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Abstract

The concept of flexible communication permits one to model efficient asynchronous iterations on parallel com-
puters. This concept is particularly useful in two practical situations. Firstly, when communications are requested
while a processor has completed the current update only partly, and secondly, in the context of inner/outer iterations,
when processors are also allowed to make use of intermediate results obtained during the inner iteration in other
processors.
In the general case of nonlinear or linear fixed point problems, we give a global convergence results for asyn-

chronous iterationswith flexible communicationwhereby the iteration operators satisfy certain contraction hypothe-
ses. In this manner we extend to a contraction context previous results obtained for monotone operators with respect
to a partial ordering.
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1. Introduction

Parallel computers work efficiently only if thework load for a given computation between two synchro-
nisation points can be distributed evenly among the processors. At a synchronisation point, processors
generally need data which have been computed by other processors, so that usually they have to wait until
the other processors have finished their computation and, in the case of distributed memory architectures,
the communication of the data has been accomplished. There are situations where synchronisation may
become a decisive bottleneck. For example, on supercomputers with several thousands of processors,
synchronisation can become costly due to technical restrictions. Moreover in many applications, and in
particular for nonlinear problems, it can be difficult to predict the computational cost of each parallel
task, so that an even distribution of the work load between the processors cannot be achieveda priori. A
similar situation arises if the parallel computer in use is a cluster of heterogeneous workstations which,
in addition, may not be available in dedicated mode. Then, the computational power available on each
processor is unpredictable, so that it is again impossible to obtain a fair assignation whereby each parallel
task requires equal time between two synchronisation points. In such situations it can be advantageous
to use the asynchronous paradigm instead of the synchronous one.We think in particular of iterative pro-
cesses whereby each iterative step produces an approximation to the solution of a given problem. Then,
classically, synchronisation will occur at the beginning of each iterative step where processors build up
the value of the current iterate from the data computed in all processors. In the asynchronous case, these
synchronisation points are completely skipped. Therefore, if certain processors perform their iterative
step faster than others, then the processors will get ‘out of phase’.When building up ‘their’ current iterate,
the processors will now use data from other processors which will not correspond to the data used in the
synchronized algorithm. In this manner, the asynchronous paradigm tends to eliminate idle times due to
synchronisation. On the other hand, the resulting asynchronous iteration is less structured, and there is a
need for theoretical results concerning the convergence and the speed of convergence of such methods.
Asynchronous iterations have been studied and implemented by many authors for a variety of different

applications. Any attempt to list all relevant publications is beyond the scope of this paper. Instead, we
refer to the overview article[11] and the book[5] for references in the case of linear and nonlinear systems
of equations and minimization problems and the very recent papers[1–3] for multisplitting ideas and
applications to complementarity problems. The recent paper[17] analyses for the first time asynchronous
iterations from a stochastic perspective.
In this study, we further develop on a recent and general class of asynchronous iterations for linear and

nonlinear fixed point problems which has first been brought forward in a mathematical form in[8,13].
This concept, called ‘asynchronous iterations with flexible communication’ allows for an even larger
degree of freedom on when and how communications are to be performed than the classical model for
asynchronous iterations (see[7,12,4,5]). In particular, the flexible communication model is well suited
to the following two situations which we call the ‘partial update’ situation and the ‘inner/outer’ context.
In the partial update situation, each processor has several components, say a block, of the iterate vector

