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We wish to prove the following

THEOREM !). If n is a positive integer and A and B are recursive
equivalence types, then n4 <nB is equivalent to 4 <B.

This generalizes the analogous theorem 40 a of [1] for 4 and B isols.
The generalization will be obtained by a method resembling J. MYHILL’s
proof in [3] that all creative sets are isomorphic. Since X =Y is equivalent
to X<Y & X>Y our theorem has as a corollary R. FRIEDBERG’s result
in [2], which can be formulated as follows: if » is a positive integer and
A and B are recursive equivalence types, then nd =nB is equivalent
to A=B.

We use notations and concepts of [1]. So #, y, z, ... will denote natural
numbers, «, §, 7, ... sets of natural numbers, o (omicron) the empty set
of natural numbers and ¢ the set of all natural numbers (included zero).
of will denote the intersection of « and f, x4+ the union and « x § the
cartesian product of « and p.

The cardinal number of a set « is denoted by Ne¢(x). o ~ 8 stands for:
o« is recursively equivalent to 8. A recursive equivalence type is in effect
an equivalence class under the relation of recursive equivalence.

We will use the abbreviations ‘r.e.” for “recursively enumerable”,
“p.i.” for “partial isomorfism” which is by definition a partial recursive
one-one function of one variable, and “R.E.T.” for “recursive equivalence
type”.

P, @, R will often denote binary relations on the set of natural numbers
¢, and @ the empty relation. R-1 will denote the converse of R, defined
by yR-lx«> xRy. For xRy we will write sometimes (z, y) € RB; we will
write sometimes R(x) for {y: xRy}, R(x) for |J R(z), oR for R(e), 6R

TEx

1) This result was obtained in spring 1965 during a seminar under direction
of Prof. B. van Rootselaar on Recursive Equivalence Types at Amsterdam. At the
Tenth Logic Colloquium (Leicester 1965) the author learned that the result was known
to Prof. A. Nerode, who is able to derive the result by slightly adapting certain
proofs of a paper of his, to appear in the ‘“Mathematische Annalen”. His proof,
however, uses the priority method, in contrast to the present proof.
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for R-1(¢). For R-1(R(x)) x R(x) or more explicitly: {(s,?): (Au)(sRu &
& xRu) & xRt} we will write sometimes R,.

Now we define E to be “semitransitive” if (Fz)(Vy)(Vz)(Vu)(xRy &
& 2Ry & xRu — 2Ru).

We define R to be “balanced” if R is semitransitive and in addition
(Va)(Vy)(@Ry — NcR~(y)=NcR(x)). The last equality can be formulated
also as Nc{z: zRy}=Nc{u: xRu}.

For a balanced relation R the equality NcR(a)=NcR-1RE(a) holds and
analogously NcR-1(a)=NcRR-1(a). The proof of the first equality is as
follows. Let b € R(a). Then B—1R(a)=R-1(b) holds: for if ¢ € R~1R(a) then
aRb & (Ad)(cRd & aRd), hence by the semitransitivity of R, cRb, i.e.
¢ € R-1b); and if ¢ € R-1(b) then a fortiori ¢ € R~1R(a). From R-1R(a)=
=R-1(b) it follows by the balancedness of E that NcR(a)=NcR-1(b)=
=NcR-'R(a). If no b € R(a) exist then both R(a) and R-1E(a) are empty.

The following lemma may claim some interest of its own.

Lemma. If there exists a balanced recursively enumerable relation
R such that R(«x)=p and R-1(f)=o« then « is recursively equivalent to j.

Proof. The sets R, R and oR are r.e. Let R={(ry, rs), (73, 74),
(r5, 76), ...}, OR={a1, as, as, ...} and oR={az, a4, as, ...}.

Remark. One may put a;=r; for all ¢ but that is not necessary.

Now we construct a 1 —1 r.e. subrelation @ C R such that the associated
function ¢, defined by ¢(z) =y if and only if (x, y) €  is a partial isomorfism
between « and p.

We define @ by induction: Q= ViQr, Qo=90 and Qr=Qx-1 +Cr where
Cy is either empty or consists of one element of R.

Definition of Cy.

