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Abstract

Applying a very general Gauss—Green theorem established for the generalized Riemann
integral, we obtain simple proofs of new results about removable sets of singularities for the
Laplace and minimal surface equations. We treat simultaneously singularities with respect to
differentiability and continuity.
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0. Introduction

In an open set U<R"” we consider the second order partial differential equation
div(he Vu)(x) = fx,u(x)], (%)

where 7: R" > R"™ and f: U x R" —» R are given. Note that depending on the maps /
and f, Eq. (+) need not be linear; e.g., the minimal surface equation (4.2) below. A set
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Ec U is called removable if u satisfies () in U whenever it satisfies (+) in U — E. The
goal is to find a useful class of removable sets.

While this is a classical problem studied by many mathematicians, e.g., [3,9—-11,20]
to mention a few, it appears that our approach has not been used previously.
Applying a very general Gauss—Green theorem established for the generalized
Riemann integral [17], we obtain simple proofs of new results about removable sets
for the Laplace and minimal surface equations. We deal simultaneously with
removable sets where the solution u of (x), or & o Vu, or both, lack differentiability,
denoted by Ejq4, as well as those where they lack continuity, denoted by E.. Typically,
we assume the Hausdorff measure #"~ ! of E4 is o-finite, and that of E, is zero.
Notwithstanding, we also study the case where the size of removable sets is measured
by the integral-geometric measure f’l”_l. In the main result (Theorem 4.2 below), no
topological restrictions are imposed on removable sets.

We illustrate our idea by proving a known fact for the Laplace equation Au = 0,
i.e., for Eq. (+) where & is the identity map and f = 0. Let £ be a relatively closed
subset of U whose Hausdorff measure #"! is o-finite. Assuming a function
ue C'(U) is harmonic in U — E, we wish to prove that it is harmonic in U. Since
each weak solution (in the sense of distributions) of the Laplace equation is
harmonic [18, Corollary of Theorem 8.12], it suffices to show fu ulAp = 0 for every
peCP(U). In view of our assumptions, this is true whenever the following
integrations by parts are valid:

/uAgo:—/Vu-qu:/q)Au.
U U U

While the first equality is standard, the second depends on the Gauss—Green theorem
for the vector field ¢Vu that is continuous in U but differentiable only in U — E.
Since such a theorem holds [17, Proposition 5.1.2, Corollary 5.1.13], the removability
of E follows.

In Theorem 4.1 below, we show that the same technique provides a simple proof
of a slightly improved classical result, due to Besicovitch [2], about removable sets
for holomorphic functions.

As all functions involved in the previous example, as well as in the proof of
Besicovitch’s theorem, are Lebesgue integrable, the above mentioned generalized
Riemann integral, called the R-integral in [17, Chapter 5], is used only indirectly: we
merely apply the Gauss—Green theorem established for the R-integral to the
Lebesgue integral. However, the Lebesgue integral cannot be used when f'#0 and it
is not a priori clear, or actually not true, that the function x+ f|x, u(x)] belongs to
Ll .(U); cf. Theorem 4.2 below.

To deal simultaneously with the sets E4 and E., we need a Gauss—Green theorem
for discontinuous vector fields, which has not been available previously even in the
context of Lebesgue integration—cf. [1,19]. The necessary result is obtained in
Section 3 by extending the R-integral to a larger class of integrable functions; the
definition and basic properties of the R-integral are stated in this section without
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proofs. The R-integral, its extension, and the associated Gauss—Green theorem
depend on the concepts of charge and weak charge. These are linear functionals,
continuous with respect to suitable topologies, on the linear space of all bounded BV
functions with compact support. Under the name of continuous additive functions,
charges were defined in [16, Section 4]. Their properties are summarized in Section 2;
the details can be found in [17, Chapter 2]. In addition, Section 2 contains the main
results concerning weak charges, which are more restrictive than bounded additive
functions introduced in [16, Definition 10.1]. Applications to removable sets for
Eq. () are given in Section 4.

1. The setting

The ambient space of this paper is R” where m > 1 is a fixed integer. In R” we shall
use exclusively the Euclidean norm | - | induced by the usual inner product x - y. The
diameter of a set EcR" is denoted by d(E). We denote by B(x,r) and B[x,r],
respectively, the open and closed ball of radius r> 0 centered at xeR™. The origin of
R™ is denoted by 0, and we write B(r) and B[r] instead of B(0,r) and B[0,r],
respectively.

By a measure we always mean an outer measure. Lebesgue measure in R” is
denoted by .#"; however, for EcR”, we usually write |E| instead of #"(E). If
0<s<m, we denote by #* the s-dimensional Hausdorff measure in R". In addition,
we shall use the integral-geometric measure 97"~ defined in [7, Section 2.10.5].
Unless specified otherwise, the words “measure,” “measurable,” and “negligible” as
well as the expressions ‘“‘almost all” and ‘“‘almost everywhere” always refer to
Lebesgue measure #"; similarly, the symbols [, f and L”(E) refer to £™.

Let EcR™. We denote by cl E,int E, and JF the closure, interior, and boundary
of E, respectively. If E is measurable, we denote by cl, £ and 0.F, the essential
closure and essential boundary of E, respectively. A measurable set E is called
essentially closed whenever cl, E is closed.

Let UcR™ be an open set. The collections of all BV subsets of U and all locally
BV subsets of U are denoted by BV(U) and BV ,.(U), respectively. We denote by
BV .(U) the collection of all bounded BV subsets of U whose closure is also
contained in U. In the absence of additional attributes, a BV set or a locally BV set is
always a BV subset or a locally BV subset of R”, respectively. We write, respectively,
BV BV |y, and BV, instead of BV(R"), BV ,.(R™), and BV (R™). The perimeter
and unit exterior normal of a BV set A are denoted by ||4|| and v, respectively. The
regularity of a BV set A is the number

VI
r(4) = L a1 141>,
0 if 4] = 0.

Throughout, by a function we mean a real-valued function. When considered
individually, functions are generally not identified with the equivalence classes they
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determine. On the other hand, by spaces of functions, we usually mean the spaces of
the equivalence classes determined by these functions. Often we denote by f both a
function defined on a set 4 and its restriction f| B to Bc A4.

Let U< R"™ be an open set. We denote by BV (U) the family of all BV functions in
U, and give the symbols BV},.(U) and BV,(U) the obvious meaning. We let

BV*(U) = BV(U)nL* (U),

and define BV2.(U) and BV (U) similarly. We write BV instead of BV (R™), and
use the same convention for the other spaces introduced in this paragraph. If
geBV1.(U), we denote by Dg the distributional gradient of g, and by ||Dg|| the
variational measure of g. We let ||g|| := ||Dg||(U).

Observation 1.1. If ge BV (R), then |g| , <||g]|-

Proof. If {g#0} = (a,b) and g* is the precise value of g, denote by V' (g*) the classical
variation of ¢g* in the interval [a, b]. In view of [7, Theorem 4.5.9, (23)],

91, =197l < sup lg" (D)< V() <lgll. D
tela,b]
Proposition 1.2. If E is a bounded measurable subset of R™, then ||-|| is a Banach

norm in the linear space

BVg ={geBV: {g#0}cE}.

