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Abstract

Applying a very general Gauss–Green theorem established for the generalized Riemann

integral, we obtain simple proofs of new results about removable sets of singularities for the

Laplace and minimal surface equations. We treat simultaneously singularities with respect to

differentiability and continuity.
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0. Introduction

In an open set UCRm we consider the second order partial differential equation

divðh 3ruÞðxÞ ¼ f ½x; uðxÞ�; ð�Þ

where h :Rm-Rm and f :U � Rm-R are given. Note that depending on the maps h

and f ; Eq. (�) need not be linear; e.g., the minimal surface equation (4.2) below. A set
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ECU is called removable if u satisfies (�) in U whenever it satisfies (�) in U 	 E: The

goal is to find a useful class of removable sets.
While this is a classical problem studied by many mathematicians, e.g., [3,9–11,20]

to mention a few, it appears that our approach has not been used previously.
Applying a very general Gauss–Green theorem established for the generalized

Riemann integral [17], we obtain simple proofs of new results about removable sets
for the Laplace and minimal surface equations. We deal simultaneously with
removable sets where the solution u of (�), or h 3ru; or both, lack differentiability,

denoted by Ed; as well as those where they lack continuity, denoted by Ec: Typically,

we assume the Hausdorff measure Hm	1 of Ed is s-finite, and that of Ec is zero.
Notwithstanding, we also study the case where the size of removable sets is measured

by the integral-geometric measure Im	1
1 : In the main result (Theorem 4.2 below), no

topological restrictions are imposed on removable sets.
We illustrate our idea by proving a known fact for the Laplace equation Du ¼ 0;

i.e., for Eq. (�) where h is the identity map and f ¼ 0: Let E be a relatively closed

subset of U whose Hausdorff measure Hm	1 is s-finite. Assuming a function

uAC1ðUÞ is harmonic in U 	 E; we wish to prove that it is harmonic in U : Since
each weak solution (in the sense of distributions) of the Laplace equation is

harmonic [18, Corollary of Theorem 8.12], it suffices to show
R

U
uDj ¼ 0 for every

jACN

c ðUÞ: In view of our assumptions, this is true whenever the following

integrations by parts are valid:

Z
U

uDj ¼ 	
Z

U

ru 
 rj ¼
Z

U

jDu:

While the first equality is standard, the second depends on the Gauss–Green theorem
for the vector field jru that is continuous in U but differentiable only in U 	 E:
Since such a theorem holds [17, Proposition 5.1.2, Corollary 5.1.13], the removability
of E follows.
In Theorem 4.1 below, we show that the same technique provides a simple proof

of a slightly improved classical result, due to Besicovitch [2], about removable sets
for holomorphic functions.
As all functions involved in the previous example, as well as in the proof of

Besicovitch’s theorem, are Lebesgue integrable, the above mentioned generalized
Riemann integral, called the R-integral in [17, Chapter 5], is used only indirectly: we
merely apply the Gauss–Green theorem established for the R-integral to the
Lebesgue integral. However, the Lebesgue integral cannot be used when fa0 and it
is not a priori clear, or actually not true, that the function x/f ½x; uðxÞ� belongs to
L1
locðUÞ; cf. Theorem 4.2 below.

To deal simultaneously with the sets Ed and Ec; we need a Gauss–Green theorem
for discontinuous vector fields, which has not been available previously even in the
context of Lebesgue integration—cf. [1,19]. The necessary result is obtained in
Section 3 by extending the R-integral to a larger class of integrable functions; the
definition and basic properties of the R-integral are stated in this section without
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proofs. The R-integral, its extension, and the associated Gauss–Green theorem
depend on the concepts of charge and weak charge. These are linear functionals,
continuous with respect to suitable topologies, on the linear space of all bounded BV
functions with compact support. Under the name of continuous additive functions,
charges were defined in [16, Section 4]. Their properties are summarized in Section 2;
the details can be found in [17, Chapter 2]. In addition, Section 2 contains the main
results concerning weak charges, which are more restrictive than bounded additive

functions introduced in [16, Definition 10.1]. Applications to removable sets for
Eq. (�) are given in Section 4.

1. The setting

The ambient space of this paper is Rm where mX1 is a fixed integer. In Rm we shall
use exclusively the Euclidean norm j 
 j induced by the usual inner product x 
 y: The
diameter of a set ECRm is denoted by dðEÞ: We denote by Bðx; rÞ and B½x; r�;
respectively, the open and closed ball of radius r40 centered at xARm: The origin of
Rm is denoted by 0; and we write BðrÞ and B½r� instead of Bð0; rÞ and B½0; r�;
respectively.
By a measure we always mean an outer measure. Lebesgue measure in Rm is

denoted by Lm; however, for ECRm; we usually write jEj instead of LmðEÞ: If
0pspm; we denote byHs the s-dimensional Hausdorff measure in Rm: In addition,

we shall use the integral-geometric measure Im	1
1 defined in [7, Section 2.10.5].