to update, and it may happen that another processor requests data at a moment when this processor has
updated only a part of the components of its block. In the classical asynchronous model, communication
of data would have to be delayed until the update is completed. This actually introduces an undesirable
partial synchronisation together with idle times. In the asynchronous model with flexible communication
we avoid this drawback and allow for the possibility to communicate data as soon as it is requested, even
if updates are completed only partly.
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In the inner/outer context, we assume that we have an iteration function where some ‘inner’ iterations
have to be performed to approximate the value of the ‘outer’ iteration function at a given point. The
flexible communication model allows intermediate results from the inner iteration in a given processor
to be used by the other processors. As a consequence intermediate results are not labelled by an outer
iteration index. The basic idea is that such an intermediate value usually represents a better approximation
to the solution than the outcome of the previous outer iteration, the only value that would be available for
the other processors in the classical asynchronousmodel. This approach was shown to be very performant
in a partial ordering context in[8,13,15](and also[16] in a multisplitting context). Indeed, in the partial
ordering context, the updates as well as the intermediate values converge monotonically to the solution
of the problem (see in particular[13]). As a consequence, using intermediate values, i.e. for example, the
last available values, corresponds to using a better approximation to the solution. In the case of linear
systems of algebraic equations, reference is also made to[18,10] for studies concerning asynchronous
iterations with flexible communication (see also, in this case,[9,6,11]).
In the general case of nonlinear or linear fixed point problems, convergence results for asynchronous

iterations with flexible communication have been obtained in[8,13] in situations where the iteration
function is monotone with respect to the natural partial ordering and where the whole process can,
loosely speaking, be described via appropriate monotone ‘superfunctions’ of the basic iteration function.
For further details, the reader is referred to[13]. Reference is also made to[10], for the convergence of
two-stage methods in the linear case (see also[9,6]).
The purpose of the present paper is to extend the global convergence results obtained in the partial

ordering context for nonlinear and linear fixed point problems and published in[13] to the case where
the basic iteration function is contracting. It is important to notice that if one already gets a conver-
gence result in the partial ordering context, then to establish such a result in the case of contracting
operators is not straightforward at all. We note in particular that obtaining global convergence results
in the case of nonlinear fixed point problems and contracting operators is a difficult issue due to the
complexity of the studied parallel iterative schemes and in particular, the lack of synchronization points.
We will see in the sequel, that due to the difference of contexts, it has been possible to propose in this
paper a mathematical model for asynchronous iterations with flexible communication which is com-
plementary to the one presented in[13] since it does not rely on monotonicity assumptions. Finally,
we will also establish the connection with well-known results for the case of classical asynchronous
iterations.
The rest of this paper is organized as follows: we describe the different computational andmathematical

models for asynchronous iterations in Section 2. We then develop a convergence theory for contracting
operators in Section 3. An example is presented in Section 4.

2. Computational and mathematical models

We start by setting the stage for the iterations to be considered. As suggested in[18,10], we will
distinguish between computational and mathematical models. A computational model is given in the
form of a pseudocode corresponding to the Single Program Multiple Data (SPMD). It explains the
implementation of the method. A mathematical model formulates the functional relation between the
iterates. It is used to analyze the iteration.
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LetH : Rn→ Rn denote the basic linear or nonlinear iteration function.Weare interested in computing
a fixed pointx∗ of H by parallel variants of the successive approximation scheme:

xk+1=H(xk), k = 0,1, . . . , (x0 given). (1)

We view the spaceRn primarily as a Cartesian product of subspaces which represents blocks. In the
simplest case, each block is just one component inRn, but certain iteration functionsH naturally induce
larger blocks. For example, the functionH could be derived from the solution of several smaller systems,
each of these systems being associated with one such block. To be precise, therefore, letIi, i = 1, . . . , b
be a partitioning of the set{1, . . . , n} into non-overlapping blocks, i.e.

b⋃
i=1

Ii = {1, . . . , n}, Ii �= ∅ for i = 1, . . . , b, Ii ∩ Ij = ∅ for i �= j.

Given a vectorx ∈ Rn, we use subscripts to denote the blocks corresponding to the above partitioning
and we will refer to such a part ofx as acomponentin the sequel. So, componentx ∈ Rn is fromRni

whereni = |Ii |. By using this notation, another way of writing the successive approximation scheme (1)
is thus:

xk+1i =Hi(xk1, . . . , xkb), i = 1, . . . , b, k = 0,1, . . . , (2)

whereHi denotes theith component of the operatorH .
On a parallel computer withp processors, we now assign a set of components to each processor

Pj , j=1, . . . , p.We thereforehaveanadditional decompositionof{1, . . . , b} into (possibly overlapping)
subsetsSj , j = 1, . . . , p, of the set{1, . . . , b}, and the basic synchronous computational model is given
by the following algorithm; the mathematical model being just (2).