Case 1. k odd. If a; € 6Qx—1 then Cr=0.
If ax ¢ 0@Qr-1 then Cx={cx},
where cx=the first pair (az, ) in B (in the enumeration (r1, re), (rs, 74),
(75, 76), -..) such that y ¢ pQr—1, if such a pair exists, otherwise Cx=0.
Case 2. k even. If ay € pQr—1 then Cr=0.
If ax ¢ 0Qx-1 then Cr={cx},
where ¢ = the first pair (z, az) in R (in the enumeration) such that x ¢ 6@y,

if such a pair exists, otherwise Cy=0.

It follows from the definition that indeed @ =C1+C3+Cs+... C R.

An easy consequence is that @ is 1—1. For Qo=9, therefore @ is a
fortiori 1—1. Suppose Qx—1 is 1—1. Now Qr=Q-1+Ck. If Cx=0 then
Qr=Qr-1 and thus Qx 1—1. If Cx={(z, y)} then either % is odd, so z=ax
and therefore = ¢ 6Qx—1 and y ¢ pQx-1, or k is even, so y=a; and therefore
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as well y ¢ oQx—1 and x ¢ 6Qx—1, from which follows that @ is 1—1. As
a consequence also @ is 1—1.

Now we are going to prove for every non-zero natural number & the
following statements. If a € 6R, but a ¢ 6Qx—1 then there is an y ¢ pQr—1
such that aRy holds. And likewise, if a € pR but a ¢ 9Qr—1 then there is
an z ¢ 6Qx—1 such that zRa holds.

Proof. Qlc is finite. Let Qk_lRaz{(xl, yl), cesy (xd, yd)} with X1, ey Xg
all different. Since a ¢ 6Qx-1, a is different from x;, ..., zz. It follows that
Z1, ..., Zg, @ € R~1R(a) and all different, so NcR-1R(a)>d + 1. R is balanced
80 NcR1R(a)=NcR(a), and therefore NcR(a)>d+1. Hence there is an
y € R(a) which is different from yi, ..., y3. But then y ¢ pQx-1 and aRy.
The proof of the second statement is analogous to that of the first one.

A consequence is that 6@ =0R and also ¢Q=pR. For let a € R. Let
k be a number such that a=ay. If a € 6Qx—1 then a fortiori a € §Q. If
a ¢ 6Qx—1 then we know that there is an y ¢ pQx—1 such that aRy holds.
So one will find, by going along the enumeration (r1, o), (rs, 74), (5, 76), ...
of R, a first element y; such that y; ¢ pQx—1 and aRy; holds. Therefore
by the construction of @, (@, y1) € Qk, i.e. @ € 6Qx, hence a € §Q. Proof
of oQ=pR analogously.

@ is r.e. For by the preceding proof if k is odd and ay ¢ 6@x—1 then
Cr#0 and if k is even and ay ¢ pQx—1 then also Cx#0, so the clauses
“otherwise Cx=0" in the definition of Cy don’t actually occur, whence
it follows from the construction of @ that Q is r.e.

Furthermore « C 6@ and f C p@. The first inclusion follows from « C 6R
and 6R=6(Q), and the second one from § CoR and goR=p@Q.

Also Q(x) C B, since Q(a) C R(x) and R(x) C . Likewise @-1(B) C «.

From the last four statements it follows that @(«)=pg. For let y € 8.
Then y € 0@, so Q1(y) is not empty and therefore y € QQ-1(y). Hence
B C QR1(B). Also Q@ 1(8) C @(x). As a consequence 3 C Q(x). Q(x)Cp
is also valid and so Q(x)=p.

Since @ is 1—1 and r.e., x C4Q, f C o@ and @(x)=p it follows that ¢
is a p.i. between x and f.

THEOREM. Let n be a positive integer, and let 4 and B be recursive
equivalence types. Then n4 <nB is equivalent to 4 < B.

Proof. We must show: nd +C = nB—> (HD)A+D =B. Let £€ A,
neB, el.

First we introduce some number theoretical functions f; and some sets.
For i=1, ..., 2n let fi(x)=4nx+2i—1; let fo(xr)=2x. For i=1, ..., n let
xi=fi(£) and Bi=fn+i(n); let y=fo(l), a=oa+... + oy and f=PF1+... +fa.