Unless specified otherwise, the words ‘‘measure,’’ ‘‘measurable,’’ and ‘‘negligible’’ as
well as the expressions ‘‘almost all’’ and ‘‘almost everywhere’’ always refer to

Lebesgue measure Lm; similarly, the symbols
R

E
f and LpðEÞ refer to Lm:

Let ECRm: We denote by cl E; int E; and @E the closure, interior, and boundary
of E; respectively. If E is measurable, we denote by cl� E and @�E; the essential
closure and essential boundary of E; respectively. A measurable set E is called
essentially closed whenever cl� E is closed.
Let UCRm be an open set. The collections of all BV subsets of U and all locally

BV subsets of U are denoted by BVðUÞ and BV locðUÞ; respectively. We denote by
BVcðUÞ the collection of all bounded BV subsets of U whose closure is also
contained in U : In the absence of additional attributes, a BV set or a locally BV set is
always a BV subset or a locally BV subset of Rm; respectively. We write, respectively,
BV ;BV loc; and BVc instead of BVðRmÞ;BV locðRmÞ; and BVcðRmÞ: The perimeter
and unit exterior normal of a BV set A are denoted by jjAjj and nA; respectively. The
regularity of a BV set A is the number

rðAÞ :¼
jAj

dðAÞjjAjj if jAj40;

0 if jAj ¼ 0:

(

Throughout, by a function we mean a real-valued function. When considered
individually, functions are generally not identified with the equivalence classes they
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determine. On the other hand, by spaces of functions, we usually mean the spaces of
the equivalence classes determined by these functions. Often we denote by f both a
function defined on a set A and its restriction f pB to BCA:
Let UCRm be an open set. We denote by BVðUÞ the family of all BV functions in

U ; and give the symbols BVlocðUÞ and BVcðUÞ the obvious meaning. We let

BVNðUÞ :¼ BVðUÞ-LNðUÞ;

and define BVN

locðUÞ and BVN

c ðUÞ similarly. We write BV instead of BVðRmÞ; and
use the same convention for the other spaces introduced in this paragraph. If
gABVlocðUÞ; we denote by Dg the distributional gradient of g; and by jjDgjj the
variational measure of g: We let jjgjj :¼ jjDgjjðUÞ:

Observation 1.1. If gABVcðRÞ; then jgj
N
pjjgjj:

Proof. If fga0gCða; bÞ and g� is the precise value of g; denote by Vðg�Þ the classical
variation of g� in the interval ½a; b�: In view of [7, Theorem 4.5.9, (23)],

jgj
N

¼ jg�j
N
p sup

tA½a;b�
jg�ðtÞjpVðg�Þpjjgjj: &

Proposition 1.2. If E is a bounded measurable subset of Rm; then jj 
 jj is a Banach

norm in the linear space

BVE :¼ fgABV : fga0gCEg:

Proof. Clearly jj 
 jj is a norm in BVE : If fgig is a Cauchy sequence in ðBVE ; jj 
 jjÞ;
then it is a Cauchy sequence in L1ðRmÞ: Indeed, this follows from Observation 1.1 if
m ¼ 1; and from the Hölder and Sobolev inequalities if mX2: Thus fgig converges to
a gAL1ðRmÞ; and we may assume fga0gCE: As fjjgijjg is a Cauchy sequence of real
numbers, jjgjjplim jjgijjoN: Consequently gABVE :
Now given e40; there is an integer kX1 such that jjgi 	 gjjjoe for all i; jXk: If

iXk is an integer, then the sequence fgi 	 gjgj converges to gi 	 g in L1ðRmÞ:
Therefore

jjgi 	 gjjp lim inf
j

jjgi 	 gjjjpe;

and the proposition follows. &

Let ECCCRm and let v :C-Rn: We say v is pointwise Lipschitz in E if given
xAE; we can find cx40 and dx40 so that

jvðxÞ 	 vðyÞjpcxjx 	 yj
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for all yAC-Bðx; dxÞ: Recall v is called continuous in E if it is continuous at each
xAE: An easy variant of Whitney’s extension theorem [21, Chapter 6, Section 2]
yields the following:

If C is a closed set and v is continuous or pointwise Lipschitz in E; then v has an

extension w :Rm-Rn that is CN in Rm 	 C and continuous or pointwise Lipschitz

in E; respectively.

In particular, if v is pointwise Lipschitz in E; then by Stepanoff’s theorem, w is
differentiable at almost all xAE; moreover, for almost all xAE; the derivative DwðxÞ
depends only on v and not on the extension w [17, Lemma 1.6.3].

2. Charges

For n ¼ 1; 2;y; we topologize the convex set

BVn :¼ fgABVN

c : supp gCB½n� and jjgjj þ jgj
N
pn þ 1g

by two different metrics:

t : ð f ; gÞ/jf 	 gj1 and $ : ð f ; gÞ/jjf 	 gjj:

The space ðBVn; tÞ is compact by [5, Theorem 4, Section 5.2.3], and it follows from
Proposition 1.2 that the space ðBVn; $Þ is complete. In BVN

c we consider the largest

topology T for which all inclusion maps

ðBVn; tÞ+ðBVN

c ;TÞ

are continuous, and the largest topology W for which all inclusion maps

ðBVn; $Þ+ðBVN

c ;WÞ

are continuous. Both topologies T and W are Hausdorff, sequential and
sequentially complete, but not metrizable. Moreover, the topology T is locally
convex; whether the same is true about the larger topologyW is unclear. Identifying
each set B in BVc with its indicator wAABVN

c ; we view BVc as a closed subspace of

ðBVN

c ;TÞ and ðBVN

c ;WÞ:
Let fgig be a sequence in BVN

c and gABVN

c : We write fgig-g or fgig4g

according to whether fgig T-converges or W-converges to g; respectively.
Observe

* fgig-g if and only if each gi vanishes outside a fixed compact set KCRm; and

supðjjgijj þ jgijNÞoN and lim jgi 	 gj1 ¼ 0;
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* fgig4g if and only if each gi vanishes outside a fixed compact set KCRm; and

sup jgijNoN and lim jjgi 	 gjj ¼ 0:

Using Observation 1.1 if m ¼ 1; and the Hölder and Sobolev inequalities if mX2; it
is easy to show that fgig4g implies fgig-g: For a sequence fBig in BVc and a set
BABVc; the meaning of the symbols fBig-B and fBig4B is obvious.

