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We consider the ratio of the top structure functions Rt(τt) in top pair production as a probe of the top 
content of the proton at the LHeC project. We study the top structure functions with the geometrical 
scaling of gluon distribution at small x and show that top reduced cross section exhibits geometrical 
scaling in a large range of photon vitualities. This analysis shows that top longitudinal structure function 
has sizeable impact on the top reduced cross section at Q 2 ≈ 4m2

t .
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Recently, a method of determination of the top structure func-
tion in the proton from the LHeC project [1,2] had been pro-
posed [3]. On the basis of the method it is known that the domi-
nant source for the F t

2 scaling violations is the conversion of glu-
ons into the tt pairs at low-x. The initial scaling increases as Q 2

increases from x0 = 0.0001–0.1 to Q 2 = 10–10 000 GeV2 respec-
tively. In this limit, the crucial point is the observation that the 
top structure function parameterization depends directly on the 
gluon density. The relevant framework for the dominance of the 
gluon distributions in perturbative QCD in this limit is the leading 
log(1/x) (LL1/x) approximation. The basic quantity in this approx-
imation is the non-integrated gluon distribution f (x, k2

T ) which is 
related to the conventional gluon density g(x, Q 2), which satisfies 
DGLAP evolution, as

xg(x, Q 2) =
Q 2∫

0

dk2
T

k2
T

f (x,k2
T ). (1)

The analytical behavior for f (x, k2
T ) at small x is found to be given 

by [4], if the running coupling constant effects are taken into ac-
count, as

f (x,k2
T )∼R(x,k2

T )x−λ (2)
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where λ = 4 Ncαs
π ln(2) at LO and at NLO it has the following 

form [5]

λ = 4
Ncαs

π
ln(2)[1 − c(

1

2
)

Ncαs

4π
], (3)

and c( 1
2 ) = 25.8388 + 0.1869

n f
Nc

+ 10.6584
n f

N3
c

. The quantity 1 + λ

is equal to the intercept of the so-called BFKL pomeron. The 
KT -factorization approach relates strongly to Regge-like behavior 
of gluon distribution, as we restrict our investigations to the gluon 
distribution function at the following form

xg(x, Q 2)∼x−λ. (4)

Here λ is the hard-pomeron intercept. The credible phenomenol-
ogy intercept of the BFKL equation can be defined by a kinematic 
constraint to control the gluon ladder [4]. As the effect of this 
constraint on the intercept one finds that it reduced the intercept 
from λ∼0.5 to λ∼0.3 [6]. Recently the value 0.317 was estimated
directly from the data in the proton unpolarized structure func-
tion [7].

The latest data [8] for charm and beauty structure functions 
show that there are not enough data for the suggestion of the log-
arithmic x-derivative in the full kinematic range available as [9]

δ = ∂ lnF c,b
2

∂ ln 1
x

. (5)

For the charm structure functions, the data points at the values 
12 ≤ Q 2 ≤ 120 GeV2 have shown that this derivative is indepen-
dent of x for low x values within the experimental data and this 
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implies that a power law behavior for charm structure function 
as < δ > is estimated from fits to the H1 data as < δ >� 0.43. 
For other Q 2 values and the beauty structure functions there are 
not enough experimental data for this behavior change in the mea-
sured kinematic range. Using ideas from Regge theory, where gluon 
distributions have the same power law behavior (Eq. (4)) for all H1 
experimental data for charm and beauty structure functions. Our 
estimations show that < λc >� 0.45±0.90

0.23 and < λb >� 0.43±0.21
0.33

for charm and beauty intercepts respectively. These values for λ’s 
show that the hard pomeron behavior [10–13] is dominant. In-
deed the hard pomeron behavior gives a very good description 
of the data within the experimental accuracy, not only for the 
charm structure function F c