Proof. Clearly || - || is @ norm in BVg. If {g;} is a Cauchy sequence in (BVE, || - |]),
then it is a Cauchy sequence in L!(R™). Indeed, this follows from Observation 1.1 if
m = 1, and from the Holder and Sobolev inequalities if m>2. Thus {g;} converges to
a geL'(R™), and we may assume {g#0} = E. As {||g||} is a Cauchy sequence of real
numbers, ||g||<lim ||g;|| < co. Consequently ge BV.

Now given ¢>0, there is an integer k>1 such that ||g; — g;|| <e for all i,j>k. If

ik is an integer, then the sequence {g; —g;};, converges to g; —g in L'(R™).
Therefore

lg: = gl < lim inf [lg; — g5]| <z,

and the proposition follows. [I

Let EcC<R" and let v: C—>R". We say v is pointwise Lipschitz in E if given
xe E, we can find ¢, >0 and J,>0 so that

lo(x) —v()|<exlx =y
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for all ye CnB(x,0d,). Recall v is called continuous in E if it is continuous at each
xeE. An casy variant of Whitney’s extension theorem [21, Chapter 6, Section 2]
yields the following:

If C is a closed set and v is continuous or pointwise Lipschitz in E, then v has an
extension w: R™ > R" that is C* in R" — C and continuous or pointwise Lipschitz
in E, respectively.

In particular, if v is pointwise Lipschitz in E, then by Stepanoff’s theorem, w is
differentiable at almost all xe E; moreover, for almost all xe E, the derivative Dw(x)
depends only on v and not on the extension w [17, Lemma 1.6.3].

2. Charges
Forn=1,2, ..., we topologize the convex set
BV, ={geBV>: suppg<B[n] and ||g|| + |g|,, <n+ 1}
by two different metrics:

t:(fi9)=f —gl, and @:(f,9)|lf -4l

The space (BV,, ) is compact by [5, Theorem 4, Section 5.2.3], and it follows from
Proposition 1.2 that the space (BV,, @) is complete. In BV we consider the largest
topology 7 for which all inclusion maps

(BVy, 1) (BV.,7)
are continuous, and the largest topology #~ for which all inclusion maps

(BV,, @) (BV,2,#")

are continuous. Both topologies 4 and ¥  are Hausdorff, sequential and
sequentially complete, but not metrizable. Moreover, the topology 7 is locally
convex; whether the same is true about the larger topology # is unclear. Identifying
each set Bin BV, with its indicator y, e BV, we view BV as a closed subspace of
(BV>,7) and (BV,%").

Let {g;} be a sequence in BV and geBV*. We write {g;} >¢g or {g:}3y¢
according to whether {g;} J -converges or ¥ -converges to ¢, respectively.
Observe

® {g;} —>g¢ if and only if each g; vanishes outside a fixed compact set K =R”, and

sup(||g:|| + |gil ,) <o and lim|g; —g|, = 0;
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® {g;} 3¢ if and only if each g; vanishes outside a fixed compact set K<R", and

sup |gi|, <co and lim||g; —g|| = 0.

Using Observation 1.1 if m = 1, and the Hélder and Sobolev inequalities if m>2, it
is easy to show that {g;} 3¢ implies {g;} —»¢. For a sequence {B;} in BV, and a set
Be BV, the meaning of the symbols {B;} - B and {B;} 3 B is obvious.

Note {g;}—¢g and {B;} > B can be defined for geL'(R™) and a bounded
measurable set B< R™. However, in this case [5, Section 5.2.1] implies ge BV and
BeBYV.

Definition 2.1. A linear functional F: BV * —R is called a charge or a weak charge
(abbreviated as w-charge) according to whether F is 7 -continuous of ¥ -
continuous, respectively.

It is easy to see a linear functional F': BV =R is, respectively, a charge or w-
charge whenever lim<{ F,g; » = 0 for each sequence {g;} in BV * for which {g;} -0
or {g:} 30.

Remark 2.2. It follows from [17, Section 4.1] that a charge F is uniquely determined

by the restriction F[ BV ., and that each additive .7 -continuous function F on BV,
defines a charge by the formula

o0

(F.g> = /0 " F({gt> 1)) di - /0 F({g~> 1)) di

for each ge BV . In general, neither is true for w-charges.

Clearly, each charge is a w-charge, and the next example shows the converse is
false.

Example 2.3 (The flux of a vector field). If v: R” - R" is a locally bounded Borel
vector field, we define a linear functional F, on BV * by the formula

(Frgy = [ v-d(g)
R”X
for each ge BV . If |v(x)|< 6 for every xesupp g, then

| (Fo, 9> |<0|Dgl[(R™) = 0]|g],

and it follows F), is a w-charge. Since

U%m>:/ vovpd A,
OB
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for each bounded BV set B, we call F, the flux of v. Choosing a vector field v with a
suitable discontinuity, it is easy to see that the flux of v need not be a charge [17,
Example 2.1.11].

Proposition 2.4. If F is a linear functional on BV, then

® F is a charge if and only if given ¢>0, there is a 0>0 such that

[<F,g>1<0lgl, +e(llgll + lg]..)
Sor each ge BV with {g#0} < B(1/¢);

® F is a w-charge if and only if given >0, there is a >0 such that

[<F,g>[<0llgl| + ¢lg| .,

Sor each ge BV with {g#0} = B(1/e).

Proof. The statement about charges follows immediately from Remark 2.2 and [17,
Proposition 2.2.6].

As the converse is obvious, suppose F is a w-charge, and choose an ¢>0. Observe
there is an >0 such that |{F,g>|<e¢/2 for each ge BV with ||g||<#, |g], <1,
and {g#0}cB(l/e). Let 0:=¢/(2y) and select a geBV* for which
{g#0} = B(1/¢). With no loss of generality, we may assume g =>0.

Let p and ¢ be the smallest positive integers for which ||g||/p<# and |g| ., /g<]1.
Note p<|lg||/n + 1 and ¢<|g|., + 1. Since

”ﬁAmw>MMnMMd*WWN]

is an increasing continuous function, the coarea theorem implies there are 0 =
ap< -+ <a, = |g|,, such that

a;i 1 .
[ o= ta=Tlali<n. i=1..op

ai—1
For i=0,...,q, let b;=(i/q)lg|,,, and order the set {ao,...,ay; bo,...,b,}

into a sequence 0=cy<---<¢ =lg|,,. Clearly r<p+g¢—1. Now it is easy
to verify

gi = max{min{g, ¢;},ci.1} —ci-1, i=1,...,r,
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are BV functions with |g;|, <1,{g;#0} = B(1/¢), and >_._, g; = g. As each [¢;_,¢]]
is contained in some [a;_;, a;],

1 Ci
||gi\|:/0 ||{g,»>r}||dr:/ H{g>1}]] dr

aj
< / {g>1}]| dr<n,
a,

j—1

by the coarea theorem. We conclude

L er ¢
F,g)|< F,g)|<=<= —1
[<F@l< Q1< <3 <3 (= 1)

2 (llgl :
<z 1) =0 d 1),
(b gt 1) =t + 5 ol + 1)

from which the desired inequality follows whenever |g| , > 1. If 0<|g| , <1, we apply
the previous result to /== g/|g|,:

[<F, 9> =gl I<Fh)|<|g

o (Olhl] +elhl ) = Ollgll + €lgl .. -
As the case |g|,, = 0 is trivial, the proposition is established. O

If F is a charge and f' e BV, then it is easy to see we can define a charge F'L f by
the formula

(FLf,g> = <F,fg>

for all ge BV *. Showing that the same construction is possible for w-charges
requires some work.