Algorithm 1. (Basic synchronous computational model, pseudocode for processorPt ; each processor
running the same pseudocode):

repeat until convergence
wait for all processors to have finished previous sweep

through loop
for i = 1, . . . , b

read xi from processor Pr (where i ∈ Sr)
for i ∈ St

compute xi ← Hi(x1, . . . , xb)

Remark 1. We note that if two subsetsSr andSr ′ overlap andi ∈ Sr, i ∈ Sr ′ then the values forxi
computed by processorsPr andPr ′ are equal.

In situations whereHi is given only implicitly, one has to perform another, ‘inner’ iteration to evaluate
approximatelyHi(x1, . . . , xb). At this point we just modify Algorithm 1 by introducing an inner loop
computing an approximation forHi(x).
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Algorithm 2. (Inner/outer synchronous computational model, pseudocode for processorPt )

repeat until convergence
wait for all processors to have finished previous sweep

through loop
for i = 1, . . . , b

read xi from processor Pr (where i ∈ Sr )
set x̂ = (x1, . . . , xb)
for i ∈ St

repeat until precise enough
compute new approximation ẋi for Hi(x̂)

set xi = ẋi

Here, the stopping criterion ‘precise enough’ for the inner iteration means that the inner iterateẋi is
sufficiently close toHi(x). The mathematical model for this iteration is given as follows:

xk+1=Gk(xk), k = 0,1, . . . (3)

where, for eachk, the functionGk : Rn→ Rn gives the result of the inner loop, and fori = 1, . . . , b the
componentGki (x

k) approximatesHi(xk). In a practical situation, the functionsGki might be obtained for
example via several iterations,qi(k) say, of a successive approximation scheme or some other iterative
method which approximatesHi(xk), starting, withxki . If we denote the corresponding iteration function
by Ti,xk : Rni → Rni , we then have

y0i,k = xki , y
q+1
i,k = Ti,xk (yqi,k), q = 0, . . . , qi(k)− 1; Gki (x

k)= yqi(k)i,k . (4)

The ‘classical’ asynchronous counter-part to the synchronous inner/outer method corresponding to
Algorithm 2 arises by just skipping the wait statement.

Algorithm 3. (Inner/outer asynchronous computational model, pseudocode for processorPt )

repeat until convergence
for i = 1, . . . , b

read xi from processor Pr (where i ∈ Sr )
set x̂ = (x1, . . . , xb)
for i ∈ St

repeat until precise enough
compute new approximation ẋi for Hi(x̂)

set xi = ẋi

Remark 2. If two subsetsSr andSr ′ overlap andi ∈ Sr, i ∈ Sr ′ then processorPt can take the most
recent value ofxi .
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Since processorsmay perform their iterations at different speeds, amathematical model for thismethod
reads as follows, whereGk is as in (3). For alli ∈ {1, . . . , b} andk = 0,1, . . .

xk+1i =
{
Gki (x

s1(k)
1 , . . . , x

sb(k)
b ) if i ∈ Jk,

xki otherwise,
(5)

where the indicessj (k) denote appropriate previous time steps. The iteration indexk must now be
interpreted as a global counter which is stepped by one every timeany processor starts a new sweep
through the outer loop. The additional superscriptssj (k)model the fact that the data usedmay come from
different steps of the global iteration. Finally, for eachk, the setJk ⊆ {1, . . . , b} corresponds to the set
St in the computational model assuming that iterationk is performed by processorPt .
The following weak assumptions have become standard in asynchronous convergence theory (see[4]).

Virtually, they are fulfilled in any practical implementation. For alli ∈ {1, . . . , b}:

0�si(k)�k, k = 0,1, . . . (6)

lim
k→∞ si(k)=+∞, (7)

the set{k | i ∈ Jk} is unbounded. (8)

If, in addition, we want to make the inner iteratesmore generally the current value of any component of
the iterate vector available to the other processors, we end up with asynchronous iterations with flexible
communication. To describe the computational model we just replace theread xi statement byread
x̃i in Algorithm 3 to indicate that a processor may now read at any time the current result of the inner
iteration or more generally the current value of any componentxi from the other processors.