Then x end, fenB and y €C, so «+y ~ f, say by p1. All ¢f; are disjoint
and recursive, and therefore also separable. In addition all f; are 1—1.
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Therefore one can define a function s by the following.

Let y €e. There are exactly one 7 and one z such that y=fi(z). If
i=1,...,n—1,n+1,... or 2n—1, then put s(¥)=/fi+1(x). If i=n or 2n,
then put s(y)=fi+1-x(x). In all other cases (in fact only the case ¢=0)
s(y) will be undefined.
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Notice that s is a p.i. and that s” is the identity on the set of odd
numbers.

For i=1,...,n—1: s(x;)=s(fi(§))=fixa(§) =oi1 and s(xn)=8(fn(£))=
=f1(£) =o1. From this follows s(x)=«, since s(x)=s(x1+... +an)=8(0a) +
+oo+8(on)=0ag+ ... +on+o1=c.

Analogously for g instead of «, i.e. for ¢=1,...,n—1: s(8;)=pi+1,

8(Bn)=p1 and s(B)=p.
Let do={x: s'(), ..., s®(x) € dpi(ofr+ ... +ofn)} and
e={z: s(x), ..., s*(x) € op1- (ofn+1+ ... +0f2n)}-

Then d2 and ¢ are r.e. and « Cdg, S Cop.

E.g. o« Cds can be verified as follows. Let « € «. Then s(z) € o, s2(x) €
E &, ..., 8*(x) € x. Combined with &« C dp1- (of1 + ... +0fn) one obtains x € Js.

We introduce one more function p and some more sets. Let p=p;- [(d2 +
+ofo) x o] i.e. p is the restriction of p; to the set d2+pgfo in the domain
and to the set g in the range. Then p is, like p1, a p.i. between « and g.
Let for ¢=1, ..., n: ast=pf:-0p and Bit=pfn+i-op. Let yt=pfo-dp. Let
at=ut+.. . toapt, fr=pFt+...+Pat, 0=a+f+y and dt=at+f+t+y+.
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Then oat, ..., an*, p1t, ..., fu*, y* are r.e. and mutually disjoint (and
therefore separable). Furthermore o; C o+, Bs C i+, y Cy*, and hence
also o« Ca*, f C g+ and 6 C 6+; o; C s+ holds because «; C & C d2-6p1 C 0p
and «; C ofs so «; C dp-pfs, which by definition equals «;*; f; C B;*+ holds
likewise because B; C 8 Co-opr=pp and B; C ofn+i 50 Bi C op-ofn+i=pi*
and y Cy* holds because y C gfo-dp=9y".

Also hold dp=a*+y+ and pp=p+, since dp=(gf1+... +ofn+0f0) - 0p=
=(efi+... +ofn)-0p+efo-Op=at+y+ and ep=(ofn+1+... +ofen)-0p= ﬁ*

We have also the following equalities: for i=1, ..., n—1 is s(o*) =05,
and s(Bit) =Bif 1, s(xnt) =01, $(Bat) =p1, s(6) = and s(,8+) B. For example
one may verify the first equality as follows.

ot =ofi- 0p=pfi- 0p1(d2 +ofo) =ofi- Op16a=pfi-d2 and in the same way
&t =ofi+1-02. Suppose x € «;*. Then z €8s so for all k, s¥+1(x) € dp1 - (of1+
+...4+0fn), 80 s(x) € d2. And s(x) € ofi+1, S0 $(x) € b2-0fi+1 =05 1.

For ¢=1,...,m—1: s is a p.i. between o; and «441, s is a p.i. between
on and o1 and s is a p.i. between « and «. The same for 8, «+ and S+
instead of «.