Observation 2.5. The variational measure ||Df|| of a BV function f is absolutely
continuous with respect to the Hausdorff measure A

Proof. By [17, Theorem 1.8.2, (3)], this is true if f is the indicator of a locally BV set.
For an arbitrary BV function, the observation follows from the coarea theorem [17,
Proposition 1.8.10]. O

Lemma 2.6. Let {g;} be a sequence in CH(R™). If lim||g;|| =0, then {g:} has a
subsequence that converges to zero #™ '-almost everywhere.

Proof. For m =1, Observation 1.1 implies {g;} converges uniformly to zero
everywhere.
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If m>2, select a subsequence of {g;}, still denoted by {g;}, so that ||g;|| <2~ for
i=1,2,...,and let

1 o0 o0
B = {xe R™: g,—(x)>E} and By :D L:J] Bi.

It follows directly from the definition of capacity Cap, [5, Section 4.7.1] that
Cap, (Bix)<||kgi||<k27". Since Cap, is a measure in R,

o0
Cap, (Bx) <Cap, <U Bi,k> <k2'7
iz
for j=1,2,.... We infer Cap,(Bx) =0, and if B=J,~, Bx then Cap,(B)=0.
According to [5, Section 5.6.3, Theorem 3], we have #"~!(C) = 0 for each compact
subset of B. As B is a Borel set, it follows from [6, Theorems 1.6 and 5.6] that
A"V (B) = 0. A direct verification reveals

B = {xeR™: limsup g;(x)>0},

which means lim sup g; <0 #""'-almost everywhere. Applying this result to the

sequence {—g;}, we obtain liminf g;>0 #™ '-almost everywhere, and the lemma
follows. O

Lemma 2.7. Let {g;} be a sequence in BV such that {g;} =0, and let f € BV\%.. Then
{f9:}=0.

Proof. Select a compact set K< R” with supp g;cint K, and let ¢ = sup |g;| .. We
may assume {f #0} <K, in which case

sup |fgi| ., <clf],, < 0.

Thus we only need to prove lim ||fg;|| = 0. Clearly, it suffices to show that this is true
for a subsequence of {g;}.

Assume first that {g;} is a sequence in C!(R”). Using Lemma 2.6, find a
subsequence of {g;}, still denoted by {g;}, that converges to zero .#" '-almost
everywhere, and in view of Observation 2.5, also ||Df||-almost everywhere. Choose a
sequence {f;} in C!(R™) so that lim |f; — ], = 0 and lim ||f;|| = ||f]|. If U<R" is an
open set, then

1D/ 1I(U) <liminf || DF|(U)

by [5, Section 5.2, Theorem 1]. As [|Df|| and ||Df;|| are finite measures and
lim || Df;||(R™) = ||Df||(R™), the previous inequality implies

lim sup [|Df;[|(C) <[| DS [|(C)
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for each closed set C<R™. According to [5, Section 1.9, Theorem 1], the measures
[|Df;|| converge weakly to ||Df||. Since

[fgi|| < liminf ||fjg;|| = lim inf |D(fi9:)| dL™
J— 0 J— 0 RM
< lim / |Dfi| - 19i| dL™ + lim / Ifi| - | Dgi| dL"
J= 0 JRm Jo o Jgm
= [ laddlDrll+ [ 1f1- Do a2
RNI Rm
< [ laddups+ 111l

the dominated convergence theorem implies lim ||fg;|| = 0.

In the general case, find functions gk, i,k =1,2,..., in C!(R™) so that each
{9ix#0} is contained in K, all |g;x|, are bounded by a fixed constant, and for
i=1,2, ...,

lim [gix —gily =0 and  lim |[g;«|| = [|gi]-
k— o0 k—

Since {fg;x} converges to fg; in L', we have ||fg;||<liminf ||fg;x||. Thus for i =
1,2, ..., there is an integer k; > 1 such that

1 ) 1
lgsal<ligll+ 5 and [Vfgll = <[Vl

in particular, lim ||g;|| = 0. Now lim ||fg;4,|| = 0 by the first part of the proof, and
consequently lim ||fg;|| = 0. O

Corollary 2.8. If F is a w-charge and f € BV\%,, then
FLf:g—<F,fg) BV >R
is a w-charge.
Let F be a charge or a w-charge, and let 4 BV. We define
F(A)=<(F,yy> and FLA=FLy,,
and say that F' is, respectively, a charge or w-charge in 4 whenever F = F L A.

Note. Independently of the previous paragraph, when u is a measure in R” and
EcR"™, we define the measure pL E in the customary way:

(WL E)(4) = p(AN E)

for each set 4 <=R™.
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3. Integrals

A set EcR" is called thin whenever #""~' L E is a o-finite measure. A gage on a
set EcR™ is a function 6 : E— [0, co) such that {d#0} is a thin set. A partition is a
finite collection

P = {(A1,x1), "'7(Ap7x17)}7

where A, ..., 4, are disjoint bounded BV sets and xi, ..., x, are points of R".

Definition 3.1. A function f defined almost everywhere in a bounded BV set 4 is
called R-integrable in A if there is a charge F in A and an extension of /" to cl, A4, still
denoted by f, such that the following condition is satisfied: given ¢>0, we can find a
gage 0 on cl, 4 so that

D 1/l — F(d)| <

for every partition {(41,x1), ..., (4p, xp)} with x;ecl, 4,4, 4,
r(A;u{x;})>e and d(A4;0{x;})<d(x;)
fori=1,...,p.

The charge F of Definition 3.1, which is uniquely determined by f, is called the R-
primitive of f, denoted by (R) [f. For a BV set Bc A4, the charge F L B is the R-
primitive of /] B; in particular, /| B is R-integrable in B. The R-integral of f over A4 is
the number (R) [,f = F(A4). By [17, Proposition 5.1.3], the R-integral is a
nonnegative linear functional on the linear space R(A) of all R-integrable functions
in 4.

Without proofs, we summarize the main properties of the R-integral established in
[17, Chapter 5].

Theorem 3.2. Let A be bounded BV set.