2(x, Q 2), but also for the beauty struc-
ture function F b

2(x, Q 2).
In leptoproduction, the primary graph is the Photon–Gluon–

Fusion (PGF) model where the incident virtual photon interacts 
with a gluon from the target nucleon for producing tt at lead-
ing order (LO) and next-leading-order (NLO) processes at the LHeC 
project [1,2] within the variable-flavor-number scheme (VFNS). In 
the LHeC project, we think that the top quark component F t

2 of F2
is apparently governed almost entirely by hard-pomeron exchange 
over a wide range of x and Q 2. In LHeC project, for Q 2 > 2 GeV2, 
the hard pomeron behavior is driven solely by the gluon field. 
Therefore, according to perturbative QCD, the top quark originates 
from a gluon structure function that is dominated at small x by 
hard pomeron exchange.

Let us use the gluon distribution to calculate top production in 
LO up to NLO pQCD at small x as the top structure functions may 
be given by

F t
k(x, Q 2,m2

t ) = e2
t
αs(< μ2

t >)

2π

1−x∫
1− 1

a

dzCt
g,2(1 − z, ζ )

× G(
x

1 − z
,< μ2

t >), (k = 2 & L) (6)

where Ct
g,k are the coefficient functions and a = 1 + ξ where 

ξ ≡ m2
t

Q 2 and G (= xg) is the gluon momentum distribution. The 
physical intuition leads us to take < μ2

t >= 4m2
t + Q 2/2 for both, 

though it must be recognized that this is a mere guess. The value 
mt = 157 GeV is fixed for these results.

Thus, exploiting the hard pomeron behavior (4) for the gluon 
distribution at x−λ � 1 and using the NLO approximation for 
collinear coefficient functions and anomalous dimensions of Wil-
son operators, the top structure functions F t

k , with respect to the 
gluon distribution behavior, have the following forms

F t
k(x, Q 2,m2

t ) = e2
t
αs(< μ2 >)

2π
ηk(x,< μ2 >)

× G(x,< μ2 >), (7)

where

ηk(x,< μ2 >) = Ct
g,k(x, ζ )⊗(x)λ, (8)

and the symbol ⊗ denotes convolution according to the usual pre-
scription, f (x)⊗g(x) = ∫ 1

x (dy/y) f (y)g(x/y). The ratios of the top 
structure functions are important for investigation of the photon-
top quark scattering contribution to the Callan–Gross ratio at low 
and moderate Q 2 � m2

t as

Rt(x, Q 2) = F t
L(x, Q 2)

F t
2(x, Q 2)

. (9)

The solution of Eq. (9) is straightforward and given by
Rt(x, Q 2) = e2
t

αs(<μ2>)
2π ηL(x,< μ2 >)G(x,< μ2 >)

e2
t

αs(<μ2>)
2π η2(x,< μ2 >)G(x,< μ2 >)

= ηL(x,< μ2 >)

η2(x,< μ2 >)
.

In general, we write the quantity Rt by the following form

Rt(x, Q 2) = Ct
g,L(x, ζ )⊗(x)λ

Ct
g,2(x, ζ )⊗(x)λ

. (10)

In fact, the gluon distribution input cancels in the ratio. Therefore 
the reduced cross section for photon-top quark production [14] is 
given by

σ̃ tt(x, Q 2) = F t
2(x, Q 2)[1 − y2

1 + (1 − y)2

ηL(x,< μ2 >)

η2(x,< μ2 >)
], (11)

where y (= Q 2

sx ) is the inelasticity variable and s is the square of 
the center-of-mass energy of the virtual photon-top quark subpro-
cess Q 2(1 − z)/z. H1 Collab. [8] obtained the charm and beauty 
structure functions F cc

2 and F bb
2 from the measured c and b cross 

sections after applying small corrections for the longitudinal struc-
ture functions F cc

L and F bb
L at low and moderate inelasticity. The 

inelasticity values for c and b production in this experiment were 
in the region 0.09 < y < 0.5. We expect the inelasticity value 
for t production to be at high values. The high y values at the 
top production are according to the very low x values, as in 
this region the screening (or shadowing) effects are very impor-
tant. The main effect of shadowing is the recombining of gluons 
at higher densities via the process gg → g , where it causes the 
top structure behavior to be tamed. The saturation limit for the 
gluon distribution is at the order of the hadronic radius R H as 
Gsat(x, Q 2)∼R2

H Q 2/αs(Q 2). Because the gluons are concentrated 
around the hot-spot points, where the radius Rhs is smaller than 
the hadronic radius R H , the linear effects must be modified by the 
nonlinear terms as have been formalized by GLRMQ [15].

