Bicritical domination

Robert C. Brighama, Teresa W. Haynesb, Michael A. Henningc,1,
Douglas F. Ralld

aDepartment of Mathematics, University of Central Florida, Orlando, FL 32816, USA
bDepartment of Mathematics, East Tennessee State University, Johnson City, TN 37614-0002, USA
cSchool of Mathematical Sciences, University of KwaZulu-Natal, Pietermaritzburg Campus, 3209, South Africa
dDepartment of Mathematics, Furman University, Greenville, SC 29613, USA

Received 24 April 2003; received in revised form 17 March 2005; accepted 2 August 2005

Abstract

A graph G is domination bicritical if the removal of any pair of vertices decreases the domination number. Properties of bicritical graphs are studied. We show that a connected bicritical graph has domination number at least 3, minimum degree at least 3, and edge-connectivity at least 2. Ways of constructing a bicritical graph from smaller bicritical graphs are presented.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Domination; Vertex critical domination; Vertex bicritical domination; Bounds; Diameter

1. Introduction

For many graph parameters, criticality is a fundamental issue. Much has been written about graphs for which a parameter (such as connectedness or chromatic number) increases or decreases whenever an edge or vertex is removed or added. For domination number, Brigham et al. [2] began the study of graphs where the domination number decreases on the removal of any vertex. Further properties of these graphs were explored in [2,3,5], but

1 Research supported in part by the University of KwaZulu-Natal and the South African National Research Foundation.

E-mail address: haynes@mail.etsu.edu (T.W. Haynes).

0012-365X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
they have not been characterized. Other types of domination critical graphs have also been studied, for example, see [4,9–12].

In this paper, we introduce and study those graphs where the domination number decreases on the removal of any set of \(k \) vertices. Recall that for a graph \(G = (V, E) \), the open neighborhood of a vertex \(v \in V \) is \(N(v) = \{x \in V \mid vx \in E\} \). The closed neighborhood is \(N[v] = N(v) \cup \{v\} \). A set \(S \subseteq V \) is a dominating set if every vertex in \(V \) is either in \(S \) or is adjacent to a vertex in \(S \), that is, \(V = \bigcup_{s \in S} N[s] \). The domination number \(\gamma(G) \) is the minimum cardinality of a dominating set of \(G \), and a dominating set of minimum cardinality is called a \(\gamma(G) \)-set. For a set \(S \), a vertex \(v \) is a private neighbor of \(u \) (with respect to \(S \)) if \(N[v] \cap S = \{u\} \); and the private neighbor set of \(u \), with respect to \(S \), is the set \(\text{pn}[u, S] = \{v \mid N[v] \cap S = \{u\}\} \). We denote the subgraph induced by \(S \) in \(G \) by \(G[S] \). We denote the distance between two vertices \(x \) and \(y \) in \(G \) by \(d_G(x, y) \). For a detailed discussion of domination and for notation not defined here, see [6,7].

Note that removing a vertex can increase the domination number by more than one, but can decrease it by at most one. It is useful to write the vertex set of a graph as a disjoint union of three sets according to how their removal affects \(\gamma(G) \). Let \(V(G) = V^0 \cup V^+ \cup V^- \) where

\[
V^0 = \{v \in V \mid \gamma(G - v) = \gamma(G)\},
\]

\[
V^+ = \{v \in V \mid \gamma(G - v) > \gamma(G)\},
\]

and

\[
V^- = \{v \in V \mid \gamma(G - v) < \gamma(G)\}.
\]

It is possible for a single graph to have all of the sets \(V^0, V^- \), and \(V^+ \) nonempty. For example, if \(k \geq 3 \) and \(T \) is the tree obtained from a star \(K_{1,k} \) with center \(u \) by subdividing an edge \(uw \) of this star once, then \(V^+ = \{u\} \), \(V^- = \{w\} \), and \(V^0 = V(T) - \{u, w\} \).

Brigham et al. [2] defined a vertex \(v \) to be critical if \(v \in V^- \), and a graph \(G \) to be domination critical if every vertex of \(G \) is critical. A generalization of this concept was presented in [8]. Here we consider a different generalization. We define a graph \(G \) to be \((\gamma, k)\)-critical, if \(\gamma(G - S) < \gamma(G) \) for any set \(S \) of \(k \) vertices. Obviously, a \((\gamma, k)\)-critical graph \(G \) has \(\gamma(G) \geq 2 \). For instance, \(K_n \) is \((\gamma, k)\)-critical for all \(k \leq n - 1 \). The \((\gamma, 1)\)-critical graphs are precisely the domination critical graphs introduced by Brigham, Chinn, and Dutton. In the special case of \(k = 2 \), we say that \(G \) is domination bicritical, or just bicritical.

In this paper, we call a graph critical (respectively, bicritical) if it is domination critical (respectively, domination bicritical). Further, we call a graph \(\gamma \)-critical (respectively, \(\gamma \)-bicritical) if it is domination critical (respectively, \(\gamma \)-bicritical) with domination number \(\gamma \). For example, the self-complementary Cartesian product \(G = K_3 \square K_3 \), where \(\gamma(G) = 3 \), is 3-critical and 3-bicritical, since removing any vertex or any pair of vertices decreases the domination number. However, critical graphs are not necessarily bicritical. For instance, the cycles \(C_n \) for \(n \equiv 1 \pmod{3} \) are critical, but not bicritical. On the other hand, bicritical graphs are not necessarily critical. For example, the graph \(H \) formed from the Cartesian product \(K_3 \square K_3 \) (where the vertices of the \(i \)th copy of \(K_3 \) are labelled \(v_{ij} \) for \(1 \leq j \leq 3 \)) by adding a new vertex \(x \) adjacent to \(v_{11}, v_{12}, v_{23}, \) and \(v_{33} \) is bicritical and not critical (since \(x \in V^0 \)).
2. Examples of bicritical graphs

In this section, we present three examples of bicritical graphs. We begin with the circulant graph $C_8\langle 1, 4 \rangle$ (shown in Fig. 1), i.e., the graph with vertex set \{v_0, v_1, \ldots, v_7\} and edge set \{v_iv_i+j (\text{mod } 8) \mid i \in \{0, 1, \ldots, 7\} \text{ and } j \in \{1, 4\}\}.

Proposition 1. The circulant $C_8\langle 1, 4 \rangle$ is 3-critical and 3-bicritical.