Note fgig-g and fBig-B can be defined for gAL1ðRmÞ and a bounded
measurable set BCRm: However, in this case [5, Section 5.2.1] implies gABVN

c and

BABV :

Definition 2.1. A linear functional F : BVN

c -R is called a charge or a weak charge

(abbreviated as w-charge) according to whether F is T-continuous of W-
continuous, respectively.

It is easy to see a linear functional F :BVN

c -R is, respectively, a charge or w-

charge whenever lim/F ; giS ¼ 0 for each sequence fgig in BVN

c for which fgig-0

or fgig40:

Remark 2.2. It follows from [17, Section 4.1] that a charge F is uniquely determined
by the restriction FpBVc; and that each additive T-continuous function F on BVc

defines a charge by the formula

/F ; gS :¼
Z

N

0

Fðfgþ4tgÞ dt 	
Z

N

0

Fðfg	4tgÞ dt

for each gABVN

c : In general, neither is true for w-charges.

Clearly, each charge is a w-charge, and the next example shows the converse is
false.

Example 2.3 (The flux of a vector field). If v :Rm-Rm is a locally bounded Borel
vector field, we define a linear functional Fv on BVN

c by the formula

/Fv; gS :¼
Z
Rm

v 
 dðDgÞ

for each gABVN

c : If jvðxÞjpy for every xAsupp g; then

j/Fv; gSjpyjjDgjjðRmÞ ¼ yjjgjj;

and it follows Fv is a w-charge. Since

/Fv; wBS ¼
Z
@�B

v 
 nB dHm	1;
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for each bounded BV set B; we call Fv the flux of v: Choosing a vector field v with a
suitable discontinuity, it is easy to see that the flux of v need not be a charge [17,
Example 2.1.11].

Proposition 2.4. If F is a linear functional on BVN

c ; then

* F is a charge if and only if given e40; there is a y40 such that

j/F ; gSjoyjgj1 þ eðjjgjj þ jgj
N
Þ

for each gABVN

c with fga0gCBð1=eÞ;

* F is a w-charge if and only if given e40; there is a y40 such that

j/F ; gSjoyjjgjj þ ejgj
N

for each gABVN

c with fga0gCBð1=eÞ:

Proof. The statement about charges follows immediately from Remark 2.2 and [17,
Proposition 2.2.6].
As the converse is obvious, suppose F is a w-charge, and choose an e40: Observe

there is an Z40 such that j/F ; gSjoe=2 for each gABVN

c with jjgjjoZ; jgj
N
o1;

and fga0gCBð1=eÞ: Let y :¼ e=ð2ZÞ and select a gABVN

c for which

fga0gCBð1=eÞ: With no loss of generality, we may assume gX0:
Let p and q be the smallest positive integers for which jjgjj=poZ and jgj

N
=qo1:

Note ppjjgjj=Zþ 1 and qpjgj
N

þ 1: Since

s/

Z s

0

jjfg4tgjj dt : ½0; jgj
N
�-½0; jjgjj�

is an increasing continuous function, the coarea theorem implies there are 0 ¼
a0o?oap ¼ jgj

N
such that

Z ai

ai	1

jjfg4tgjj dt ¼ 1

p
jjgjjoZ; i ¼ 1;y; p:

For i ¼ 0;y; q; let bi ¼ ði=qÞjgj
N
; and order the set fa0;y; ap; b0;y; bqg

into a sequence 0 ¼ c0o?ocr ¼ jgj
N
: Clearly rpp þ q 	 1: Now it is easy

to verify

gi :¼ maxfminfg; cig; ci	1g 	 ci	1; i ¼ 1;y; r;
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are BV functions with jgijNo1; fgia0gCBð1=eÞ; and
Pr

i¼1 gi ¼ g: As each ½ci	1; ci�
is contained in some ½aj	1; aj �;

jjgijj ¼
Z 1

0

jjfgi4tgjj dt ¼
Z ci

ci	1

jjfg4tgjj dt

p
Z aj

aj	1

jjfg4tgjj dtoZ;

by the coarea theorem. We conclude

j/F ; gSjp
Xr

i¼1
j/F ; giSjoer

2
p

e
2
ðp þ q 	 1Þ

p
e
2

jjgjj
Z

þ jgj
N

þ 1

� �
¼ yjjgjj þ e

2
ðjgj

N
þ 1Þ;

from which the desired inequality follows whenever jgj
N
X1: If 0ojgj

N
o1; we apply

the previous result to h :¼ g=jgj
N
:

/F ; gSj j ¼ jgj
N

/F ; hSj jojgj
N
ðyjjhjj þ ejhj

N
Þ ¼ yjjgjj þ ejgj

N
:

As the case jgj
N

¼ 0 is trivial, the proposition is established. &

If F is a charge and fABVN

loc; then it is easy to see we can define a charge F L f by

the formula

/F L f ; gS :¼ /F ; fgS

for all gABVN

c : Showing that the same construction is possible for w-charges

requires some work.

Observation 2.5. The variational measure jjDf jj of a BV function f is absolutely

continuous with respect to the Hausdorff measure Hm	1:

Proof. By [17, Theorem 1.8.2, (3)], this is true if f is the indicator of a locally BV set.
For an arbitrary BV function, the observation follows from the coarea theorem [17,
Proposition 1.8.10]. &

Lemma 2.6. Let fgig be a sequence in C1
c ðRmÞ: If lim jjgijj ¼ 0; then fgig has a

subsequence that converges to zero Hm	1-almost everywhere.