However at low-y, where F t
L is set to zero we have σ̃ tt(x, Q 2)

(≡ σ̃ tt
F2

) = F t
2(x, Q 2). But at moderate and high inelasticity, the lon-

gitudinal structure function contributes to the cross section. The 
fractional F t

L contribution to the top cross section is investigated
by

C F t
L
≡| σ̃ tt − σ̃ tt

F2

σ̃ tt
| . (12)

Indeed, there is a sizeable contribution to the top cross section 
at the LHeC project at high y and very low x values. The LHeC 
can use a proton beam with energy up to 7 TeV, and the electron 
beam energy is set to 60 GeV. At fixed (x, y), the gain in 

√
s will 

be a factor of about 4 as compared to HERA. The kinematic range 
of the LHeC for determination of the top structure function is at 
low x and at high Q 2 [16,17]. At small x, the inelasticity is given 
as y � 1 − E ′

e/Ee . Therefore, we can choose the extremum value 
for the inelasticity as if y → 1, then f (y) = y2/Y+ → 1 where 
Y+ = 1 + (1 − y)2.

Therefore, the tt-pair production at the LHeC project in DIS can 
happen at small enough x where the geometrical scaling (SC) has 
been introduced [18] in this region as the dense gluon system is 
fully justified. Thus the saturation scale Q 2

s (x), is an intrinsic char-
acteristic this dense gluon system which tame the rise of the gluon 
distribution at small x. One thus finds that the saturation scale has 
the form Q 2

s (x) = Q 2
0 (x/x0)

−λ as it increases with decreasing x. 
This type of scaling is also found to be an intrinsic property of the 
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Table 1
The fractional F t

L contribution to the top reduced 
cross section in bins for top production at the LHeC.

Q 2 (GeV2) C F t
L

10 0.27E-4
100 0.27E-3

1000 0.27E-2
10 000 0.025

100 000 0.150
1 000 000 0.253

10 000 000 0.200
100 000 000 0.146

1 000 000 000 0.113
10 000 000 000 0.092

nonlinear evolution equations. Therefore the proton cross section 
depends upon the single variable τ = Q 2/Q 2

s (x), as

σγ ∗ p(x, Q 2) = σγ ∗ p(τ ). (13)

The gluon distribution at the geometric scale is defined by

αs

2π
xg(x, Q 2 = Q 2

s (x)) = r0x−λ, (14)

with r0 = 3
8π3 σ0xλ

0. The two parameters σ0 and x0 determined 
when the authors in Ref. [19] performed a fit including charm 
to the total cross section σγ ∗ p . Using the leading-twist relation-
ship between the dipole cross section and the unintegrated gluon 
distribution, the integrated gluon distribution at fixed coupling is 
given by [20]

G(x, Q 2) = 3σ0

4π2αs
(−Q 2e

−Q 2( x
x0

)λ

+ (
x0

x
)λ(1 − e

−Q 2( x
x0

)λ

)). (15)

Therefore we use the same parameters as those found from a fit to 
small x data [19]. But Q 2

0 have to be larger than 2 GeV2 and the 
Bjorken variable x = xB was modified [21] to be

x = xB(1 + 4m2
t

Q 2
). (16)

In top production the geometrical scaling violation is expected due 
to the large top quark mass, therefore we use the scaling vari-
able τt according to the top quark mass further than the historical
variable [22] as