Proof. Let graph $G = C_8\langle 1, 4 \rangle$ be labelled as in Fig. 1. It has domination number 3 and is vertex-transitive. Since \{v_3, v_5\} dominates $G-\{v_0\}$, G is critical. Furthermore, since each of $G-\{v_0, v_1\}$, $G-\{v_0, v_2\}$ and $G-\{v_0, v_4\}$ is dominated by \{v_3, v_5\}, while $G-\{v_0, v_3\}$ is dominated by \{v_5, v_6\}, it follows from vertex-transitivity that G is also bicritical. □

Our second example is the Cartesian product $G_t = K_t \square K_t$. We can think of G_t as having t disjoint copies of K_t in “rows” and t disjoint copies of K_t in columns. In other words, we consider the vertices of G_t as a matrix, where vertex v_{ij} is in the ith row (copy of K_t) and the jth column (copy of K_t). For ease of discussion, we will use the words row and column to mean a “copy of K_t”.

Proposition 2. The Cartesian product $G_t = K_t \square K_t$ for $t \geq 3$ is t-critical and t-bicritical.

Proof. We show first that $\gamma(G_t) = t$. Since \{v_{11}, v_{21}, \ldots, v_{t1}\} is a dominating set, we have $\gamma(G_t) \leq t$. Suppose $\gamma(G_t) \leq t - 1$. Then any $\gamma(G_t)$-set S does not have a vertex in row i for some i. Now any vertex in S can dominate only one vertex of row i implying that at most $t - 1$ of the t vertices of row i are dominated. Thus, $\gamma(G_t) = t$.

To see that G_t is critical, without loss of generality, consider $G_t-\{v_{11}\}$. Then $\{v_{ss} \mid 2 \leq s \leq t\}$ is a dominating set of cardinality $t - 1$. Consider removing two vertices v_{ij} and $v_{ij'}$ from G_t. Within symmetry, there are two possibilities: suppose $s = i$ (or, equivalently, $r = j$). Without loss of generality, let the vertices be v_{11} and v_{12}. Then $\{v_{ss} \mid 2 \leq s \leq t\}$ is a dominating set of cardinality $t - 1$. Suppose $s \neq i$ and $r \neq j$. Without loss of generality, let the vertices be v_{11} and v_{22}. Then $\{v_{23}, v_{32}\} \cup \{v_{ss} \mid 4 \leq s \leq t\}$ is a dominating set of cardinality $t - 1$. Thus, for any two vertices u and v of G_t, $\gamma(G_t - \{u, v\}) \leq t - 1$ implying G_t is bicritical. □
Proposition 3. Any graph formed from the complete bipartite graph $K_{2t,2t}$ where $t \geq 3$ by removing the edges of t disjoint 4-cycles is 4-critical and 4-bicritical.

Proof. Let $K_{2t,2t}$ have partite sets \mathcal{L} and \mathcal{R}, and let H be formed from $K_{2t,2t}$ by removing the edges of t disjoint 4-cycles. Let $\{1, 2, 3, 4, 5, 6\} \subseteq \mathcal{L}$ and $\{a, b, c, d, e, f\} \subseteq \mathcal{R}$. For notational convenience, we may assume that the edges of the 4-cycles induced by each of the sets $\{1, 2, a, b\}, \{3, 4, c, d\}$ and $\{5, 6, e, f\}$ of vertices in $K_{2t,2t}$ have been removed when forming H. Then $\gamma(H)$ = 4, and by symmetry the following four cases cover all possibilities:

1. $\{2, b\}$ dominates $H - \{1, a\}$,
2. $\{2, 3, a\}$ dominates $H - \{1, c\}$,
3. $\{3, 5, a\}$ dominates $H - \{1, 2\}$,
4. $\{2, a, b\}$ dominates $H - \{1, 3\}$.

Therefore, H is 4-bicritical. Also, $\{1, 2, b\}$ dominates $H - a$, so H is 4-critical. \qed

3. Basic properties

In this section, we investigate some basic properties of bicritical graphs. Since removing a vertex can decrease the domination number by at most one, we make a straightforward, but useful observation.

Observation 4. For a bicritical graph G and $x, y \in V(G)$, $\gamma(G) - 2 \leq \gamma(G - \{x, y\}) \leq \gamma(G) - 1$.

Our next observation holds for a general graph.

Observation 5. If G is any graph and $x, y \in V(G)$ such that $\gamma(G - \{x, y\}) = \gamma(G) - 2$, then $d_G(x, y) \geq 3$.

Proof. Let S be a $\gamma(G - \{x, y\})$-set. Then, $|S| = \gamma(G) - 2$. If $xy \in E(G)$, then $S \cup \{x\}$ dominates G, while if $z \in N(x) \cap N(y)$, then $S \cup \{z\}$ dominates G. Both cases produce a contradiction. Therefore, $d_G(x, y) \geq 3$. \qed

We observe two immediate consequences of Observation 5. First, if $\gamma(G - \{u, v\}) = \gamma(G) - 2$ for every pair of distinct vertices u and v in a graph G, then G has no edges. Secondly, if G is a connected, bicritical graph having diameter two, then for every pair of distinct vertices u and v in G, $\gamma(G - \{u, v\}) = \gamma(G) - 1$. Note that the graph H in the proof of Proposition 3 is a connected, bicritical graph having some pairs of vertices whose deletion reduces the domination number by two.

By Observation 5, removing v and any neighbor u of v from a bicritical graph G reduces the domination number of G by one. Thus adding v to any $\gamma(G - \{u, v\})$-set produces a $\gamma(G)$-set. This yields the following observation.

Observation 6. If G is a bicritical graph, then every vertex of G belongs to a $\gamma(G)$-set.

It is also easy to see that if G is a bicritical graph and x and y are vertices of G such that $\gamma(G - \{x, y\}) = \gamma(G) - 2$, then G has a $\gamma(G)$-set containing both x and y.

[86x627]
If G is a graph and $v \in V^+$, then $\gamma(G-v) > \gamma(G)$. Since removing a vertex can decrease the domination number of a graph by at most one, $\gamma((G-v)-u) \geq \gamma(G)$ for all $u \in V(G-v)$. Thus, we have the following observation.

Observation 7. If G is a bicritical graph, then $V = V^- \cup V^0$, that is, $V^+ = \emptyset$. Furthermore, either G is critical, or $G-v$ is critical for all $v \in V^0$.

