$= \max \left(\max_{x \in E} S(\omega, x) \otimes S(x, \omega'), \max_{x \notin E} S(\omega, x) \otimes S(x, \omega') \right).$$

Now, as above, $\max_{x \in E} S(\omega, x) \otimes S(x, \omega') = S(\omega, \omega')$, using 3(i) of Theorem 3. Besides,

$$\max_{x \in E} S(\omega, x) \otimes S(x, \omega')$$

$$= \max \max_{x \notin E, y \notin E} S(\omega, x) \otimes S(x, y) \otimes S(y, \omega')$$

$$= \max \max_{x \notin E, y \in E} S(\omega, x) \otimes S(y, \omega') \otimes S(y, x) \otimes S(x, \omega')$$

$$\leq \max_{y \in E} \max_\delta \gamma \omega \vdash^\gamma y \text{ and } y \vdash^\gamma \omega'$$

$$= S(\omega, \omega') \quad \text{[using 3(ii) of Theorem 3]}$$

3. $\omega \notin E$, $\omega' \notin E$: We proceed as in case 2. If $x \in E$ then $\max_{x \in E} S(\omega, x) \otimes S(x, \omega') \leq S(\omega, \omega')$, using 3(i) of Theorem 3, since $\omega \vdash^\alpha x$ and $x \vdash^\beta \omega'$ imply $\omega \vdash^\alpha \otimes^\beta \omega'$. Now if $x \notin E$ then $S(\omega, x) \otimes S(x, \omega') = \max_{y, z \in E} S(\omega, y) \otimes S(y, x) \otimes S(x, z) \otimes S(z, \omega'). This leads to considering inferences such as $y \vdash^\alpha \omega$, $y \vdash^\beta x$, $z \vdash^\gamma x$, $z \vdash^\delta \omega'$, which reduce as above into $y \vdash^\alpha \omega$, $y \vdash^\beta \otimes^\gamma \omega$, $z \vdash^\delta \omega'$ by 3(ii) of Theorem 3 and then $y \vdash^\alpha \omega$, $y \vdash^\beta \otimes^\gamma \omega$ by 3(i) of Theorem 3, and finally $\omega \vdash^\alpha \otimes^\beta \otimes^\gamma \omega'$ by 3(ii) of Theorem 3. ■
ACKNOWLEDGMENTS

The authors have been supported by the joint CSIC-CNRS project “Similarity-based Reasoning and Applications.” Francesc Esteva, Pere Garcia, and Lluís Godo have been also partially supported by DGICYT project PB91-0334-C03-03 and by European Community project MUM (Copernicus 10053).

References