Algorithm 4. (Asynchronous computational model with flexible communication, pseudocode for
processorPt )

repeat until convergence
for i = 1, . . . , b

read x̃i from processor Pr (where i ∈ Sr )
set x̂ = (x̃1, . . . , x̃b)
for i ∈ St

repeat until precise enough
compute new approximation ẋi for Hi(x̂)

set xi = ẋi
Note that the last statement which definesxi is not necessary for the algorithm to work; however, the

statement is helpful to formulate the mathematical model.

Remark 3. If two subsetsSr andSr ′ overlap andi ∈ Sr, i ∈ Sr ′ then processorPt can take the most
recent value of̃xi . If it is not possible to determine what is the most recent value, then the decision can
be taken arbitrarily on the basis of the last received data.
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Mathematically, an asynchronous iterative sequence with flexible communication{xk} is described by
the following modification of (5). For alli ∈ {1, . . . , b} andk = 0,1, . . .

xk+1i =
{
Gki (x̃

k
1, . . . , x̃

k
b ) if i ∈ Jk,

xki otherwise.
(9)

In order to establish convergence results, it is necessary to somehow restrict the possible valuesx̃ki .
This was done in[13] and[8] in the context of partial ordering, see also[15]. In the present paper, we
take a different, complementary approach, and impose the following norm constraint.

‖x̃ki − x∗i ‖i/ui�‖xs(k) − x∗‖u for all i = 1, . . . , b, (10)

wherexs(k) denotes the vector(xs1(k)1 , . . . , x
sb(k)
b ).

Remark 4. It is important to note that in the above model of asynchronous iterations with flexible com-
munication (9)–(10), where we assume that (6)–(8) are true, we do not need any monotonicity condition
concerning the access to the components of the iterate vector, such as, for example, the hypothesis (3.9)
of [13]. This is because our convergence results will be based on contraction and not an partial ordering
techniques. As a consequence, the class of parallel iterative methods considered in this paper is in some
sense complementary to those considered in[13] and even more general.

3. Convergence results

In the convergence theory for asynchronous iterations, weighted maximum norms play a prominent
role.

Definition 1. Let u ∈ Rb be a vector, all componentsui of which are positive. Fori = 1, . . . , b let ‖ · ‖i
be some normRni . Then the weightedmaximum norm‖ ·‖u inRn=Rn1×· · ·×Rnb is defined as follows

‖x‖u = b
max
i=1 ‖xi‖i/ui.

For the standard asynchronous iteration given by Algorithm 3 and the mathematical model (5), the
following global convergence result is basically contained in[11].

Theorem 1. Assume that in(5)all operatorsGk have a common fixed point in the sense that there exists
x∗ ∈ Rn such that for alli ∈ {1, . . . , b} we have

Gki (x
∗)= x∗i , k = 0,1, . . . .

In addition, assume that the following uniform contraction hypothesis with respect tox∗ is fulfilled: there
exists a weighted maximum norm‖ · ‖u and� ∈ [0,1) such that for all k we have

‖Gk(x)− x∗‖u�� · ‖x − x∗‖u for all x ∈ Rn.



98 D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91–103

Moreover, suppose that assumptions(6)–(8) are satisfied. Then the iteratesxk of the asynchronous
iteration (5) converge tox∗:

lim
k→∞ x

k = x∗.

Since synchronous iterations can be viewed as special asynchronous iterations (take, for example,
sj (k)= k andJk = {1, . . . , b}), the result of Theorem 1 also holds for the iteration (3). Actually, in this
case the result could be rephrased using any norm rather than just a weighted maximum norm. For the
asynchronous case, the weighted maximum norm is necessary: it was already shown in[7] that for an
affine operatorGk(x)= Ax + c for all k, which is not contracting with respect to a weighted maximum
norm, there exists an asynchronous iteration satisfying (6)–(8) such that its iterates do not converge.
We now develop a global convergence result similar to Theorem 1 for the case of an asynchronous

iteration with flexible communication.