Brigham et al. [2] established an upper bound on the order of a critical graph in terms of its maximum degree and domination number.

Proposition 8 (Brigham et al. [2]). If G is a critical graph of order n, then $n \leq (\Delta(G) + 1)(\gamma(G) - 1) + 1$.

Proposition 9 (Fulman et al. [5]). If G is a critical graph of order $n = (\Delta(G) + 1)(\gamma(G) - 1) + 1$, then G is regular.

By Observation 7 and Proposition 8, we have the following upper bound.

Proposition 10. If G is a bicritical graph of order n, then $n \leq (\Delta(G) + 1)(\gamma(G) - 1) + 2$.

If a bicritical graph G attains the upper bound of Proposition 10, then G is not critical and $G-v$ is both critical and, by Proposition 9, regular for each $v \in V^0(G)$. The upper bound of Proposition 10 can be improved slightly if G is regular.

Proposition 11. If G is a regular bicritical graph of order n, then $n \leq (\Delta(G) + 1)(\gamma(G) - 1) + 1$.

Proof. If G is critical, then the result holds from Proposition 8. On the other hand, if G is not critical, then, by Observation 7, $G-v$ is critical for some $v \in V^0(G)$. Since $\gamma(G) \geq 2$, v does not dominate G, and so $G-v$ is not regular and $\Delta(G-v) = \Delta(G)$. Hence, by Propositions 8 and 9, $n-1 = |V(G-v)| \leq (\Delta(G-v) + 1)(\gamma(G-v) - 1) = (\Delta(G) + 1)(\gamma(G) - 1)$, and the result follows. □

The 2-critical graphs were characterized in [2].

Proposition 12 (Brigham et al. [2]). A graph G is 2-critical if and only if G is K_{2t}, $t \geq 1$, minus a perfect matching.

Our next result shows that there are no connected 2-bicritical graphs.

Proposition 13. If G is a connected bicritical graph, then $\gamma(G) \geq 3$.

Proof. Suppose that $\gamma(G) = 2$. By Observation 7, either G is critical or $G-v$ is critical for every $v \in V^0$. Suppose G is critical. Then, by Proposition 12, $G = K_{2t} - M$ where M is a perfect matching. Let $xy \in M$. (Note that $t \geq 2$ since G is connected.) Then $G' = G - \{x, y\} = K_{2t-2} - M'$ where M' is a perfect matching of K_{2t-2}, and so $\gamma(G') = 2 = \gamma(G)$, contradicting
Again, if \(t \geq 2 \) since \(G \) is connected. Label the edges of \(M, u_iv_i \) for \(1 \leq i \leq t \). Since \(\gamma(G) = 2 \), we may assume that \(u_1 \) (say) is not adjacent to \(v \). But then \(\gamma(G - \{u_2, v_2\}) = 2 = \gamma(G) \), a contradiction. \(\square \)

Proposition 14. If \(G \) is a connected bicritical graph, then \(\delta(G) \geq 3 \).

Proof. Assume that \(\delta(G) < 2 \). Since \(\gamma(G) \geq 3 \), \(G \) has order at least 4. Let \(v \) be a vertex of minimum degree in \(G \). If \(\deg v = 1 \), let \(u \) be the neighbor of \(v \) in \(G \) and let \(w \) be a neighbor of \(u \) different from \(v \). If \(\deg v = 2 \), let \(u \) and \(w \) denote the two neighbors of \(v \). Let \(G' = G - \{u, w\} \) and let \(S' \) be a \(\gamma(G') \)-set. Since \(G \) is bicritical, \(\gamma(G') < \gamma(G) \). Now \(v \) is an isolate in \(G' \), and hence \(v \in S' \). If \(\deg v = 1 \), let \(S = (S' - \{v\}) \cup \{u\} \), while if \(\deg v = 2 \), let \(S = S' \). In both cases, \(S \) is a dominating set of \(G \) of cardinality less than \(\gamma(G) \), a contradiction. \(\square \)

By Proposition 1, the bounds in Propositions 13 and 14 are sharp.

4. Constructions

In this section, we give two ways of constructing a bicritical graph from smaller bicritical graphs. The second construction is used to determine additional properties of bicritical graphs.

4.1. Expansion of a graph

A simple construction from Favaron et al. [4] makes it possible to extend a bicritical graph to a larger one provided the graph is also critical.

Let \(G = (V, E) \) be any graph and let \(v \in V \) and \(v' \notin V \). The expansion of \(G \) via \(v \), which we shall denote by \(G_{[v]} \), is defined in [4] to be the graph with vertex set \(V \cup \{v'\} \) and edge set \(E \cup \{v'x \mid x \in N_G(v)\} \). Thus, \(G_{[v]} \) is obtained from \(G \) by adding a new vertex \(v' \) that has the same closed neighborhood as \(v \).

Theorem 15. If \(v \) is a vertex of a graph \(G \) that is both critical and bicritical, then the graph \(G_{[v]} \) is bicritical.

Proof. Note that \(\gamma(G_{[v]}) = \gamma(G) \). Let \(x, y \in V(G_{[v]}) \). There are three cases to consider depending on whether \(|\{x, y\} \cap \{v, v'\}| \) is 0, 1 or 2.

Suppose \(|\{x, y\} \cap \{v, v'\}| = 0 \). Let \(D \) be a \(\gamma(G - \{x, y\}) \)-set. Since \(G \) is bicritical, \(|D| < \gamma(G) \).

Since \(D \) dominates \(v \) in \(G - \{x, y\} \), it also dominates \(v' \) in \(G_{[v]} - \{x, y\} \). Thus, \(D \) is a dominating set of \(G_{[v]} - \{x, y\} \), and so \(\gamma(G_{[v]} - \{x, y\}) \leq |D| < \gamma(G) = \gamma(G_{[v]}) \).

Suppose \(|\{x, y\} \cap \{v, v'\}| = 1 \). Since \(N_{G_{[v]}}(v) = N_{G_{[v]}}(v') \), we assume, without loss of generality, that \(x = v \) and \(y \in V(G) - \{v\} \). But then \(G_{[v]} - \{x, y\} = G_{[v]} - \{v, y\} \equiv G_{[v]} - \{v', y\} = G - y \). Since \(G \) is also a critical graph, it follows that \(\gamma(G_{[v]} - \{x, y\}) = \gamma(G - y) = \gamma(G) - 1 < \gamma(G_{[v]}) \).
Suppose, finally, \(\{x, y\} = \{v, v'\} \). Then \(G_{\{v\}} - \{x, y\} = G_{\{v\}} - \{v, v'\} = G - v \), and again since \(G \) is critical, we have \(\gamma(G_{\{v\}} - \{x, y\}) = \gamma(G - v) = \gamma(G) - 1 < \gamma(G_{\{v\}}) \).