(1) LY(A)=R(A) and (R)[,f=[,f for each feL'(A). The inclusion
L'(A)<=R(A) is proper whenever int A#0.

(2) Each function f € R(A) is measurable; moreover, if f'€ R(A) is nonnegative, then
feLl(4).

(3) If the R-primitive of f '€ R(A) equals zero, then f(x) = 0 for almost all xe A.

(4) Suppose B is a bounded BV set disjoint from A. Let f be a function defined on
AU B that is R-integrable in A and B, and let F 4 and Fp be the R-primitives of
f1A and f| B, respectively. If both A and B are essentially closed, then
fe€R(AVUB) and F 4+ Fp is the R-primitive of f.
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(5) Let F be the R-primitive of f € R(A), and let ge BV\%.. Then fge R(A) and F L g
is the R-primitive of fg. In particular,

o o[

whenever g is nonnegative.

(6) Let ve C(cl A;R™), let T be a thin set, and let v be pointwise Lipschitz at each
xecl, A — T. Then div v belongs to R(A) and the flux of v is the R-primitive of
div v.

(7) If ¢ : A—> R"™ is a lipeomorphism and f € R[¢p(A)), then (f o ¢)Jy belongs to R(A)

and
(R) [ Flo01o(x) dx = /f ) dy:

here Jy = |det D¢| is the Jacobian of ¢.

(R) f(x) dx] dt

{g>1}

Note. Four comments concerning Theorem 3.2 are in order.

(i) An easy consequence of part (1) is the following observation: if the pair (f, F)
satisfies the conditions of Definition 3.1 for a particular extension of f to cl, A4,
then it satisfies these conditions for an arbitrary extension of f to cl, 4.

(i1) Part (4) is false without assuming the sets 4 and B are essentially closed [17,
Proposition 6.1.1, Remark 6.1.2, (4)]. We shall improve on this situation in
Theorem 3.5 below.

(iii) As part (6) implies that Fubini’s theorem is generally false for the R-integral
[17, Example 5.1.14], part (5) asserts a nontrivial fact; cf. [17, Remark 5.2.3].

(iv) Part (7) can be generalized to a geometrically intuitive transformation formula
for local lipeomorphisms [17, Section 5.3].

If f is a function defined almost everywhere in 4e BV and F is a w-charge, we
denote by R(f,F;A) the family of all BV sets Bc A for which FL B is the R-
primitive of f| B

Definition 3.3. A function f defined almost everywhere in 4eBV is called W-
integrable in A if there is a w-charge F in A4 and a sequence {A4;} in R(f, F; A) with
{4;}3 4.

The family of all W-integrable functions in A€ BV is denoted by W(A4). Each
charge F associated with f'e W(A4) according to Definition 3.3 is called a W-primitive
of f.

Let F be a W-primitive of f'e W(A), and choose a sequence {4;} in R(f,F;A)
with {4;} 3 4. If B A4 is a BV set, then {Bn A4;} is a sequence in R(f| B, F L B; B),
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and it follows from Lemma 2.7 that {BnA4;} 3 B. Consequently, FLB is a W-
primitive of /] B.

Observation 3.4. Let A be a bounded BV set. Each feW(A) has a unique W-
primitive, denoted by (W) [ f.

Proof. Suppose F and G are W-primitives of /'€ W(A4), and find sequences {4;} in
R(f,F;A)and {B;}in R(f,G; A) so that {4;} 34 and {B;} 3 4. Then {4,nB;} isa
sequence in R(f,F;A)nR(f,G;A) and {4,nB;}3A4. As each R-integrable
function has a unique R-primitive,

and the observation follows from the previous paragraph. O

Let A be a bounded BV set. If F is the W-primitive of f'e W(A4), we call the
number (W) [, f = F(A) the W-integral of f over A. Employing proofs similar to

that of Observation 3.4, it is easy to show that the W-integral is a linear functional
on W(A), and that parts (1)~(3) and (7) of Theorem 3.2 hold for the W-integral.

Theorem 3.5 (Additivity). Let A and B be bounded BV sets, and let f be a function
defined almost everywhere on AU B. If [ is W-integrable in A and B, then it is W-
integrable in AU B, and

wy [ r=om [ reom [

whenever A and B are disjoint.

Proof. It suffices to prove the theorem when A4 and B are disjoint. Denote by F4 and
Fp the W-primitives of f in 4 and B, respectively, and find sequences {4;} in
R(f,F4;A) and {B;} in R(f, Fg; B) so that {4;} 34 and {B;} 3 B. According to
[22], for i,j = 1,2, ..., there are essentially closed BV sets 4; ;= A4; and B;;< B; such
that {Aij}_jS’Ai and {B,-_j}j;’B,-. For each i, find a j; so that

||A1—A,j,||<l/l and ||Bi_Bi,j,||<1/l.7

and let C; = A4,;, U B;j,. Part (4) of Theorem 3.2 shows that {C;} is a sequence in
R(f,F4 + Fp; AU B). Since {C;} 3 AU B, the theorem follows. [

Theorem 3.6 (Multipliers). Let A be a bounded BV set, and let F be the W-primitive
of feW(A). If ge BV, then fge W(A) and F L g is the W-primitive of fy. If, in

addition, {g;} is a sequence in BV\J, such that {gix 4} 3 gy4, then

iim (W) [ fo: = (W) [
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Proof. There is a sequence {A4;} in R(f, F; A) with {4,;} 3 A. As part (5) of Theorem
3.2 implies R(f, F; A)<R(fg, F L g; A), it follows from Corollary 2.8 that fge W (A)
and F L g is the W-primitive of fg. If {g;} is a sequence in BV,% with {gix,4} =914,
then

(W) /Afg=(FLg)(A) = (Fogra> = lim<Fy g
=lim (FLg,-)(A):lim(W)/fq,-. O
A

If UcR™ is an open set, we denote by Wi,.(U) the linear space of all functions
f:U—-R such that f14 belongs to W(A4) for each 4e BV .(U). The elements of
Wiee(U) are called locally W-integrable functions in U. If fe Wy (U) and
geBV>(U), find an AeBV (U) with suppgcint 4 and, using the multipliers
theorem, let

w) [ o= w) [

The W-integral (W) |, vJ9 is well defined, since by the additivity theorem, its value

does not depend on the choice of 4. In particular, it is easy to see that for each
f € Wioe(U), the linear map

Af':(pH(W)‘/Uf(p:CfO(U)a[R

is a distribution in U [18, Definition 6.7]. Showing that A, = 0 implies f(x) = 0 for
almost all xe U requires some work.

Lemma 3.7. Let F be a w-charge in Ae BV .., and suppose there is a sequence {A;} of
BV subsets of A such that {A;} 3 A and each F L A; is a charge. If C .= C + x is the
translation of Ce BV . by xeR"| then the function x+ F(Cy) is uniformly continuous
on R™ and has compact support.

Proof. Choose an &>0, and using Proposition 2.4, find a 6>0 so that
|F(E)|<0||E|| +¢ for each E€BV,.. Let o :=¢/0, and for i=1,2,..., let F; =
FLAl and B,’ =A —A,'.