Theorem 2. Assume that there exists a weighted maximum norm‖ · ‖u, a contraction constant� ∈ [0,1)
and a common fixed pointx∗ for all operatorsGk such that fork = 0,1, . . .

‖Gk(x)− x∗‖u�� · ‖x − x∗‖u for all x ∈ Rn. (11)

Assume that in the asynchronous iteration with flexible communication{xk} given in(9) the usual condi-
tions(6)–(8)are satisfied as well as(10).Then, limk→∞ xk = x∗.
Proof. The proof follows the lines of the standard proof in the non-flexible case. We show that there
exists a sequence of integerskp, such that we have

‖xk − x∗‖u��p · ‖x0− x∗‖u for all k�kp. (12)

We proceed by induction and start by showing that (12) is true forp = 0 with k0= 0, i.e. we show
‖xk − x∗‖u�‖x0− x∗‖u for k�k0= 0. (13)

Trivially, (13) is true fork = 0. Assume that (13) holds up to somek. For k + 1 we then have by (9)
and (11):

‖xk+1i − x∗i ‖i/ui = ‖xki − x∗i ‖i/ui, for i /∈ Jk,
‖xk+1i − x∗i ‖i/ui = ‖Gki (x̃k1, . . . , x̃kb )− x∗i ‖i/ui

� � · ‖(x̃k1, . . . , x̃kb )− x∗‖u, for i ∈ Jk.
(14)

From (14) and (10) we get, in the case wherei ∈ Jk
‖xk+1i − x∗i ‖i/ui�‖(x̃k1, . . . , x̃kb )− x∗‖u =

b
max
j=1 ‖x̃

k
j − x∗j ‖j /uj

�‖xs(k) − x∗‖u�‖x0− x∗‖u,
where the last inequality is due to the induction hypothesis. We therefore see that (13) is true fork + 1.
We continue the proof of (12) by induction onp; the validity forp = 0 just having been shown. Assume
that (12) is true up to somep and definekp+1 as follows. Letqp+1 be the smallest positive integer such
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thatsj (k)> kp for all j = 1, . . . , b and for allk�qp+1. Such a value exists because of (7). Letkp+1 be
the minimal value fork such that

k⋃
�=qp+1

J� = {1, . . . , b},

which exists by (8). Then fork�kp+1 each componenti has been updated at least once at some iteration
� with ��qp+1, and the corresponding indicessj (�) satisfy

sj (�)�kp for all j ∈ {1, . . . , b}. (15)

Thus, we can write

xki = xk−1i = · · · = x�+1i =G�i (x̃�).
From (11) we therefore have

‖xki − x∗i ‖i/ui=‖G�i (x̃�)− x∗i ‖i/ui��‖x̃� − x∗‖u
= �

b
max
j=1 ‖x̃

�
j − x∗‖j /uj ��

b
max
j=1 ‖x

sj (�) − x∗‖u,

where the last inequality is due to (10). But by (15) we havesj (�)�kp for all j , so that the induction
hypothesis yields maxbj=1‖xsj (�) − x∗‖u��p‖x0− x∗‖u. This proves (12) forp + 1.
In the case where the functionsGki correspond to some inner iteration according to (4), it is of interest

to discuss when the assumptions on theGki in Theorems 1 and 2 are fulfilled. This is formulated in the
following lemma.

Lemma 1. Assume that the functionsHi are contracting with respect tox∗i in the norm‖ ·‖i , and assume
that all operatorsTi,x from (4) are contracting with respect toHi(x) in the norm‖ · ‖i . This means that
we have numbers� ∈ [0,1) and�i,x ∈ [0,1) such that

‖Hi(x)− x∗i ‖i�� · ‖xi − x∗i ‖i for all x ∈ Rn and for all i, (16)

‖Ti,x(xi)−Hi(x)‖i��i,x‖xi −Hi(x)‖i for all x ∈ Rn and for all i. (17)

Then for alli ∈ {1, . . . , b},
‖Gki (x)− x∗‖i/ui�(�qi(k)i,x (�+ 1)+ �) · ‖x − x∗‖u.