Therefore, in all three cases \(\gamma(G_{\{v\}} - \{x, y\}) < \gamma(G_{\{v\}}) \) and \(G_{\{v\}} \) is bicritical. \(\square \)

We note that under the assumptions of Theorem 15, the graph \(G_{\{v\}} \) is not critical (\(v \) and \(v' \) are in \(V^0 \)), so the procedure can not be repeated.

4.2. Coalescence of two graphs

In this subsection, we give a simple construction from Brigham et al. [2] that makes it possible to build a bicritical graph from two smaller ones.

Suppose \(F \) and \(H \) are nonempty graphs. Let \(u \) and \(w \) be non-isolated vertices of \(F \) and \(H \), respectively. Then \((F \cdot H)(u, w : v)\) denotes the graph obtained from \(F \) and \(H \) by identifying \(u \) and \(w \) in a vertex labelled \(v \). We call \((F \cdot H)(u, w : v)\) the coalescence of \(F \) and \(H \) via \(u \) and \(w \).

Brigham et al. [2] proved the following result.

Proposition 16 (Brigham et al. [2]). Let \(G \) be a coalescence of two graphs \(F \) and \(H \). Then, \(G \) is critical if and only if both \(F \) and \(H \) are critical. Furthermore, if \(G \) is critical, then \(\gamma(G) = \gamma(F) + \gamma(H) - 1 \).

Lemma 17. Let \(u \) and \(w \) be non-isolated vertices of distinct nonempty graphs \(F \) and \(H \), respectively, and let \(G = (F \cdot H)(u, w : v) \) be a coalescence of \(F \) and \(H \). Then,

\[
\gamma(F) + \gamma(H) - 1 \leq \gamma(G) \leq \gamma(F) + \gamma(H).
\]

Proof. Let \(D_F \) and \(D_H \) be a \(\gamma(F) \)-set and \(\gamma(H) \)-set, respectively. If \(u \notin D_F \) and \(w \notin D_H \), then \(D_F \cup D_H \) is a dominating set of \(G \). Otherwise, \((D_F - \{u\}) \cup (D_H - \{w\}) \cup \{v\}\) is a dominating set of \(G \). In either case, we see that the right inequality in the statement of the lemma follows.

To establish the left inequality, let \(D \) be a \(\gamma(G) \)-set. If \(v \in D \), then \(D_F = V(F) \cap (D - \{v\}) \cup \{u\} \) and \(D_H = V(H) \cap (D - \{v\}) \cup \{w\} \) are dominating sets of \(F \) and \(H \), respectively. So \(\gamma(F) + \gamma(H) \leq |D_F| + |D_H| \leq |D| + 1 \) and the left inequality holds in this case. Suppose now that \(v \notin D \). Then \(v \) is adjacent to a vertex \(x \), say, of \(D \). We may assume that \(x \) is a vertex of \(F \). Then, \(D_F = D \cap V(F) \) is a dominating set of \(F \). Also, \(D_H = (D \cap V(H)) \cup \{w\} \) is a dominating set of \(H \). Thus, \(\gamma(F) + \gamma(H) \leq |D_F| + |D_H| \leq |D| + 1 \) and once again the left inequality of the lemma follows. \(\square \)

Proposition 18. Let \(G \) be a coalescence of two graphs \(F \) and \(H \). Then, \(G \) is critical and bicritical if and only if both \(F \) and \(H \) are critical and bicritical.

Proof. Let \(G = (F \cdot H)(u, w : v) \), and let \(\gamma(F) = r \) and \(\gamma(H) = s \). Suppose first that \(G \) is critical and bicritical. By Proposition 16, \(\gamma(G) = r + s - 1 \) and both \(F \) and \(H \) are critical. We show that \(F \) is bicritical. Let \(x, y \in V(F) \). Since \(G \) is bicritical, \(r + s - 2 \geq \gamma(G - \{x, y\}) \).

If \(u \in \{x, y\} \), say \(u = x \), then, since \(H \) is critical, \(r + s - 2 \geq \gamma(G - \{x, y\}) = \gamma(F - \{x, y\}) + \gamma(H - w) = \gamma(F - \{x, y\}) + s - 1 \), and so \(\gamma(F - \{x, y\}) \leq r - 1 \). On the other
For every integer s, there exists a connected bicritical graph G with $|V(G)| = 3s + 1$. Suppose u is not isolated in $G = \{x, y\}$. If u is isolated in $G = \{x, y\}$, then by Lemma 17, $\gamma(G - \{x, y\}) = \gamma(\{x, y\}) + \gamma(H) = \gamma(\{x, y\}) + \gamma(H) - 1 = \gamma(G - \{x, y\}) + s - 1$, and so $\gamma(G - \{x, y\}) \leq r - 1$. Suppose u is isolated in $G - \{x, y\}$. Let $G - \{x, y\} = K \cup \{u\}$. Then $G = \{x, y\} = K \cup u$, and $\gamma(G - \{x, y\}) = \gamma(K) + 1$. But then $r + s - 2 \geq \gamma(G - \{x, y\}) = \gamma(K) + \gamma(H) = \gamma(G - \{x, y\}) - 1 + s$, and so once again $\gamma(G - \{x, y\}) \leq r - 1$. Hence, F is bicritical. Similarly, H is bicritical.

For the converse, suppose both F and H are critical and bicritical. By Proposition 16, $\gamma(T) = r + s - 1$ and G is critical. We show that G is bicritical. Let x and y be distinct vertices in G. Suppose that $x \in V(F) - \{u\}$ and $y \in V(F)$ (possibly, $u = y$). Since F is bicritical, there is a dominating set D_F of $F - \{x, y\}$ such that $|D_F| \leq r - 1$, and because H is critical, there is a dominating set D_H of $H - w$ such that $|D_H| = s - 1$. The set $D_F \cup D_H$ dominates $G - \{x, y\}$, and so $\gamma(G - \{x, y\}) = |D_F| + |D_H| < r + s - 2 < \gamma(G)$. Similarly, if $x \in V(H) - \{w\}$ and $y \in V(H)$, then $\gamma(G - \{x, y\}) < \gamma(G)$. Hence, we may assume that $x \in V(F) - \{u\}$ and $y \in V(F) - \{w\}$. Since F is critical, there is a dominating set D_F of $F - x$ such that $|D_F| = r - 1$. Since H is bicritical, there is a dominating set D_H of $H - \{w\}$ such that $|D_H| = s - 1$. The set $D_F \cup D_H$ dominates $G - \{x, y\}$, and so $\gamma(G - \{x, y\}) \leq |D_F| + |D_H| < r + s - 2 < \gamma(G)$. Hence, G is bicritical.