Given a positive integer j<m, denote by II; the (m — 1)-dimensional subspace of
R™ perpendicular to the jth coordinate axis. For each yell; denote by /, the line
passing through y and perpendicular to II;. According to [5, Section 5.10.2, Theorem
2], for ™ '-almost all yell;, the intersection /,nC is a one-dimensional BV set,
and we denote by ||/, n C|| its perimeter. We employ the usual relationships between
[/, nC|| and ||C]|; see [17, Section 1.9]. As

/H||lymC||M"H(y><||cu<oo,
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there is a ;>0 such that [ ||[,nC||d#" ' (y)<a for each #"'-measurable set
EcII;, with %m’l(E)<ﬁ_j. The set

Eij = {yell;: |Il,n Bi|>0} = {yell;: [[L,nB||>2} (3.1)

is #"~!-measurable by [5, Section 5.10.2, Lemma 1]. Denote by x(/) the orthogonal
projection of xeR™ to IT;, and by E;; — x{/) the translation of E;; by x(/). Observe

[

/1_[||lym(B[mCx)||d<#m71(y):/ 1A (Bin Co)|| dA™ ()

</E ||lyﬂB,'||dc%ﬂm*1(y)+/ HlymCX”d%m—l(y)

i Eij

<|1B| +/
E: i—x(J)

i

LCldam ().

Let § = min{f,, ..., .}, and find an integer k> 1 with ||Bx|| <min{a, }. In view of
(3.1,

A" Ey — X)) = A" (Ex))

</\
I;

LByl | d#™ (v) < || Bi| | < B-

Consequently,
m
1B Cll< > [l aBen cllda3) <2
j=1 J1I;

and we conclude that for each xe R",
|F(Cy) — Fi(Cy)| = |F(Bin Cy)| <2mal) + ¢ = ¢(2m + 1).

Since Fj is a charge, Proposition 2.4 and [17, Lemma 4.2.1] imply there is a 6 >0 such
that |F(Cy) — Fi(C.)|<e for each x,ze R™ with |x — z| <. As F(Cy) = 0 whenever
|x| is sufficiently large, the lemma follows. [

Proposition 3.8. Let UcR" be an open set and let f € Wioo(U). If (W) [, fo =0 for
each e C (U), then f(x) =0 for almost all xe U.

Proof. As U is Lindeldf, it suffices to show f =0 almost everywhere in each
open ball V< U. Choose an open ball V= U and a diffeomorphism ¢ from
R™ onto V. Observe Jy(x)>0 for each xeR™, and g := (f-¢)Jy belongs to
Wioe(R™). Hence (W) [on g¢p = 0 for each ¢ € C* (R™), and g = 0 almost everywhere
yields f(x) = 0 for almost all xe V. It follows we may assume U = R” from the
onset.
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Select bounded BV sets 4 and B. Let B, .= {—x: xe B} and B, := B+ x for each
xeR™. Denote by F the W-primitive of | 4, and for xeR", let

(15, +1)(x) == (W) / 15, (x — D) () dy

=(W) f(y)dy = F(By). (3.2)
AN B,

By Lemma 3.7, the “convolution” yz * f is a uniformly continuous function on R"”
with compact support. Select a ¢ C¥(R™), and observe that yz * ¢ is the usual
convolution of yp and ¢; in particular yp * ¢ belongs to C (R™).

Claim. (W) [, f(xzg* @) = [,(xs. *f)o for each e CF (R™).

Proof. If H is a charge in 4 and n>1 is an integer, let

[|H ||, = sup{[H(C)|: ||C|<n}.

According to [17, Proposition 2.2.4], there is an integer k> 1, depending on A, such
that || - ||, [| - [[x41 --- are equivalent Banach norms in the linear space of all charges
in 4. If H is the R-primitive of heR(A), then h—||H||,,n=Fkk+1,... are
equivalent norms in R(A). The topology in R(A) induced by any of these norms is
denoted by S. Given ¢ C*(R"), the linear functionals

R:h»—»(R)/Ah(XB*(p) and L3h'_’/A(XB**h)¢’

defined on R(A) are S-continuous. The S-continuity of R follows from [17,
Proposition 4.5.2]. The dominated convergence theorem implies the S-continuity of
L: since ||By|| = ||B|| for each xeR™, we infer from (3.2) the sequence {yp */h;}
converges uniformly to zero for every sequence {/;} in R(A4) that S-converges to
zero. The standard manipulation of convolutions by means of Fubini’s theorem
shows that R(h) = L(h) for each he L'(A). This equality extends to every he R(A),
because L'(A) is a dense subspace of (R(4),S); see [17, Corollary 4.2.3]. There is a
sequence {A4;} of BV subsets of 4 such that {4,} 34 and feR(4;) fori=1,2,....
Applying what we have already proved, and observing that lim |4 — 4,/ =0
establishes the claim:

W) [ fiws o) =tim (R [ fGsx0)
=tim [ (15, #1)0 = [ (zn. 410
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Now choose a ¢eC*(R"), and find an AeBV, whose interior contains the
supports of both yz* ¢ and yp *f. In view of the claim

/Rm(XB* «fo = /A(XB* S
:(W)/Af(“*q’) - (W)/Rmf(xB*qo) =0.

As yp *f is continuous, it is equal to zero everywhere. In particular F(B) =
1. *f(0) =0, and the proposition follows from Theorem 3.2, part (3), and the
arbitrariness of B. [

An " '-negligible subset of R” is called slight. Clearly, each slight set is thin but
not vice versa.

Observation 3.9. Given a bounded slight set S and ¢>0, there is an open set U e BV
such that Sc U and ||U|| <e.

Proof. Choose a bounded open set V' containing S. Since S is negligible with respect to
the (m — 1)-dimensional spherical measure [13, Section 5.1], we can cover S by open
balls B;<= V so that Y_.°, || Bi||<e. It follows that U = |J;2, B; is the desired set. [

Theorem 3.10 (Gauss—Green). Let A, S, and T be, respectively, a bounded BV set, a
slight set, and a thin set. Suppose v: clA—R" is a bounded vector field that is
continuous in cl A — S and pointwise Lipschitz in cl, A — T. Then divv belongs to
W(A) and

(W)/divvdf"’:/ vovgdAm
A 2.4

Proof. Extend v to a bounded vector field w: R” —R™ that is continuous on R —
(SnclA4), and use Example 2.3 to define the flux F of w. By Observation 3.9, there is
a sequences {U;} of open bounded BV sets such that SnclA= U, for i=1,2, ...,
and lim ||Uj]| = 0. Let 4; = A — U; and observe {4;} 3 4. By part (6) of Theorem
3.2, each 4; belongs to R(divo, F; A) and the theorem follows. [

Theorem 3.11 (Integration by parts). Let Q,S, and T be, respectively, a Lipschitz

domain, a slight set, and a thin set. Suppose v: cl Q—R" is a bounded vector field that
is continuous in cl Q — S and pointwise Lipschitz in Q — T. Then

(W)/gdivvdcf’":/ (Trg)v-voda™! f/v'd(Dg)
Q o Q

for each ge BV ™ (Q).
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Proof. It suffices to prove the theorem for a nonnegative ge BV (Q). Extend v to a
bounded vector field w: R" — R™ that is continuous on R” — (Sncl Q). Using the
standard mollifiers, find a sequence {vx} in C*(R™;R”) having the following
properties

(i) sup [ve],, <[wl,;
(i) lim vx(x) = v(x) for each xecl Q — S;
(iii) {vx} converges to w uniformly on each compact set K contained in R” —
(Sncl Q).