Proof. For m ¼ 1; Observation 1.1 implies fgig converges uniformly to zero
everywhere.
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If mX2; select a subsequence of fgig; still denoted by fgig; so that jjgijjp2	i for
i ¼ 1; 2;y; and let

Bi;k :¼ xARm: giðxÞ4
1

k

� 	
and Bk :¼

\N
j¼1

[N
i¼j

Bi;k:

It follows directly from the definition of capacity Cap1 [5, Section 4.7.1] that

Cap1ðBi;kÞpjjkgijjpk2	i: Since Cap1 is a measure in Rm;

Cap1ðBkÞpCap1
[N
i¼j

Bi;k

 !
pk21	j

for j ¼ 1; 2;y: We infer Cap1ðBkÞ ¼ 0; and if B ¼
S

N

k¼1 Bk then Cap1ðBÞ ¼ 0:

According to [5, Section 5.6.3, Theorem 3], we haveHm	1ðCÞ ¼ 0 for each compact
subset of B: As B is a Borel set, it follows from [6, Theorems 1.6 and 5.6] that

Hm	1ðBÞ ¼ 0: A direct verification reveals

B ¼ fxARm: lim sup giðxÞ40g;

which means lim sup gip0 Hm	1-almost everywhere. Applying this result to the

sequence f	gig; we obtain lim inf giX0 Hm	1-almost everywhere, and the lemma
follows. &

Lemma 2.7. Let fgig be a sequence in BVN

c such that fgig40; and let fABVN

loc: Then

ffgig40:

Proof. Select a compact set KCRm with supp giCintK ; and let c ¼ sup jgijN: We

may assume ffa0gCK ; in which case

sup jfgijNpcjf j
N
oN:

Thus we only need to prove lim jjfgijj ¼ 0: Clearly, it suffices to show that this is true
for a subsequence of fgig:
Assume first that fgig is a sequence in C1

c ðRmÞ: Using Lemma 2.6, find a

subsequence of fgig; still denoted by fgig; that converges to zero Hm	1-almost
everywhere, and in view of Observation 2.5, also jjDf jj-almost everywhere. Choose a
sequence ffjg in C1

c ðRmÞ so that lim jfj 	 f j1 ¼ 0 and lim jjfjjj ¼ jjf jj: If UCRm is an

open set, then

jjDf jjðUÞplim inf jjDfjjjðUÞ

by [5, Section 5.2, Theorem 1]. As jjDf jj and jjDfjjj are finite measures and

lim jjDfjjjðRmÞ ¼ jjDf jjðRmÞ; the previous inequality implies

lim sup jjDfjjjðCÞpjjDf jjðCÞ
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for each closed set CCRm: According to [5, Section 1.9, Theorem 1], the measures
jjDfjjj converge weakly to jjDf jj: Since

jjfgijjp lim inf
j-N

jjfjgijj ¼ lim inf
j-N

Z
Rm

jDð fjgiÞj dLm

p lim
j-N

Z
Rm

jDfj j 
 jgij dLm þ lim
j-N

Z
Rm

jfjj 
 jDgij dLm

¼
Z
Rm

jgij djjDf jj þ
Z
Rm

jf j 
 jDgij dLm

p
Z
Rm

jgij djjDf jj þ jf j
N
jjgijj;

the dominated convergence theorem implies lim jjfgijj ¼ 0:

In the general case, find functions gi;k; i; k ¼ 1; 2;y; in C1
c ðRmÞ so that each

fgi;ka0g is contained in K ; all jgi;kjN are bounded by a fixed constant, and for

i ¼ 1; 2;y;

lim
k-N

jgi;k 	 gij1 ¼ 0 and lim
k-N

jjgi;kjj ¼ jjgijj:

Since ffgi;kg converges to fgi in L1; we have jjfgijjplim inf jjfgi;kjj: Thus for i ¼
1; 2;y; there is an integer kiX1 such that

jjgi;ki
jjojjgijj þ

1

i
and jjfgijj 	

1

i
pjjfgi;ki

jj;

in particular, lim jjgi;ki
jj ¼ 0: Now lim jjfgi;ki

jj ¼ 0 by the first part of the proof, and

consequently lim jjfgijj ¼ 0: &

Corollary 2.8. If F is a w-charge and fABVN

loc; then

F L f : g//F ; fgS : BVN

c -R

is a w-charge.

Let F be a charge or a w-charge, and let AABV : We define

FðAÞ :¼ /F ; wAS and F L A :¼ F L wA;

and say that F is, respectively, a charge or w-charge in A whenever F ¼ F L A:
Note. Independently of the previous paragraph, when m is a measure in Rm and

ECRm; we define the measure m L E in the customary way:

ðm L EÞðAÞ :¼ mðA-EÞ

for each set ACRm:
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3. Integrals

A set ECRm is called thin whenever Hm	1 L E is a s-finite measure. A gage on a
set ECRm is a function d : E-½0;NÞ such that fda0g is a thin set. A partition is a
finite collection

P ¼ fðA1; x1Þ;y; ðAp; xpÞg;

where A1;y;Ap are disjoint bounded BV sets and x1;y; xp are points of R
m:

Definition 3.1. A function f defined almost everywhere in a bounded BV set A is
called R-integrable in A if there is a charge F in A and an extension of f to cl� A; still
denoted by f ; such that the following condition is satisfied: given e40; we can find a
gage d on cl� A so that

Xp

i¼1
j f ðxiÞjAij 	 FðAiÞjoe

for every partition fðA1;x1Þ;y; ðAp; xpÞg with xiAcl� A;AiCA;

rðAi,fxigÞ4e and dðAi,fxigÞodðxiÞ

for i ¼ 1;y; p:

The charge F of Definition 3.1, which is uniquely determined by f ; is called the R-

primitive of f ; denoted by ðRÞ
R

f : For a BV set BCA; the charge F L B is the R-

primitive of f pB; in particular, f pB is R-integrable in B: The R-integral of f over A is

the number ðRÞ
R

A
f :¼ FðAÞ: By [17, Proposition 5.1.3], the R-integral is a

nonnegative linear functional on the linear space RðAÞ of all R-integrable functions
in A:
Without proofs, we summarize the main properties of the R-integral established in

[17, Chapter 5].