In particular, if for each k and i we takeqi(k) sufficiently large such that(�
qi(k)
i,x (�+1)+ �)��<1, then

assumption(11) is satisfied.

Proof. First note that from (4) we immediately get, by using (17)

‖Gki (x)−Hi(x)‖i��qi(k)i,x ‖xi −Hi(x)‖i .
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Together with (16) this yields

‖Gki (x)− x∗i ‖i�‖Gki (x)−Hi(x)‖i + ‖Hi(x)− x∗i ‖i
��qi(k)i,x · ‖xi −Hi(x)‖i + ‖Hi(x)− x∗i ‖i ,
��qi(k)i,x · (‖xi − x∗i ‖i + ‖x∗i −Hi(x)‖i)+ ‖Hi(x)− x∗i ‖i ,
��qi(k)i,x · ‖xi − x∗i ‖i + (1+ �qi(k)i,x ) · ‖Hi(x)− x∗i ‖i ,
��qi(k)i,x · ‖xi − x∗i ‖i + (1+ �qi(k)i,x ) · � · ‖xi − x∗i ‖i ,
= (�qi(k)i,x (�+ 1)+ �) · ‖xi − x∗i ‖i .

Dividing by ui , and majorizing‖xi − x∗i ‖i/ui by ‖x − x∗‖u proves the lemma.�

4. Application to linear systems

We consider a linear system

Ax = c, (18)

whereA = (aij ) ∈ Rn×n is non-singular. Recall thatA is called a nonsingular M-matrix ifaij �0 for
i �= j andA−1�0, where this inequality is to be understood componentwise. Nonsingular M-matrices
arise in a variety of applications, particularly in finite difference discretizations of elliptic boundary value
problems; see e.g.,[14].
We decomposeRn=Rn1×· · ·×Rnb intob blocks (with

∑b
i=1ni=n) and partitionA, x, c accordingly

into blocksAij , xi, ci . The solutionx∗ of (18) can be characterized as the fixed point ofH , the components
Hi of which are given as

Hi(x)= A−1ii


ci −

b∑
j=1,j �=i

Aij xj


 , i = 1, . . . , b.

Note that together withA the diagonal blocksAii are nonsingular M-matrices, too (see for e.g.,[10]), so
that the inversesA−1ii all exist.
EvaluatingHi is costly because one has to solve systems with the matrixAii . We therefore introduce

additional splittings

Aii = Bi − Ci, i = 1, . . . , b,
and performqi(x) steps of the iteration

y0i = xi
for q = 0, . . . , qi(x)− 1
solveBiy

q+1
i = Ciyqi + (ci −

∑b
j=1,j �=i Aij xj ).

Let us denote

G
qi(x)
i (x)= yqi(x)i , (19)

the result of this iteration which should be an approximation toHi(x).
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We now consider an asynchronous iteration with flexible communication (9), where in each iteration
k the functionGki is taken to beG

q(k)
i with some non-zero value forq(k). For the block components̃xk�

in (9) we assume

x̃k� ∈ {G0�(xs�(k)), . . . ,Gq(k)� (xs�(k))}, (20)

which means that̃xk� may be any of theintermediateresultsy
q
� , q = 0, . . . , q(k) of the iteration above

which evaluatesGk�(x
k).

We will now show that under the given M-matrix assumptions and under suitable assumptions on the
splittingsAii =Bi −Ci , the crucial conditions (11) and (10) for Theorem 2 are all fulfilled, i.e. we have
convergence of the asynchronous iteration with flexible communication.
For this purpose, let us assume that all splittingsAii = Bi − Ci , are weak regular, i.e. we have
B−1i �0, B−1i Ci�0, i = 1, . . . , b. (21)

Note that this condition is fulfilled for themost important standard splittings like the Jacobi and theGauss-
Seidel splitting, sinceAii is a nonsingular M-matrix. This condition applies also to ILU factorizations.
We need the following auxiliary result.