According to [5, Section 5.3, Theorem 1],

/gdivvkdf’”:/ (Tr g)vg - vo d#™ ! f/vk~d(Dg)
Q o0 Q

for k=1,2,.... Properties (i) and (ii), the dominated convergence theorem, and
Observation 2.5 yield

lim [ (Trg)v -vod#™ ' = / (Tr g)v-voda™"
00 00

lim/vk-a’(Dg):/v~d(Dg)7
Q Q
and consequently

lim/ gdiv o d&" :/ (Trg)v-voda#™ " — / v-d(Dg).

e} 2Q Q

In view of the multipliers and Gauss—Green theorems, g div v is W-integrable in 2,
and we only need to show

(W)/gdivvdfmzlim/gdivvkdf”’.
Q Q

By Observation 3.9, there is a sequences { U;} of open bounded BV sets such that
SnclQcU; for i=1,2,..., and lim ||Uj]| = 0. Letting 4; = Q — U;, we see that
{4,;} 3 Q, and that cl 4; is a compact subset of R” — (Sncl Q). Part (6) of Theorem
3.2 implies

(W)/ gdivvd,g””:(R)/ gdivod ™
4 4;

i i

fori=1,2,..., and as the W-primitive of g div v is a w-charge,

(W)/gdivvdf’”: lim (R)/ gdivod ™.
Q A;

I— 0
i
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Choose an ¢>0, and find an integer p>1 so that

‘(W)/gdivvd,,%’m—(R)/ gdivod¥™| <e, (3.3)
Q 4,

4[| <[] + 1 and [|gzq_4, || <é; the last inequality follows from Lemma 2.7. Let
B,=Q—4, and h:= grp,- The Fubini, Gauss—Green, and coarea theorems,

o0
/ ( [ v dgm> y
0 {h>1t}
o0
/ (/ Uk Vih>1)} d%m_l> dt
0 O.{h>1}

<|w|30/ AN D> 1)) di
0

together with property (i), imply

/ gdivo, dL™"
B,

=Wl |lAll <elwl,

for k =1,2, ..., and hence

<elw

(3.4)

0"

/ gdivvkdi"’"—/gdivvkdfm
4, Q

By property (iii), there is a ¢ such that |vx(x) — v(x)| <& for each xecl 4, and each
k=q. Letu = 9Xa,» and select k>¢. Part (5) of Theorem 3.2 yields

(R)/ gdivv—/ gdivo, d¥"
4 4

P P

0
/
= / (/ (V= 01)  Viusn dJ/f'”l> dt

0 O{u>1}

<e/ AN O {u> 1)) di = el u|
0

(R)/{ , div(v — vk)d‘,?m} dt

<e(llgll + g

Apll)<e(llgll + 19l + lgl . [1€1]).

0

Combining the previous inequality with inequalities (3.3) and (3.4), we conclude
that for each k>g¢,

’(W)/gdivvdoiﬂm—/gdivvkdf’”‘<ﬁg,
Q Q

where =1+ |w|, +|l9]| + lg9].. + 19|, 11Q|]. O
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Remark 3.12. Given ge BV *(Q), the definition of Dg implies

/gdivvdfm:—/v-d(Dg)
Q Q

for each ve C!(Q; R™). Employing the W-integral, we substantially generalized this
fact in Theorem 3.11. However, the W-integral is merely a tool, which can be
replaced by the Lebesgue integral whenever g div v belongs to L'(Q) (part (1) of
Theorem 3.2).

In conclusion we show that in the Gauss—Green theorem the exceptional sets can
be defined by means of the integral-geometric measure .#7"~" provided |Dv| belongs
to L'(A4). Note #7 ' (E)<#™ '(E) for each set EcR™, and the equality holds
whenever E is (#™ !, m — 1) rectifiable [7, Section 2.10.6, Theorem 3.2.26].

Denote by G the Grassmanian G(m,m — 1), and by y the probability measure
Ymm—1 on G defined in [13, Section 3.9]. For II € G, the unique orthogonal projection
of R” onto T is denoted by n. If BcR™ is a Borel set, then

S (B) = / < / ABAT ()] d%’”l(x)) ay(Il), (3.5)
AN
where x>0 is a constant depending only on the dimension [13, Section 5.14].

Observation 3.13. If N< G is a y-negligible set, then R™ has an orthonormal base
{e1, ...,en} such that each Il € G perpendicular to some e; belongs to G — N.

Proof. Choose any orthonormal base {uy,...,u,} in R”, and denote by II; the

elements of G orthogonal to u;. If 0,, is the Haar measure on the orthogonal group
O(m) and

0= {9=00m): 411N},

then 60,,(0)<my(N) = 0 by the definition of y in [13, Section 3.9]. Thus there is a
geO(n) — O, and {g(m), ...,g(wy)} is the desired base in R”. [

Theorem 3.14. Let A be a bounded BV set, and let Ey and E, be Borel subsets of R"
such that J’I”*I(Eo) = 0 and the measure f’l”*l L E, is o-finite. Suppose v: cl A—R"
belongs to L'(0,A, #™ ', R™), is continuous in cl A — Ey, and pointwise Lipschitz in
cl. A — E;. Then

/divvdof”’:/ vovydam! (3.6)
4 .4

whenever |Dv|e L'(4, £™).
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Proof. Denote by Gy and G, the families consisting of all ITe G such that the sets
Eynn~'(x) and E, nn~'(x) are, respectively, empty and countable for .#"~!-almost
all xeIl. In view of (3.5), the set N = G — Gyu G, is y-negligible. Observation 3.13
implies R” has an orthonormal base {ey, ..., e, } such that each IT e G perpendicular
to some e; belongs to Gy U G,. Since neither our assumptions nor the equalities (3.5)
and (3.6) depend on the choice of an orthonormal base in R”, we may assume

{e1, ..., ey} is the standard base of R”. We show that if v = (v, ...,v,,) and v4 =
(v1, ..., Vi), then
O;
Tlagm = / oy ! (3.7)
4 0¢; 8,4

for i =1,...,m. Our argument relies on Jv;/0¢;e L'(A)—a fact guaranteed by the
assumption |Dv|e L'(A) for any choice of a base in R™.