Theorem 3.2. Let A be bounded BV set.

(1) L1ðAÞCRðAÞ and ðRÞ
R

A
f ¼

R
A

f for each fAL1ðAÞ: The inclusion

L1ðAÞCRðAÞ is proper whenever intAa|:
(2) Each function fARðAÞ is measurable; moreover, if fARðAÞ is nonnegative, then

fAL1ðAÞ:
(3) If the R-primitive of fARðAÞ equals zero, then f ðxÞ ¼ 0 for almost all xAA:
(4) Suppose B is a bounded BV set disjoint from A: Let f be a function defined on

A,B that is R-integrable in A and B; and let FA and FB be the R-primitives of

f pA and f pB; respectively. If both A and B are essentially closed, then

fARðA,BÞ and FA þ FB is the R-primitive of f :
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(5) Let F be the R-primitive of fARðAÞ; and let gABVN

loc: Then fgARðAÞ and F L g

is the R-primitive of fg: In particular,

ðRÞ
Z

A

f ðxÞgðxÞ dx ¼
Z

N

0

ðRÞ
Z
fg4tg

f ðxÞ dx

" #
dt

whenever g is nonnegative.
(6) Let vACðclA;RmÞ; let T be a thin set, and let v be pointwise Lipschitz at each

xAcl� A 	 T : Then div v belongs to RðAÞ and the flux of v is the R-primitive of

div v:
(7) If f :A-Rm is a lipeomorphism and fAR½fðAÞ�; then ð f 3 fÞJf belongs to RðAÞ

and

ðRÞ
Z

A

f ½fðxÞ�JfðxÞ dx ¼ ðRÞ
Z
fðAÞ

f ðyÞ dy;

here Jf :¼ jdetDfj is the Jacobian of f:

Note. Four comments concerning Theorem 3.2 are in order.

(i) An easy consequence of part (1) is the following observation: if the pair ð f ;FÞ
satisfies the conditions of Definition 3.1 for a particular extension of f to cl� A;
then it satisfies these conditions for an arbitrary extension of f to cl� A:

(ii) Part (4) is false without assuming the sets A and B are essentially closed [17,
Proposition 6.1.1, Remark 6.1.2, (4)]. We shall improve on this situation in
Theorem 3.5 below.

(iii) As part (6) implies that Fubini’s theorem is generally false for the R-integral
[17, Example 5.1.14], part (5) asserts a nontrivial fact; cf. [17, Remark 5.2.3].

(iv) Part (7) can be generalized to a geometrically intuitive transformation formula
for local lipeomorphisms [17, Section 5.3].

If f is a function defined almost everywhere in AABV and F is a w-charge, we
denote by Rð f ;F ;AÞ the family of all BV sets BCA for which F L B is the R-
primitive of f pB:

Definition 3.3. A function f defined almost everywhere in AABV is called W -
integrable in A if there is a w-charge F in A and a sequence fAig in Rð f ;F ;AÞ with
fAig4A:

The family of all W-integrable functions in AABV is denoted by WðAÞ: Each
charge F associated with fAWðAÞ according to Definition 3.3 is called a W -primitive

of f :
Let F be a W-primitive of fAWðAÞ; and choose a sequence fAig in Rð f ;F ;AÞ

with fAig4A: If BCA is a BV set, then fB-Aig is a sequence in Rð f pB;F L B;BÞ;
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and it follows from Lemma 2.7 that fB-Aig4B: Consequently, F L B is a W-
primitive of f pB:

Observation 3.4. Let A be a bounded BV set. Each fAWðAÞ has a unique W -

primitive, denoted by ðWÞ
R

f :

Proof. Suppose F and G are W-primitives of fAWðAÞ; and find sequences fAig in
Rð f ;F ;AÞ and fBig in Rð f ;G;AÞ so that fAig4A and fBig4A: Then fAi-Big is a
sequence in Rð f ;F ;AÞ-Rð f ;G;AÞ and fAi-Big4A: As each R-integrable
function has a unique R-primitive,

FðAÞ ¼ lim FðAi-BiÞ ¼ limGðAi-BiÞ ¼ GðAÞ;

and the observation follows from the previous paragraph. &

Let A be a bounded BV set. If F is the W-primitive of fAWðAÞ; we call the
number ðWÞ

R
A

f :¼ FðAÞ the W -integral of f over A: Employing proofs similar to

that of Observation 3.4, it is easy to show that the W-integral is a linear functional
on WðAÞ; and that parts (1)–(3) and (7) of Theorem 3.2 hold for the W-integral.

Theorem 3.5 (Additivity). Let A and B be bounded BV sets, and let f be a function

defined almost everywhere on A,B: If f is W -integrable in A and B; then it is W -
integrable in A,B; and

ðWÞ
Z

A,B

f ¼ ðWÞ
Z

A

f þ ðWÞ
Z

B

f

whenever A and B are disjoint.