τt = (1 + 4m2
t

Q 2
)1+λ Q 2

Q 2
0

(
xB

x0
)λ. (17)

This new scale is valid in the small x as top pair production is 
dominant in this region. Therefore the saturation model leads to

F t
k(τt) = e2

t (
3σ0

8π3
(−μ2e

−μ2( x
x0

)λ

+ (
x0

x
)λ(1 − e

−μ2( x
x0

)λ

)))ηk(τt). (18)

Finally the reduced cross section for top pair production in DIS 
at the LHeC project is bounded by the geometrical scaling which 
assures unitarity of F t

2 at the limit y→1, as

σ̃ tt(τt)→F t
2(τt)[1 − Rt(τt)]. (19)

In Table 1, we find a sizable contribution to the reduced cross 
section at high y. This overlaps with the high Q 2 and very 
low x region which is outside the kinematic region accessed at 
LHeC as 0.000002 < x < 0.8 and 2 < Q 2 < 100 000 GeV2. We see 
Fig. 1. The ratio Rt as a function of x and τt for different values of Q 2.

Fig. 2. The ratio Rt as a function of Q 2 and τt with < μ2 >= 4m2
t + Q 2/2.

that the corresponding longitudinal top structure function is al-
most zero for Q 2≤1000 GeV2 at very low x values. In this case, 
σ̃ tt(τt)=F t

2(τt). In Figs. 1 and 2, we show the ratio Rt in this limit. 
This value is non-zero for Q 2 > 1000 GeV2 and has a maximum 
value less than 0.21 practically at Q 2�1E6. Our results show that 
the ratio Rt is independent of the x values and it has the same 
behavior for the charm and beauty production [23–27] in the en-
tire region of Q 2. We conclude that the longitudinal top structure 
function component of the reduced cross section could be a good 
probe of the top density of the proton at Q 2�4m2

t .
One can also see from Figs. 1 and 2 the behavior of the top 

structure functions ratio versus the top scaling variable τt for dif-
ferent values of Q 2. In Fig. 3 we show the top structure functions 
with x < 1E − 3 for different values of Q 2 against the scaling vari-
able τt . We see that the results exhibit geometrical scaling over 
a very broad range of Q 2 at any Q 2 scale. We can also clearly 
see (in Figs. 3 and 4) that the behavior of the σ̃ tt(τt) and F t

2(τt)

on τt is approximately 1/τt at large τt . The transition point is 
placed at τ�0.45 which has value much less than μ2

t = 4m2
t for 

a top mass mt = 157 GeV. At this point the Q 2
s has value of order 

200 000 GeV2, where in this region Q 2 << Q 2
s and the nonlin-

ear effects are important as the gluon density grows by the rate 
Q 2

s /
2. As plotted in Fig. 5, this transition point will be deter-
mined at LHeC project.

In conclusion, we predict the top structure functions at the 
LHeC domain with respect to the geometrical scaling. We demon-



G.R. Boroun / Physics Letters B 744 (2015) 142–145 145
Fig. 3. The F t
2 structure function for Q 2 < 4m2

t .

Fig. 4. σ̃ tt (top RCSs) and F t
2 (top SFs) plotted versus the top scaling variable τt .

Fig. 5. The top reduced cross section σ̃ tt from the region x < 0.001 plotted versus 
the top scaling variable τt .

strated the usefulness of the direct extraction F t
2 from the top 

reduced cross section σ̃ tt as the top longitudinal structure function 
has a correlation function at Q 2 ≥ 4m2
t . Also we show the ratio of 

the top structure functions as it is independent of x at low x values 
and it has the same behavior as considered for charm and beauty 
structure function ratios. The maximum value estimated for Rt(τt)

is almost ∼0.2 in a wide region of x. The most important numeri-
cal sources of theoretical uncertainty in tt-pair production are the 
factorization scale dependence and the constant parameters in the 
saturation model. Finally we show the geometrical scaling in the 
top structure functions from the region x < 0.01 and a transition 
in the behavior on τt .
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