In view of symmetry, it suffices to verify equality (3.7) only for i =m. As I =
{(x,0)eR™: xe [Ri’”’l} is perpendicular to e,,, our choice of e,, and [12, Section 2.2.1,
Theorem 2] imply there is an %" !-negligible set EcR™!' such that for all x in
R™! — E, the section

Ay ={teR: (x,t)ed}

is a BV subset of R, and the function ¢+ v, (x, ¢) is continuous in cl A, and Lipschitz
at all but countably many fecl Ay. According to Fubini’s theorem, making E larger,
we may assume that the function ¢ (9v,,/9¢,,)(x,t) belongs to L'(A4,, #') for
every x in R™~! — E. Parts (1) and (6) of Theorem 3.2 yield

/ O\ 0 d' (1) = / Om(X, 1) - Vi (x, £) d A (2)
A

O 0.4,

- / vm(xv t) 'Vm(x’ t) d%()(t)
(0.4),

whenever x belongs to R"~! — E. Integrating over R™~! and using Fubini’s theorem,
we obtain

/ o g gpm — / By dA™. O
Aagm 0. A

Remark 3.15. Let 4 be a bounded BV set, and let Eg=R™ be /7" '-negligible. If
v: clA—R" is bounded and continuous in 9.4 — Ey, then ve L'(d, 4, #™ '; R™).
Indeed, as Eynd, A4 is an (#™ ', m — 1) rectifiable set, it is #" '-negligible by [7,
Theorem 3.2.26].
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4. Removable singularities

To illustrate our technique, we present first a simple proof of a slightly improved
classical result of Besicovitch [2] concerning the removable singularities of
holomorphic functions defined on an open subset of the complex plane C.

Theorem 4.1. Let U <C be an open set, and let f: U— C be locally bounded. Suppose
f is continuous outside a slight set E.< U and pointwise Lipschitz outside a thin set
Eqc U. If f has a complex derivative almost everywhere in U, then it can be redefined
on E. so that it is holomorphic in U.

Proof. Let Rf and Jf denote, respectively, the real and imaginary part of f. The
vector fields u = (Rf,—3Jf) and v = (Jf,Rf) are locally bounded in U and

continuous in U — E; in particular, they belong to L} (U;R?). The Cauchy-
Riemann equations yield

divu=divo =0

almost everywhere in U. Using the integration by parts theorem, we infer

/u-V(p:—/(pdivuzo,
U U
/U~V¢:—/qodivv:0
U U

for each ¢eC!(U). This means the vector field (Rf,Jf) is a distributional
solution of the Cauchy—Riemann equations. As these equations form an elliptic

system, an application of the regularity theorem completes the argument; cf. [18,
Example 8.14]. O

Throughout the remainder of this paper U< R™ is a nonempty open set, in which
we consider the equation

div(h o Vu)(x) = f]x, u(x)], (4.1)
where
u:U-R, h:R"->R" and f:UxR->R

are maps whose properties will be specified below. To avoid trivialities, we assume
m=2.

A classical solution of Eq. (4.1) is a function ue C?>(U) such that (4.1) holds for all
xe U. A weak solution of Eq. (4.1) is an almost everywhere differentiable function u
such that

/ HVu(x)] - Vop(x) dx = - / () T, u(x)] d
U U
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for each ¢ e CZ(U). Under mild assumptions, we show that if u satisfies (4.1) at
almost all xe U, then u is a weak solution of (4.1).

Theorem 4.2. Let E. < Eq be, respectively, a slight and a thin subset of U, and suppose
the following conditions are satisfied.

(1) u is differentiable almost everywhere in U,

(2) hoVu has a locally bounded extension to U that is continuous in U — E; and
pointwise Lipschitz in U — Ey;

(3) u satisfies equation (4.1) for almost all xe U.

Then the equality

/U ho V] - d(Dg) = —(W) / g(x)f T, u(x)] dx

U

holds for each ge BV (U).

Proof. Select a ge BV *(U). Since suppyg is a compact subset of U, there is a
Lipschitz domain Q such that supp g<=Q and cl Q< U. By our assumptions, s Vu
can be extended to a vector field v: cl 2—R™ that satisfies the assumptions of
Theorem 3.11. Since Trg = 0 on 022, the theorem follows. [

Under an additional assumption, Theorems 3.2, part (1), and 4.2 imply the
aforementioned result.

Corollary 4.3. If, in addition to the assumptions of Theorem 4.2, we assume the
Sunction x— f[x,u(x)] belongs to L. (U), then u is a weak solution of (4.1).

We apply Corollary 4.3 to the Laplace equation Au = 0 and to the minimal surface
equation

div— Y% _y.

V14 | Vul?

Proposition 4.4. Let E.c Eq be, respectively, a slight and a thin subset of U, and
suppose the following conditions are satisfied.

(1) u is continuous in U — E., and pointwise Lipschitz in U — Eg;

(2) Yu has a locally bounded extension to U that is continuous in U — E; and
pointwise Lipschitz in U — Ey;

(3) Au = 0 almost everywhere in U.

Then u can be redefined on E. so that it is harmonic in U.
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Proof. By Stepanoff’s theorem, Vu and Au are defined almost everywhere in U. We
show first that ue L (U). To this end, choose a ball B := B(z,r) whose closure is
contained in U, and a ¢>0 so that |Vu(x)|<c for almost all xe B. An admissible
segment is the nonempty intersection / of B and a line in R™ such that /n E. = (), and
[~ Eq4 is countable. Since 77! <. #™ !, proceeding as in the proof of Theorem 3.14,
we can find an orthonormal base ey, ...,e, in R” so that the union S; of all
admissible segments parallel to e; differs from B by a negligible set. If / is an
admissible segment and x,yel/, then the one-dimensional version of the Gauss—
Green theorem yields |u(y) — u(x)|<c|y — x|. We infer u is Lipschitz on S = I, S;
with the Lipschitz constant not larger than mc. As B — S is a negligible set, our
assertion is proved.

Selecta ¢ e C*(U), and a bounded BV set A such that cl 4 < U and supp ¢ cint 4.
Corollary 4.3, applied to the function /4 : x+— x, implies fU Vu- V¢ = 0. As the vector
uV satisfies the assumptions of the Gauss—Green theorem and uA@eL'(A4), we
have

/uA(p:/uA(p:/(uA<p+Vu~V(p)
U 4 4
:/div(qu)) :/ Vo) -vqy =0;
4 0.4

indeed, since uA¢ belongs to L'(A) by the first part of the proof, part (1) of Theorem
3.2 shows the W-integrals, which would normally occur in the previous equality, can
be replaced by the Lebesgue integrals. Thus u is a distributional solution of Au = 0,
and the proposition follows from [18, Corollary of Theorem 8.12]. [

Corollary 4.5. Let E.cEq be relatively closed subsets of U that are, respectively,
slight and thin, and suppose ue C'(U — E.). If u is locally Lipschitz in U and harmonic
in U — Eq, then it is harmonic in U.