Proof. It suffices to prove the theorem when A and B are disjoint. Denote by FA and
FB the W-primitives of f in A and B; respectively, and find sequences fAig in
Rð f ;FA;AÞ and fBig in Rð f ;FB;BÞ so that fAig4A and fBig4B: According to
[22], for i; j ¼ 1; 2;y; there are essentially closed BV sets Ai;jCAi and Bi;jCBi such

that fAi;jgj4Ai and fBi;jgj4Bi: For each i; find a ji so that

jjAi 	 Ai;ji jjo1=i and jjBi 	 Bi;ji jjo1=i;

and let Ci :¼ Ai;ji,Bi;ji : Part (4) of Theorem 3.2 shows that fCig is a sequence in

Rð f ;FA þ FB;A,BÞ: Since fCig4A,B; the theorem follows. &

Theorem 3.6 (Multipliers). Let A be a bounded BV set, and let F be the W -primitive

of fAWðAÞ: If gABVN

loc; then fgAWðAÞ and F L g is the W -primitive of fg: If, in

addition, fgig is a sequence in BVN

loc such that fgiwAg4gwA; then

lim ðWÞ
Z

A

fgi ¼ ðWÞ
Z

A

fg:
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Proof. There is a sequence fAig in Rð f ;F ;AÞ with fAig4A: As part (5) of Theorem
3.2 implies Rð f ;F ;AÞCRð fg;F L g;AÞ; it follows from Corollary 2.8 that fgAWðAÞ
and F L g is the W-primitive of fg: If fgig is a sequence in BVN

loc with fgiwAg4gwA;

then

ðWÞ
Z

A

fg ¼ðF L gÞðAÞ ¼ /F ; gwAS ¼ lim/F ; giwAS

¼ lim ðF L giÞðAÞ ¼ lim ðWÞ
Z

A

fgi: &

If UCRm is an open set, we denote by WlocðUÞ the linear space of all functions
f :U-R such that f pA belongs to WðAÞ for each AABVcðUÞ: The elements of
WlocðUÞ are called locally W -integrable functions in U : If fAWlocðUÞ and
gABVN

c ðUÞ; find an AABVcðUÞ with supp gCintA and, using the multipliers

theorem, let

ðWÞ
Z

U

fg :¼ ðWÞ
Z

A

fg:

The W-integral ðWÞ
R

U
fg is well defined, since by the additivity theorem, its value

does not depend on the choice of A: In particular, it is easy to see that for each
fAWlocðUÞ; the linear map

Lf : j/ðWÞ
Z

U

fj :CN

c ðUÞ-R

is a distribution in U [18, Definition 6.7]. Showing that Lf ¼ 0 implies f ðxÞ ¼ 0 for

almost all xAU requires some work.

Lemma 3.7. Let F be a w-charge in AABVc; and suppose there is a sequence fAig of

BV subsets of A such that fAig4A and each F L Ai is a charge. If Cx :¼ C þ x is the

translation of CABVc by xARm; then the function x/FðCxÞ is uniformly continuous

on Rm and has compact support.

Proof. Choose an e40; and using Proposition 2.4, find a y40 so that
jFðEÞjoyjjEjj þ e for each EABVc: Let a :¼ e=y; and for i ¼ 1; 2;y; let Fi :¼
F L Ai and Bi :¼ A 	 Ai:
Given a positive integer jpm; denote by Pj the ðm 	 1Þ-dimensional subspace of

Rm perpendicular to the jth coordinate axis. For each yAPj denote by ly the line

passing through y and perpendicular to Pj: According to [5, Section 5.10.2, Theorem

2], for Hm	1-almost all yAPj; the intersection ly-C is a one-dimensional BV set,

and we denote by jjly-Cjj its perimeter. We employ the usual relationships between

jjly-Cjj and jjCjj; see [17, Section 1.9]. AsZ
Pj

jjly-Cjj dHm	1ðyÞpjjCjjoN;
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there is a bj40 such that
R

E
jjly-Cjj dHm	1ðyÞoa for each Hm	1-measurable set

ECPj; with Hm	1ðEÞobj: The set

Ei;j :¼ fyAPj : jjly-Bijj40g ¼ fyAPj: jjly-BijjX2g ð3:1Þ

is Hm	1-measurable by [5, Section 5.10.2, Lemma 1]. Denote by xð jÞ the orthogonal

projection of xARm to Pj; and by Ei;j 	 xð jÞ the translation of Ei;j by xð jÞ: ObserveZ
Pj

jjly-ðBi-CxÞjj dHm	1ðyÞ ¼
Z

Ei;j

jjly-ðBi-CxÞjj dHm	1ðyÞ

p
Z

Ei;j

jjly-Bijj dHm	1ðyÞ þ
Z

Ei;j

jjly-Cxjj dHm	1ðyÞ

pjjBijj þ
Z

Ei;j	xð jÞ
jjly-Cjj dHm	1ðyÞ:

Let b ¼ minfb1;y; bmg; and find an integer kX1 with jjBkjjominfa; bg: In view of
(3.1),

Hm	1ðEk;j 	 xð jÞÞ ¼Hm	1ðEk;jÞ

p
Z
Pj

jjly-Bkjj dHm	1ðyÞpjjBkjjob:

Consequently,

jjBk-Cxjjp
Xm

j¼1

Z
Pj

jjly-ðBk-CxÞjj dHm	1ðyÞo2ma;

and we conclude that for each xARm;

jFðCxÞ 	 FkðCxÞj ¼ jFðBk-CxÞjo2mayþ e ¼ eð2m þ 1Þ:

Since Fk is a charge, Proposition 2.4 and [17, Lemma 4.2.1] imply there is a d40 such
that jFkðCxÞ 	 FkðCzÞjoe for each x; zARm with jx 	 zjod: As FðCxÞ ¼ 0 whenever
jxj is sufficiently large, the lemma follows. &

Proposition 3.8. Let UCRm be an open set and let fAWlocðUÞ: If ðWÞ
R

U
fj ¼ 0 for

each jACN

c ðUÞ; then f ðxÞ ¼ 0 for almost all xAU :

Proof. As U is Lindelöf, it suffices to show f ¼ 0 almost everywhere in each
open ball VCU : Choose an open ball VCU and a diffeomorphism f from
Rm onto V : Observe JfðxÞ40 for each xARm; and g :¼ ð f 3 fÞJf belongs to