Proposition 18 immediately yields a relationship between the domination number of a bicritical graph and the domination number of its blocks.

Corollary 19. A graph G is critical and bicritical if and only if each block of G is critical and bicritical. Further, if G is critical and bicritical with blocks G_1, G_2, \ldots, G_k, then

$$\gamma(G) = \left(\sum_{i=1}^{k} \gamma(G_i)\right) - k + c(G),$$

where $c(G)$ is the number of components of G.

We believe that if G is a connected bicritical graph, then $\text{diam}(G) \leq \gamma(G) - 1$. If this is the case, then Observation 20 shows that the bound is sharp. The proof of Observation 20 serves to illustrate the existence of bicritical graphs that contain cut-vertices.

Observation 20. For every integer $\gamma \geq 3$, there exists a connected graph G_γ that is both critical and bicritical satisfying $\gamma(G_\gamma) = \gamma$ and $\text{diam}(G_\gamma) = \gamma - 1$.

Proof. Let F be the circulant $C_8(1, 4)$. Then, $\text{diam}(F) = 2$ and, by Proposition 1, F is 3-critical and 3-bicritical. Let H be formed from the complete bipartite graph $K_{6,6}$ by removing the edges of three disjoint 4-cycles. Then, $\text{diam}(H) = 3$ and, by Proposition 3, H is 4-critical and 4-bicritical. If $\gamma = 3$ or $\gamma = 4$, then we can take $G_\gamma = F$ or $G_\gamma = H$, respectively. Hence we may assume that $\gamma \geq 5$. We consider two possibilities, depending on whether γ is odd or even.

Suppose $\gamma = 2k + 1$, where $k \geq 2$. Let u and w be any two nonadjacent vertices of F. Let B_1, B_2, \ldots, B_k be k disjoint copies of F. For $i = 1, 2, \ldots, k$, let u_i and w_i denote the vertices of B_i corresponding to u and w, respectively, in F. Let G_γ be obtained by identifying w_i
and \(u_{i+1} \) for \(i = 1, \ldots, k - 1 \). Then \(B_1, B_2, \ldots, B_k \) are the blocks of \(G_γ \). Since each \(B_i \) is critical and bicritical with \(γ(B_i) = 3 \), we know from Corollary 19 that \(G_γ \) is critical and bicritical with \(γ(G_γ) = 2k + 1 = γ \). Furthermore, \(diam(G_γ) = 2k = γ - 1 \).

Suppose \(γ = 2k \), where \(k \geq 3 \). In the construction of \(G_γ \) in the preceding paragraph, replace \(B_{k-1} \) and \(B_k \) with a copy \(L \) of \(H \). Then \(B_1, \ldots, B_{k-2}, L \) are the blocks of \(G_γ \). By Corollary 19, \(G_γ \) is critical and bicritical with \(γ(G_γ) = 2k = γ \). Furthermore, \(diam(G_γ) = 2k - 1 = γ - 1 \). □

5. Edge connectivity

As illustrated in the previous section, there exist connected bicritical graphs that contain cut-vertices. In this section we show that the edge connectivity \(λ(G) \) of a bicritical graph \(G \) is at least two.

Proposition 21. If \(G \) is a connected bicritical graph, then \(λ(G) \geq 2 \).

Proof. Suppose that \(uv \) is a bridge of \(G \). Let \(G_u \) be the component of \(G - uv \) containing \(u \) and \(G_v \) be the component containing \(v \). By Proposition 14, \(δ(G) \geq 3 \), and so each of \(G_u \) and \(G_v \) has order at least 3. Clearly, \(γ(G) \leq γ(G_u) + γ(G_v) \). Let \(x \in V(G_u) \cap N(u) \). By Observation 5, removing adjacent vertices can decrease the domination number by at most one, and so \(γ(G) - 1 = γ(G - \{u, x\}) = γ(G_u - \{u, x\}) + γ(G_v) \geq γ(G_u) - 1 + γ(G_v) \) implying that \(γ(G) = γ(G_u) + γ(G_v) \).

If \(u \in V^0(G_u) \) and \(v \in V^0(G_v) \), then \(γ(G) - 1 = γ(G - \{u, v\}) = γ(G_u - u) + γ(G_v - v) = γ(G_u) + γ(G_v) = γ(G) \), a contradiction. Hence, \(u \in V^-(G_u) \) or \(v \in V^-(G_v) \). Without loss of generality, assume that \(u \in V^-(G_u) \). Let \(S_u \) be a \(γ(G_u - u) \)-set. Then, \(|S_u| = γ(G_u) - 1 \). Moreover, we claim that \(v \) is in some \(γ(G_v) \)-set. To see this, let \(y \in V(G_v) \cap N(v) \) and consider \(G - \{v, y\} \). Then \(γ(G) - 1 = γ(G - \{v, y\}) = γ(G_u) + γ(G_v) - 1 \) implying that a subset \(S' \) of \(γ(G_v) - 1 \) vertices in \(G_v \) dominates \(G_v - \{v, y\} \). Hence, \(S_v = S' \cup \{v\} \) is a \(γ(G_v) \)-set. But then \(S_u \cup S_v \) is a dominating set of \(G \) with cardinality \(γ(G_u) - 1 + γ(G_v) < γ(G) \), a contradiction. □

It can also be shown that if \(G \) is a connected critical graph, then \(λ(G) \geq 2 \). We omit the proof.

If we restrict the graph in Proposition 21 to be a cubic graph or a claw-free graph, then we show that its edge-connectivity is at least three. First we prove the following general lemma.

Lemma 22. Suppose that \(G \) is a connected bicritical graph with \(λ(G) = 2 \) and an edge-cut \(\{ab, cd\} \). Let \(G_1 \) and \(G_2 \) be the two components of \(G - ab - cd \), with \(a, c \in V(G_1), b, d \in V(G_2) \) and \(a \neq c \). Then the following must all be true.