Lemma 2. Let A be a non-singular M-matrix andAii =Bi −Ci be weak regular according to(21).Let
D = diag(Bi) be the block diagonal matrix with diagonal blocksBi and letA = D − F, T − D−1F .
Moreover, let e = (1, . . . ,1)T be the vector inRn with all components equal to one and letv = A−1e.
Then

(i) v >0, T �0 and

T v��v for some� ∈ [0,1). (22)

(ii) Defining the weighted max norm‖ · ‖v inRn as

‖x‖v = b
max
i=1
|xi |
vi
= ‖V −1x‖∞, V = diag(v),

we have

‖T x‖v��‖x‖v, (23)

and thus

‖T ‖v = n
max
i=1

1

vi

n∑
j=1
|tij | · vj = ‖V −1T V ‖∞��.

(iii) Using weighted max norms on the blocksxi andTij ∈ Rni×nj defined through

‖xi‖i = ‖V −1i x‖∞, (24)

‖Tij‖ij = ‖V −1i TijVj‖∞, Vi, Vj diagonal blocks of V, (25)
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we have fori = 1, . . . , b
b∑
j=1
‖Tij‖ij = ‖B−1i Ci‖ii +

b∑
j=1,j �=i

‖B−1i Aij‖ij ��. (26)

In particular, for i = 1, . . . , b
‖B−1i Ci‖ii <1. (27)

Proof. SinceA is a nonsingular M-matrix and the splittings are weak regular, we haveT �0. The inverse
of A is a nonnegative matrix without zero rows. This shows that all components ofv =A−1e have to be
positive. UsingT = I −D−1A, where, again,D is nonnegative without nonzero rows, we see that

T v = v −D−1e < v,
which finishes the proof for (22) in (i). SinceT is nonnegative, part (ii) is just a reformulation of (22).
This is also the case for (26), which restates (23) in a block oriented manner.
With these preparations we can now prove the following result. It improves upon Lemma 1, because it

shows that with (20) conditions (11) and (10) are satisfied without further restriction.

Theorem 3. Let A andAii =Bi −Ci be as in Lemma 2 and take� from (22).Moreover, define the norms
‖ · ‖i on the blocks as in Lemma2.Then we have, for Gq defined in(19),q�1,

‖Gq(x)− x∗‖e��‖x − x∗‖e, (28)

and, in particular,

‖Gqi (x)− x∗‖i��‖x − x∗‖e, q = 0,1, . . . .
Here, e= (1, . . . ,1)T ∈ Rb, i.e.‖ · ‖e denotes the maximum norm built up from norms‖ · ‖i on the blocks
as

‖x‖e = b
max
i=1 ‖xi‖i .

Proof. The solutionx∗ of (18) is a fixed point ofGq for all q, so that we have

G
q
i (x)− x∗i =Gqi (x)− G

q
i (x
∗),

=B−1i Ci(Gq−1i (x)− x∗i )− B−1i


 b∑
j=1,j �=i

Aij (xj − x∗j )

 .

This gives

V −1i (G
q
i (x)− x∗i )=V −1i B−1i CiVi(V

−1
i (G

q−1
i (x)− x∗i ))

−
b∑

j=1,j �=i
V −1i B−1i AijVj (V

−1
j (xj − x∗j )),
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which, by using the norms previously defined, yields

‖Gqi (x)− x∗i ‖i�‖B−1i Ci‖ii · ‖Gq−1i (x)− x∗i ‖i +
b∑

j=1,j �=i
‖B−1i Aij‖ij · ‖xj − x∗j ‖j .

Via induction onq and by using (26) as well as (22) we obtain

‖Gqi (x)− x∗i ‖i�� · ‖x − x∗‖e,
for all q�1andi and thus (28).Therefore, theasynchronous iterativemethodwith flexible communication
converges for linear systems with nonsingular M-matrices.�

Remark 5. Similar results can be obtained for H-matrix by using H-splittings, see[10].
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