WlocðRmÞ:Hence ðWÞ
R
Rm gf ¼ 0 for each fACN

c ðRmÞ; and g ¼ 0 almost everywhere

yields f ðxÞ ¼ 0 for almost all xAV : It follows we may assume U ¼ Rm from the
onset.
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Select bounded BV sets A and B: Let B� :¼ f	x: xABg and Bx :¼ B þ x for each
xARm: Denote by F the W-primitive of f pA; and for xARm; let

ðwB� � f ÞðxÞ :¼ðWÞ
Z

A

wB� ðx 	 yÞf ðyÞ dy

¼ðWÞ
Z

A-Bx

f ðyÞ dy ¼ FðBxÞ: ð3:2Þ

By Lemma 3.7, the ‘‘convolution’’ wB � f is a uniformly continuous function on Rm

with compact support. Select a jACN

c ðRmÞ; and observe that wB � j is the usual

convolution of wB and j; in particular wB � j belongs to CN

c ðRmÞ:

Claim. ðWÞ
R

A
f ðwB � jÞ ¼

R
A
ðwB� � f Þj for each jACN

c ðRmÞ:

Proof. If H is a charge in A and nX1 is an integer, let

jjHjjn :¼ supfjHðCÞj: jjCjjpng:

According to [17, Proposition 2.2.4], there is an integer kX1; depending on A; such
that jj 
 jjk; jj 
 jjkþ1;y are equivalent Banach norms in the linear space of all charges

in A: If H is the R-primitive of hARðAÞ; then h/jjHjjn; n ¼ k; k þ 1;y are

equivalent norms in RðAÞ: The topology in RðAÞ induced by any of these norms is
denoted by S: Given jACN

c ðRmÞ; the linear functionals

R : h/ðRÞ
Z

A

hðwB � jÞ and L : h/

Z
A

ðwB� � hÞj

defined on RðAÞ are S-continuous. The S-continuity of R follows from [17,
Proposition 4.5.2]. The dominated convergence theorem implies the S-continuity of
L: since jjBxjj ¼ jjBjj for each xARm; we infer from (3.2) the sequence fwB� � hig
converges uniformly to zero for every sequence fhig in RðAÞ that S-converges to
zero. The standard manipulation of convolutions by means of Fubini’s theorem

shows that RðhÞ ¼ LðhÞ for each hAL1ðAÞ: This equality extends to every hARðAÞ;
because L1ðAÞ is a dense subspace of ðRðAÞ;SÞ; see [17, Corollary 4.2.3]. There is a
sequence fAig of BV subsets of A such that fAig4A and fARðAiÞ for i ¼ 1; 2;y:
Applying what we have already proved, and observing that lim jA 	 Aij ¼ 0
establishes the claim:

ðWÞ
Z

A

f ðwB � jÞ ¼ lim ðRÞ
Z

Ai

f ðwB � jÞ

¼ lim

Z
Ai

ðwB� � f Þj ¼
Z

A

ðwB� � f Þj:
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Now choose a jACN

c ðRmÞ; and find an AABVc whose interior contains the

supports of both wB � j and wB� � f : In view of the claimZ
Rm

ðwB� � f Þj ¼
Z

A

ðwB� � f Þj

¼ðWÞ
Z

A

f ðwB � jÞ ¼ ðWÞ
Z
Rm

f ðwB � jÞ ¼ 0:

As wB� � f is continuous, it is equal to zero everywhere. In particular FðBÞ ¼
wB� � f ð0Þ ¼ 0; and the proposition follows from Theorem 3.2, part (3), and the

arbitrariness of B: &

AnHm	1-negligible subset of Rm is called slight. Clearly, each slight set is thin but
not vice versa.

Observation 3.9. Given a bounded slight set S and e40; there is an open set UABV
such that SCU and jjU jjoe:

Proof. Choose a bounded open setV containing S: Since S is negligible with respect to
the ðm 	 1Þ-dimensional spherical measure [13, Section 5.1], we can cover S by open

balls BiCV so that
P

N

i¼1 jjBijjoe: It follows that U ¼
S

N

i¼1 Bi is the desired set. &

Theorem 3.10 (Gauss–Green). Let A; S; and T be, respectively, a bounded BV set, a

slight set, and a thin set. Suppose v : clA-Rm is a bounded vector field that is

continuous in clA 	 S and pointwise Lipschitz in cl� A 	 T : Then div v belongs to

WðAÞ and

ðWÞ
Z

A

div v dLm ¼
Z
@�A

v 
 nA dHm	1:

Proof. Extend v to a bounded vector field w :Rm-Rm that is continuous on Rm 	
ðS-clAÞ; and use Example 2.3 to define the flux F of w: By Observation 3.9, there is
a sequences fUig of open bounded BV sets such that S-clACUi for i ¼ 1; 2;y;
and lim jjUijj ¼ 0: Let Ai ¼ A 	 Ui and observe fAig4A: By part (6) of Theorem
3.2, each Ai belongs to Rðdiv v;F ;AÞ and the theorem follows. &

Theorem 3.11 (Integration by parts). Let O;S; and T be, respectively, a Lipschitz

domain, a slight set, and a thin set. Suppose v : clO-Rm is a bounded vector field that

is continuous in clO	 S and pointwise Lipschitz in O	 T : Then

ðWÞ
Z
O

g div v dLm ¼
Z
@O
ðTr gÞv 
 nO dHm	1 	

Z
O

v 
 dðDgÞ

for each gABVNðOÞ:
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Proof. It suffices to prove the theorem for a nonnegative gABVNðOÞ: Extend v to a
bounded vector field w :Rm-Rm that is continuous on Rm 	 ðS-clOÞ: Using the
standard mollifiers, find a sequence fvkg in CNðRm;RmÞ having the following
properties