Summarizing we have obtained by the above “cleaning” 2n+ 1 mutu-
ally disjoint r.e. sets ou*, ..., an*, f1t, ..., fu* and y*, and 2n+1 sets
o1, o 6n €4, P1, ..., Pn € B and y eC such that « C xqt, ..., oz C ant,
fLC /it ..., B C Put and y Cy* and two p.i’s p and s (“shift”’) such
that, with the six notations a=01+...+on, f=Pp1+... +fn, at=0at+
+.otont, fr=pit+...+Pat, 0=a+f+yand dt=at+ft+ypt: dp=at+
+yt, ep=4* <x+7) B, ds=ps=at+p*, s(o)=os, ..., S(dn-1) =0,
S(on) =01, 8(f1)= /32, voos 8(Bn-1)=Pn, $(fn)=p1 and s"—the identity on
at+p+.

Now we want to obtain a y; € D with y1|x; (i.e. y1 “separated’” from 1)
and a p.i. between «; +9y1 and B; (it is clear that p does not satisfy, for
in general p(x1) ¢ f1*; also does not satisfy s¥p where k is always chosen
so large that s¥p(x) € f1+, for in general this function will not be one-one).
By the lemma it is sufficient to construct a balanced r.e. relation between
x1+y1 and /31.

We begin with the introduction of some notations.

Let z € 6. Then put »(x {pksl(x) t=0,...,n—1;k=—1,0,1} (“the
first half round of the umty of x7). Then x € y(x).

If ¢ C 6+ then put »(c)=VU,,?(z). Then o C»(c). Put v»(x)=v(»m-1(z)).

For x € 6+ put m(x)=v(x)+2r2(x)+93(x)+... (“the unity of ).

The set () is r.e. and consists of all elements which can be obtained
from z by a finite number of applications of p, p~! and s. We will call o
“closed” (under p, p~! and s) iff ¥(¢)=0. If ¢ is closed then also z(0)=0
holds.

The binary relation on §+, defined by y € =(x), is an equivalence relation.
More precisely: if y € n(z) then z € n(y), if z € n(y) and y € n(x) then
z e a(x) and if z(x)-n(y) #o0 then zm(x)=axn(y).
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For z € 6+, n(x) is closed under p, p~! and s. Also ¢ is closed under p, p-1
and s, so 7(d)=24.

Let x € 6. We define n3(x) (“the additional unity of z”’) by the following
process.

Calculate v(x), ¥2(x), .... Stop the calculation as soon as v™(z) =vm~1(x).
If the calculation never stops then put ms(x)=o. This occurs when n(x)
is infinite. If the above calculation stops, then order the obtained elements
of n(x)-y* according to their magnitude: ¢c1<c2<... <cy, and put ms(z) =
={cn, Can, ..., Con}, Where v=[u/n], i.e. v is the largest integer smaller than
or equal to u/n.

Then n3(z) is r.e.

If x; € m(x) then ma(x1)=ms(x), i.e. mg(x1) is independent of z; as long
as 1 € n(x).

Put y1t=Ugns(z), y1=pyt, di=oa+P1+y1 and dt=oct+Bi++y+.

Then also y1t is r.e.

We now define a relation R by xRy <>y e n(x) & x e ;at+91+ & y € f1*.
It will turn out that this R is a balanced r.e. relation between i +9y1
and fi.

First we state and prove a crucial property.
Property 1. If m(x)fi* is infinite then also z(x)x* is infinite.

Proof. Letx € f+ and suppose in addition that »(x)axt=o0. Then holds
w(x)=»(x). For let y € vw(z). Then y = pksiplsi(x) for certain integers ¢, 4, k
and [ which satisfy 0<i<n—1, 0<j<n—1, —1<k<l and —1<I<]1.
Since z € f+ C R | must be 0 or —1. If [=0 then y=p¥si+i(z), so y € »(x).
Suppose next I= —1. By assumption »(z)x*=o0, so p~lsi(x) € y*. Since s
is not defined on y*, ¢ must be zero, whence y=p*p-lsi(x)=pk-lsi(x).
Since p1si(x) € 6R, k must be 0 or 1, so k—1=—1 or k—1=0 hence
Y € v(x).

If x € §1* and =(x) is infinite then »(x)xt+40. For suppose »(x)x+=o.
Then w(x)=»(z) so w(x)=v»(x) so that n(z) is finite.