(i) \(γ(G) = γ(G_1) + γ(G_2) \).
(ii) \(a, c \notin V^+(G_1) \) and \(b, d \notin V^-(G_2) \).
(iii) \(b \neq d \).
(iv) Without loss of generality, \(a, c \in V^-(G_1) \) and \(b, d \in V^0(G_2) \).
(v) Neither b nor d is in a $\gamma(G_2)$-set.
(vi) $\gamma(G_2 - \{b, d\}) = \gamma(G_2) - 1$, and a $\gamma(G_2 - \{b, d\})$-set dominates neither b nor d.
(vii) There is a $\gamma(G_2 - d)$-set containing b, and there is a $\gamma(G_2 - b)$-set containing d.
(viii) There is no $\gamma(G_1)$-set containing both a and c.
(ix) There is no $\gamma(G_1 - a)$-set containing c, and there is no $\gamma(G_1 - c)$-set containing a.
(x) $\gamma(G_1) \geq 3$.

Proof. Let $\gamma = \gamma(G)$. For $i = 1, 2$, let $V_i = V(G_i)$ and let $\gamma_i = \gamma(G_i)$. It is possible that $b = d$.

(i) Clearly, $\gamma \leq \gamma_1 + \gamma_2$. It suffices to show that $\gamma \geq \gamma_1 + \gamma_2$. Suppose $b = d$. Let $x \in V(V(G_2) \cap N(b))$. By Observation 5 and the fact that G is bicritical, $\gamma - 1 = \gamma(G - \{b, x\}) = \gamma_1 + \gamma(G_2 - \{b, x\}) \geq \gamma_1 + \gamma_2 - 1$, and so $\gamma \geq \gamma_1 + \gamma_2$.

Suppose $b \neq d$. If $\gamma(G_2 - \{b, d\}) = \gamma_2 - 2$, there is a $\gamma(G_2)$-set which includes both b and d. Now, $\gamma(G - \{a, c\}) \leq \gamma_1 - 1$. Let D be a $\gamma(G - \{a, c\})$-set. Then, $|D| \leq \gamma - 1$ and $D = D_1 \cup D_2$ where D_1 is a $\gamma(G_1 - \{a, c\})$-set and D_2 is a $\gamma(G_2)$-set. Take D_2 to include b and d. Then D dominates G, a contradiction. Thus, $\gamma(G_2 - \{b, d\}) \geq \gamma_1 - 2$. Now, $\gamma - 1 \geq \gamma(G - \{b, d\}) = \gamma_1 + \gamma(G_2 - \{b, d\}) \geq \gamma_1 + \gamma_2 - 1$, and so $\gamma \geq \gamma_1 + \gamma_2$.

(ii) If $a \in V^+(G_1)$, then $\gamma - 1 \geq \gamma(G - \{a, d\}) = \gamma(G_1 - a) + \gamma(G_2 - d) \geq (\gamma_1 + 1) + (\gamma_2 - 1) = \gamma_1 + \gamma_2 = \gamma$, a contradiction. The results for b, c, and d follow by a similar argument.

(iii) Suppose $b = d$. By (ii), $b \notin V^+(G_2)$. We show there is a $\gamma(G_2)$-set containing b. If $b \in V^-(G_2)$, then there is a $\gamma(G_2)$-set D_2 which contains b. If $b \in V^0(G_2)$, let $x \in N(b) \cap V(G_2)$. Then, $\gamma - 1 = \gamma(G - \{b, x\}) = \gamma_1 + \gamma(G_2 - \{b, x\})$ which implies $\gamma(G_2 - \{b, x\}) = \gamma_2 - 1$. Let D_2' be a $\gamma(G_2 - \{b, x\})$-set. Then, in this case we also have $D_2 = D_2' \cup \{b\}$ is a $\gamma(G_2)$-set which contains b. Now, $\gamma - 1 \geq \gamma(G - \{a, c\}) = \gamma(G_1 - \{a, c\}) + \gamma_2$, and so $\gamma(G_1 - \{a, c\}) \leq \gamma_1 - 1$. Let D_1 be a $\gamma(G_1 - \{a, c\})$-set. Then, $D_1 \cup D_2$ is a dominating set of G of cardinality $|D_1 \cup D_2| \leq \gamma - 1$, a contradiction.

(iv) By (ii), none of a, b, c, d are in $V^+(G_i)$ for the appropriate i. Suppose $a \in V^-(G_1)$ and $b \in V^-(G_2)$. Then, $\gamma(G - \{a, b\}) \leq \gamma(G_1 - a) + \gamma(G_2 - b) = (\gamma_1 - 1) + (\gamma_2 - 1) = \gamma - 2$ which is impossible since a and b are adjacent. Thus at least one of $a \in V^0(G_1)$ or $b \in V^0(G_2)$ is true (as is one of $c \in V^0(G_1)$ or $d \in V^0(G_2)$). Next suppose $a \in V^0(G_1)$ and $d \in V^0(G_2)$. Then, $\gamma - 1 \geq \gamma(G - \{a, d\}) = \gamma(G_1 - a) + \gamma(G_2 - d) = \gamma_1 + \gamma_2 = \gamma$, a contradiction. Thus at least one of $a \in V^-(G_1)$ or $d \in V^-(G_2)$ is true (as is one of $c \in V^-(G_1)$ or $b \in V^-(G_2)$). It follows that exactly two of a, b, c, d are in $V^-(G_i)$ for the appropriate i. Without loss of generality assume, $a \in V^-(G_1)$. Then the above comments imply $b \in V^0(G_2)$, $c \in V^0(G_1)$, and $d \in V^0(G_2)$.

(v) Suppose b is in $\gamma(G_2)$-set D_2. Let D_1 be a $\gamma(G_1 - a)$-set. Since $a \in V^-(G_1)$, $|D_1| = \gamma_1 - 1$. Now, $D = D_1 \cup D_2$ dominates G and $|D| = (\gamma_1 - 1) + \gamma_2 = \gamma - 1$, a contradiction. Hence, b is not in any $\gamma(G_2)$-set. The result for d follows from an identical argument.