Proof. As E. is relatively closed in U, the bounded vector field Vu has a locally
bounded extension ug : U — R™ that is continuous in U — E.. By our assumption, u is
C® in U — Ey4. Since Ey is relatively closed in U, both u and u are differentiable in
U — E4. Now the corollary follows from Proposition 4.4. [

Remark 4.6. Let K be a compact subset of U, and suppose u is locally Lipschitz in U
and harmonic in U — K. If #™ '(K) = 0, then letting E, = Eq = K, Corollary 4.5
yields the classical result: u can be redefined on K so that it is harmonic in U. In special
situations, the same conclusion holds under weaker assumptions. For m = 2, David
and Mattila [3] have shown it suffices to assume #'(K)< oo and .#{(K) = 0. For
m =3, it is not known whether the assumptions #” ' (K) < co and #7"~'(K) = 0 are
sufficient; however, Mattila and Paramonov [14] proved that they are sufficient when
K belongs to a class of self-similar sets.
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Since closed f’l”’l-negligible sets are generally not removable for Lipschitz
harmonic functions [14], the next proposition is interesting.

Proposition 4.7. Let Eyc E, be relatively closed subsets of U such that 57"~ (Ey) = 0
and the measure "' L E, is o-finite. Suppose ue C' (U — Ey) is harmonic in U — E,.
If u belongs to the Sobolev space Wlicl (U), then it can be redefined on Ey so that it is
harmonic in U.

Proof. Select a ¢peCP(U), and a bounded BV set 4 such that clAcU and
supppcint 4. As ¢ = Vo =0 on 0,4, we can apply Theorem 3.14 to the vector
fields uV¢ and ¢Vu. As in the proof of Proposition 4.4, we obtain fU ulhop =
[, @Au = 0, and the proposition follows from [18, Corollary of Theorem 8.12]. [

Remark 4.8. In view of the Hblder and Sobolev inequalities, in Proposition 4.7 the
assumption ue Wlicl (U) is equivalent to assuming that all second partial derivatives
of u belong to L] (U).

Prior to considering the minimal surface equation

div—Y" (4.2)

1+ |Vl

recall that according to the regularity result of De Giorgi [8], each weak solution of
(4.2) in U which is locally Lipschitz is a real analytic function in U that solves (4.2) in
the classical sense. In other words, among locally Lipschitz functions in U there is no
difference between weak and classical solutions of (4.2).

Corollary 4.9. Let E.c Eq be relatively closed subsets of U that are, respectively,
slight and thin, and suppose ue C'(U — E.). If u solves equation (4.2) in U — Eq4, then u
can be redefined on E. so that it is locally Lipschitz in U and solves equation (4.2) in U.

Proof. Since the function u is locally Lipschitz in the open set U — E, it is real
analytic in the open set U — Ey4. Letting

X
1+ |x?

for each xeU, the map hoVu is bounded and continuous in U — E., and
differentiable in U — E4. As E; is a closed subset of U, the map hoVu has a
bounded extension to U which is still continuous in U — E. and differentiable in
U — E4. Theorem 4.2 implies that u is a weak solution of (4.2) in U. Consequently u
is a classical solution of (4.2) in U — E;, and the corollary follows from [20]; cf.
Remark 4.10, (ii) below. [

h(x) =
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Remark 4.10. Special cases of Corollary 4.9 were obtained previously by various
authors. Specifically, the corollary was proved by

(1) De Giorgi and Stampacchia [9] if Eq = E; is a slight compact subset of U;
(i1) Simon [20] if Eq = E, is a slight relatively closed subset of U;
(ii)) Harvey and Lawson [10] if E. = 0 and the measure ! L Eq is locally finite;
cf. [11].

5. Closing remarks

In U consider the equation
div(hoVu) =0, (5.1)

and define a distribution F by the formula {F,¢p) = fU(hoVu) - Vo for each
peCF(U). Let E be a relatively closed subset of U. If (5.1) has a weak solution in
U — E, then supp F < E. Moreover, u is a weak solution of (5.1) in U whenever
F = 0. Stated differently, E is removable whenever supp F < E implies F = 0. In
Section 4 the conclusion F = 0 was inferred from the smallness of E (in the sense of
measures # ! or .#"""!) and the regularity results for weak solutions.

The previous paragraph suggest the following definition.

Definition 5.1. Let % be a family of distributions in an open set U =R™. A collection
& of subsets of U is called removable with respect to & if F = 0 for each Fe.% such
that supp F < E for some E€é.

If v: R" > R™ is a locally bounded Borel vector field, denote by F, the flux of v
(Example 2.3), viewed as a distribution.

Example 5.2. Let % consist of all F, such that ve C! (R™ — supp F,). For instance,

() {0 if£1:§2:07
ux) = 1 i
L _(~&,,&,,0,...,0) otherwise
(f|>2+(52)2( 52 51 )

for each x = (¢, ...,&,,) in R™, defines F,e #.. We claim the collection of all slight
sets is removable with respect to .. Indeed, if F,eZ#. and S=suppF, is a
negligible set, then by Theorem 3.11,

/ (pdivv:—/ v-Vo=—{Fy,0)=0

for every ¢eCP(R" —S). Thus divo =0 almost everywhere outside S, and
consequently almost everywhere in R”. Now if S is a slight set, then another
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application of Theorem 3.11 shows that {F,,¢) =0 for each ¢ C*(R"). In
particular F, = 0, since supp F, is a linear space of dimension m — 2. On the other
hand, if % is the indicator of [0, o0o)<=R and w(x) = (h(&),0,...,0) for each x =
(&1, ...,&y,) in R, then F,e #, F,,#0, and supp F,, is not a slight set.

Example 5.3. If # 4 consists of all F, e # for which v is continuous, then proceeding
as Example 5.2, it is easy to see that the collection of all thin sets is removable with
respect to & 4. Let h be the Cantor-Vitali function extended to a continuous function
on R by 0 and 1, and let w(x) = (h(&),0,...,0) for each x = (¢, ...,&,) in R™.
Then F,,e #4, and as F,,#0, we see that supp F is not a thin set.

It is legitimate to ask whether the removable collections for the families . and
Z 4 indicated in the previous examples are the largest possible. The next example,
based on the continuum hypothesis (CH), may bear on this question with regard to
the family #..

Example 5.4. Let KcR” be a compact set with #" !(K)>0. According to
Frostman’s lemma [13, Theorem 8.8], there is a finite Radon measure p in R” such
that u(K)>0,supp uc K, and u[B(x,r)]<r"! for each xeR” and r>0. In view of
[15, Theorem 4.7], we can find a positive constant ¢ so that | [ g du|<cl|g|| for each
g€ BV in particular,

F:g— gdu:BVF >R
R

is a nontrivial w-charge with supp F = K. Yet, following the argument of [4, Section
3], one can show that under CH there is an #" '-measurable vector field
v:R"—>R" such that F(g) = [gmv-d(Dg) for every ge BV,*. In particular, v is
(Dg)-measurable for all ge BV, and F is the “flux” of v.
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