If z and y are different members of i+ then »(x)at and »(y)xt are
disjoint. For suppose z € »(x)x+ and z € v(y)at i.e. z=plsk(x)=p~Is!y)
for certain integers k and . Then y =s*¥-1(z) € s*~1(f1*) =1 1. Alsoy € fit
8o 1+k—1=1 hence k=I and y==x.

Now suppose 7(x)p1* is infinite. Let w(x)p1t = {x1, @2, ...}. Then »(x1)x*++
+v(w2)at+ ... C m(x)xt. By the above considerations we know that v(x;)o+
and »(z;)ax* are nonempty and disjoint for all ¢+ and § such that z;say,
in other words »(z1)a++v(zg)xt+ ... is infinite and therefore also n(zx)x+*
is infinite, which was to be proved.

Next we state some equalities between the cardinals of our sets.
Nen(x)xat = Nem(x)ogt  since  z(x)ouat >~ m(x)oaxt by sk-1,  Likewise
Nen(x)pit = Nea(x)Brt. Nea(x)(ot+yt)=Nen(x)f+ since zm(x)(at+yp+) ~
~ n(x)f+ by p. Nen(x)at=nNca(xr)xt since both members equal

6 Series A
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Nen(z)(oat+... +ant). Likewise Nen(x)f+=nNca(z)fit. From the defi-
nition of ms(x) it follows that if we put w=Nca(x)y+ and v=Necm(z)y:+
then either n(x) is finite and v=[u/n] or =(x) is infinite and »=0. Less
trivial is the following statement.

Property 2. Nea(x)(oat+y1t)=Nea(x)pit.

Proof. Suppose first that (x) is finite. Put ¢ = Nez(x)oa*, r = Nea(zx)pi+
and w=Nca(x)yt and v=Ncr(x)y1t. Then v=[u/n].

With the above notations we can write down: Nea(x)at= Nem(x)(x* -+
+...tapt)=nt, Nen(x)ft=Ncr(x)(fi*+... +pnt)=nr and Nem(x)(xt+
+yT)=ni+u.

From Nen(x)(xt+yt)=Ner(x)f it follows that nt +u=mnr, so u=n(r—t)
so v=r—t. Hence Nen(x)(at+y1t)=t+v=t+(r—t)=r=Ncn(zx)Bi+.

Suppose next that n(r) is infinite. Then also m(x)f+ is infinite, and
therefore z(x)f1* infinite so by property 1 zm(x)x* infinite, therefore also
a(x)ot infinite so a fortiori 7z(x)(x1* + y1*) infinite, which was to be proved.

From the presented definition of R and the fact that m(x) is r.e. for
all z it follows that R is also r.e.

The relation R is semitransitive. For suppose Ry, uRy and xRv hold.
Thenu exit+91t, v € b1+, y € #(u), v € 7(x) and y € n(x). By combination
one obtains: v € #(u) and hence wRv.

R is also balanced. For suppose xRy holds, so € x1t+91+, y € f1+ and
y € n(x); also n(y) =n(x). Then R(x)=n(x)p1* and R-1(y)=n(z)(x1t+y1%)
which are equal by property 2.

Furthermore 0R=ox*+91t. For suppose z €xi*+y1+. Then (since
z €n(x)) Nem(x)(xat+y1t)>1 so also Nem(x)fit>1 ie. there is an
y € m(z)p1t. But then xRy holds, so x € dR.

In the same way oR=p1".

Also R(x1+91) C f1. For suppose y € R(x1+9y1) i.e. there is an x such
that z€o +y1 C6 and xRy. Then y € #(x) C6. Hence y € 6-oR =4p1+=p1.

Likewise R(f1) C o1 +y1.

From p; CoR and R-1(f1) Car+y1 it follows that S C R(R-1(81)) C
C R(x1+y1). Likewise it follows from x; +y1 C 6R and R(c +91) C B1 that
x1+7y1 C R(ﬂl).

By combination one obtains the equalities RB(x1+y1)=p1 and R(B1)=
=1 +71. Since in addition we know that R is r.e. and balanced, we can
apply the Lemma, and obtain oy +y1 =~ f1. Because y1 Cy and y|x (i.e.
y separable from «) it follows that 4 +Reqyi=B (Reqy: stands for the
R.E.T. of y).
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