(vi) Since G is bicritical, $\gamma - 1 \geq \gamma(G - \{b, d\}) = \gamma_1 + \gamma(G_2 - \{b, d\})$, and so $\gamma(G_2 - \{b, d\}) \leq \gamma_2 - 1$. Let D_2 be a $\gamma(G_2 - \{b, d\})$-set. If $|D_2| = \gamma_2 - 2$, then $D_2 \cup \{b, d\}$ is a
Theorem 24. Let G be a connected bicritical graph. If G is cubic or claw-free, then $\lambda(G) \geq 3$.

Proof. By Proposition 21, $\lambda(G) \geq 2$. Suppose that $\lambda(G) = 2$. In what follows, we adopt the notation introduced in the statement of Lemma 22. Let a_1 and a_2 be two neighbors of a in G_1. Since G is bicritical and $d(a_1, a_2) \leq 2$, $\gamma = 1 = \gamma(G - \{a_1, a_2\})$. Let D be a $\gamma(G - \{a_1, a_2\})$-set and let $D_i = D \cap V_i$ for $i = 1, 2$. Then, $|D| = \gamma - 1$. If G is a cubic graph, then a is adjacent only to b in $G - \{a_1, a_2\}$. On the other hand if G is a claw-free graph, then $N(a) - \{b\}$ induces a clique, and so any vertex of $G - \{a_1, a_2\}$ different from b that dominates a also dominates a_1 and a_2. In both cases, it follows that since D is not a dominating set of G, $N_G[a] \cap D = \{b\}$.

If $|D| \geq \gamma_2 + 1$, then $|D_1| = |D| - |D_2| \leq \gamma_1 - 2$. But then $D_1 \cup \{a, c\}$ is a $\gamma(G_1)$-set, contradicting Lemma 22(viii). Hence, $|D_2| \leq \gamma_2$. Thus, since $b \in D_2$, it follows by Lemma 22(v) that $|D_2| = \gamma_2$, D_2 is a dominating set of $G_2 - d$ and D_2 does not dominate d. Hence, $c \in D_1$ in order to dominate d and $|D_1| = \gamma_1 - 1$. But then $D_1 \cup \{a\}$ is a $\gamma(G_1)$-set, contradicting Lemma 22(viii). \square
6. 3-bicritical graphs

As shown in Corollary 23, a connected 3-bicritical graph has edge-connectivity at least three. We show here that a connected 3-bicritical graph has vertex-connectivity $\kappa(G)$ at least three.

Proposition 25. If G is a connected 3-bicritical graph, then $\kappa(G) \geq 3$.

Proof. We show first that $G = (V, E)$ has no cut-vertex.

Claim 1. $\kappa(G) \geq 2$.

Proof. Suppose that G has a cut-vertex v. Since $\delta(G) \geq 3$, each component of $G - v$ has order at least three. By Observation 7, $v \notin V^+(G)$. Suppose $v \in V^0(G)$. By Observation 7, $G - v$ is critical. Since $\gamma(G - v) = 3$, $G - v$ has at least two and at most three components, one of which, say F, has $\gamma(F) = 1$. But then for any vertex z in F, $\gamma(G - \{v, z\}) = \gamma(F - z) + \gamma((G - v) - V(F)) = \gamma(F - z) + 2$ implying that $\gamma(F - z) \leq 0$, a contradiction.

Since $v \in V^-(G)$, $\gamma(G - v) = 2$ and $G - v$ has two components, G_1 and G_2 say, each of which is dominated by one vertex. For $i = 1, 2$, let v_i be a vertex that dominates G_i. Since $\gamma(G) = 3$, no neighbor of v dominates G_1 (respectively, G_2). In particular, neither v_1 nor v_2 is adjacent to v.

Let S be a $\gamma(G - \{v_1, v_2\})$-set. Since G is bicritical, $|S| \leq 2$. If $v \in S$, then v dominates $G_1 - v_1$ or $G_2 - v_2$ (or both), say the former. But then since no neighbor of v dominates G_1, $\gamma(G_1 - v_1) \geq 2$, and so $\gamma(G - \{v, v_1\}) = \gamma(G_1 - v_1) + \gamma(G_2) \geq 3$, a contradiction. Hence, $v \notin S$. Thus, $S = \{u_1, u_2\}$ where $u_i \in V(G_i)$ for $i = 1, 2$. For $i = 1, 2$, u_i dominates $G_i - v_i$, and so since v_i and u_i are adjacent, u_i dominates G_i. In order to dominate v, we may assume that $u_1 \in N(v)$. But this contradicts our earlier observation that no neighbor of v dominates G_1. Hence, G has no cut-vertex. \square

By Claim 1, $\kappa(G) \geq 2$. Suppose that $\kappa(G) = 2$. Then there exist vertices a and b such that $G - \{a, b\}$ is disconnected. Since G is bicritical, $\gamma(G - \{a, b\}) = 2$ and $G - \{a, b\}$ has two components, G_1 and G_2 say, each of which is dominated by one vertex. For $i = 1, 2$, let $V_i = V(G_i)$. Let $\{v_1, v_2\}$ be a $\gamma(G - \{a, b\})$-set, where $v_1 \in V_1$ (and so, $v_2 \in V_2$). Since $\gamma(G) = 3$, at least one of a and b is not dominated by $\{v_1, v_2\}$, say a. We proceed further with the following claim.

Claim 2. (i) The vertex b dominates neither V_1 nor V_2.

(ii) The vertex b dominates either $V_1 - \{v_1\}$ nor $V_2 - \{v_2\}$.

(iii) The set $\{v_1, v_2\}$ can be chosen to dominate b.

Proof. (i) Suppose b dominates V_2. Let S be a $\gamma(G - \{b, v_1\})$-set. In order to dominate v_2, the set S contains a vertex $s \in V_2$ since a and v_2 are not adjacent (possibly, $s = v_2$), and so s dominates b. The remaining vertex of S cannot be adjacent to v_1, for otherwise S also dominates G. Thus, $S = \{a, s\}$ and a dominates $V_1 - \{v_1\}$. But then no $\gamma(G - \{a, v_1\})$-set S^* can contain a vertex in $V_1 - \{v_1\}$ or S^* would dominate G, and so b must dominate
We may assume v_3. Since any vertex in $V_1 - \{v_1\}$ dominates both a and v_1, it follows that $\gamma(G) = 2$, a contradiction. Hence, b does not dominate V_2. Similarly, b does not dominate V_1.

(ii) Suppose b dominates $V_1 - \{v_1\}$. Then, by (i), b is not adjacent to v_1. An identical proof as in (i) shows that a dominates $V_1 - \{v_1\}$. Let $x_1 \in V_1 - \{v_1\}$. If x_1 dominates V_1, then $\{v_2, x_1\}$ dominates G, a contradiction. Hence every vertex in $V_1 - \{v_1\}$ is not adjacent to at least one other vertex in $V_1 - \{v_1\}$. Let $y_1 \in V_1 - N[x_1]$ and consider a $\gamma(G - \{x_1, y_1\})$-set R. If $a \in R$ or $b \in R$, then R does not dominate v_1, a contradiction. Hence, R contains a vertex z_1 of V_1 that dominates $V_1 - \{x_1, y_1\}$ and is not adjacent to at least one of x_1 or y_1.

We may assume y_1 and z_1 are not adjacent.

We show now that x_1 dominates $V_1 - \{y_1, z_1\}$. If there exists a vertex $x_2 \in V_1 - \{v_1, x_1, y_1, z_1\}$ that is not adjacent to x_1, then a $\gamma(G - \{x_2, z_1\})$-set contains neither a nor b and therefore contains a vertex $x_3 \in V_1 - \{v_1, x_2, z_1\}$ that dominates $V_1 - \{x_2, z_1\}$ and is not adjacent to at least one of x_2 or z_1. Since neither x_1 nor y_1 dominates $V_1 - \{x_2, z_1\}$, $x_3 \notin \{x_1, y_1\}$. Hence, x_3 and z_1 are adjacent, and so x_3 dominates $V_1 - \{x_2\}$ and $x_2x_3 \notin E(G)$.

Now a $\gamma(G - \{x_3, z_1\})$-set contains neither a nor b and therefore contains a vertex $y \in V_1 - \{x_3, z_1\}$ that dominates $V_1 - \{x_3, z_1\}$ and is notadjacent to at least one of x_3 or z_1. Hence, $y \in \{x_1, x_2, y_1\}$.

We now return to the proof of Proposition 25. By Claim 2(iii), we may assume that b and v_2 are adjacent. Suppose a dominates $V_2 - \{v_2\}$. Then, every vertex of $V_2 - \{v_2\}$ is
adjacent to both a and v_2. Hence no $\gamma(G - \{a, v_2\})$-set contains a vertex in $V_2 - \{v_2\}$ for otherwise such a set also dominates G. But then every $\gamma(G - \{a, v_2\})$-set contains b in order to dominate $V_2 - \{v_2\}$. Since b and v_2 are adjacent, b therefore dominates G_2, contradicting (i). Hence, a does not dominate $V_2 - \{v_2\}$. Let x_2 be a vertex in $V_2 - \{v_2\}$ not adjacent to a.

Let $Y = \{y_1, y_2\}$ be a $\gamma(G - \{b, v_2\})$-set. In order to dominate x_2, we may assume $y_2 \in V_2$ (possibly, $x_2 = y_2$). Hence, $y_1 \in V_1$ in order to dominate v_1 (possibly, $y_1 = v_1$) and y_2 dominates V_2. If y_2 is not adjacent to a, then y_1 dominates $V_1 \cup \{a\}$. But then $\{v_2, y_1\}$ dominates G, a contradiction. Hence, a and y_2 are adjacent. In particular, $y_2 \notin \{v_2, x_2\}$. Since y_2 dominates V_2, every vertex of $V_2 - \{v_2, y_2\}$ is adjacent to both v_2 and y_2. Since Y does not dominate G, y_2 is not adjacent to b. Let D be a $\gamma(G - \{v_2, y_2\})$-set. Then D cannot contain a vertex in $V_2 - \{v_2, y_2\}$, for otherwise D also dominates G. Hence in order to dominate $V_2 - \{v_2, y_2\}$, $\{a, b\} \cap D \neq \emptyset$. Since a is not adjacent to x_2, $b \in D$. If $a \notin D$, then b dominates $V_2 - \{y_2\}$. Hence every vertex of $V_2 - \{y_2\}$ is adjacent to both b and y_2. But since every dominating set of $G - \{b, y_2\}$ contains a vertex of $V_2 - \{y_2\}$ (in order to dominate v_2), a $\gamma(G - \{b, y_2\})$-set also dominates G, a contradiction. Hence, $D = \{a, b\}$. Thus we have shown that $D = \{a, b\}$ dominates $G - \{v_2, y_2\}$. But b dominates v_2 and a dominates y_2, and so D dominates G, which is not possible since $\gamma(G) = 3$ and $|D| = 2$. We deduce, therefore, that our supposition that $\kappa(G) = 2$ was false. Hence by Claim 1, $\kappa(G) \geq 3$. □

We close this section by observing that there is a unique 3-bicritical cubic graph.

Observation 26. A cubic graph G is 3-bicritical if and only if G is isomorphic to the circulant $C_8(1, 4)$.

Proof. Proposition 1 shows that the circulant $C_8(1, 4)$ is 3-bicritical. For the converse, let G be 3-bicritical. Note that $n \geq 8$ because every cubic graph with $n \leq 6$ has domination number at most two. Proposition 11 implies that $n \leq 9$ and hence, $n = 8$ since G is cubic. Since there are only two cubic graphs of order 8 with domination number three (namely, the two non-planar cubic graphs of order 8), and only one of these is bicritical, the desired result follows. □

7. Summary and open problems

As a consequence of Propositions 13, 14, and 21, we summarize some basic properties of bicritical graphs established thus far.

Proposition 27. If G is a connected bicritical graph, then $\gamma(G) \geq 3$, $\delta(G) \geq 3$, and $\lambda(G) \geq 2$.

We close with some open questions and problems.

1. Is it true that every connected bicritical graph has a minimum dominating set containing any two specified vertices of the graph?

2. If G is a connected bicritical graph, is it true that $\lambda(G) \geq 3$? In particular, if G is a connected 5-bicritical graph, is it true that $\lambda(G) \geq 3$?
3. Characterize the 3-bicritical graphs.
4. Characterize the connected cubic bicritical graphs.
5. Is it true that if G is a connected bicritical graph, then $\text{diam}(G) \leq \gamma(G) - 1$? If this is the case, then Observation 20 shows that the bound is sharp.
6. Is it true that if G is a connected bicritical graph, then $\gamma(G) = i(G)$, where $i(G)$ is the independent domination number?

References