(i) sup jvkjNpjwj
N
;

(ii) lim vkðxÞ ¼ vðxÞ for each xAclO	 S;
(iii) fvkg converges to w uniformly on each compact set K contained in Rm 	

ðS-clOÞ:

According to [5, Section 5.3, Theorem 1],Z
O

g div vk dLm ¼
Z
@O
ðTr gÞvk 
 nO dHm	1 	

Z
O

vk 
 dðDgÞ

for k ¼ 1; 2;y: Properties (i) and (ii), the dominated convergence theorem, and
Observation 2.5 yield

lim

Z
@O
ðTr gÞvk 
 nO dHm	1 ¼

Z
@O
ðTr gÞv 
 nO dHm	1

lim

Z
O

vk 
 dðDgÞ ¼
Z
O

v 
 dðDgÞ;

and consequently

lim

Z
O

g div vk dLm ¼
Z
@O
ðTr gÞv 
 nO dHm	1 	

Z
O

v 
 dðDgÞ:

In view of the multipliers and Gauss–Green theorems, g div v is W-integrable in O;
and we only need to show

ðWÞ
Z
O

g div v dLm ¼ lim

Z
O

g div vk dLm:

By Observation 3.9, there is a sequences fUig of open bounded BV sets such that
S-clOCUi for i ¼ 1; 2;y; and lim jjUijj ¼ 0: Letting Ai :¼ O	 Ui; we see that
fAig4O; and that clAi is a compact subset of R

m 	 ðS-clOÞ: Part (6) of Theorem
3.2 implies

ðWÞ
Z

Ai

g div v dLm ¼ ðRÞ
Z

Ai

g div v dLm

for i ¼ 1; 2;y; and as the W-primitive of g div v is a w-charge,

ðWÞ
Z
O

g div v dLm ¼ lim
i-N

ðRÞ
Z

Ai

g div v dLm:
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Choose an e40; and find an integer pX1 so that

ðWÞ
Z
O

g div v dLm 	 ðRÞ
Z

Ap

g div v dLm

�����
�����oe; ð3:3Þ

jjApjjpjjOjj þ 1 and jjgwO	Ap
jjoe; the last inequality follows from Lemma 2.7. Let

Bp :¼ O	 Ap and h :¼ gwBp
: The Fubini, Gauss–Green, and coarea theorems,

together with property (i), implyZ
Bp

g div vk dLm

�����
����� ¼

Z
N

0

Z
fh4tg

div vk dLm

 !
dt

�����
�����

¼
Z

N

0

Z
@�fh4tg

vk 
 nfh4tg dHm	1

 !
dt

�����
�����

p jwj
N

Z
N

0

Hm	1ð@�fh4tgÞ dt

¼ jwj
N
jjhjjoejwj

N

for k ¼ 1; 2;y; and henceZ
Ap

g div vk dLm 	
Z
O

g div vk dLm

�����
�����oejwj

N
: ð3:4Þ

By property (iii), there is a q such that jvkðxÞ 	 vðxÞjoe for each xAclAp and each

kXq: Let u :¼ gwAp
; and select kXq: Part (5) of Theorem 3.2 yields

ðRÞ
Z

Ap

g div v 	
Z

Ap

g div vk dLm

�����
�����

¼
Z

N

0

ðRÞ
Z
fu4tg

divðv 	 vkÞ dLm

" #
dt

�����
�����

¼
Z

N

0

Z
@�fu4tg

ðv 	 vkÞ 
 nfu4tg dHm	1

 !
dt

�����
�����

pe
Z

N

0

Hm	1ð@�fu4tgÞ dt ¼ ejjujj

peðjjgjj þ jgj
N
jjApjjÞoeðjjgjj þ jgj

N
þ jgj

N
jjOjjÞ:

Combining the previous inequality with inequalities (3.3) and (3.4), we conclude
that for each kXq;

ðWÞ
Z
O

g div v dLm 	
Z
O

g div vk dLm

����
����obe;

where b ¼ 1þ jwj
N

þ jjgjj þ jgj
N

þ jgj
N
jjOjj: &

ARTICLE IN PRESS
T. De Pauw, W.F. Pfeffer / Advances in Mathematics 183 (2004) 155–182 173



Remark 3.12. Given gABVNðOÞ; the definition of Dg impliesZ
O

g div v dLm ¼ 	
Z
O

v 
 dðDgÞ

for each vAC1
c ðO;RmÞ: Employing the W-integral, we substantially generalized this

fact in Theorem 3.11. However, the W-integral is merely a tool, which can be

replaced by the Lebesgue integral whenever g div v belongs to L1ðOÞ (part (1) of
Theorem 3.2).

In conclusion we show that in the Gauss–Green theorem the exceptional sets can

be defined by means of the integral-geometric measure Im	1
1 provided jDvj belongs

to L1ðAÞ: Note Im	1
1 ðEÞpHm	1ðEÞ for each set ECRm; and the equality holds

whenever E is ðHm	1;m 	 1Þ rectifiable [7, Section 2.10.6, Theorem 3.2.26].
Denote by G the Grassmanian Gðm;m 	 1Þ; and by g the probability measure

gm;m	1 on G defined in [13, Section 3.9]. For PAG; the unique orthogonal projection

of Rm onto P is denoted by p: If BCRm is a Borel set, then

Im	1
1 ðBÞ ¼ k

Z
G

Z
P
H0½B-p	1ðxÞ� dHm	1ðxÞ

� �
dgðPÞ; ð3:5Þ

where k40 is a constant depending only on the dimension [13, Section 5.14].

Observation 3.13. If NCG is a g-negligible set, then Rm has an orthonormal base

fe1;y; emg such that each PAG perpendicular to some ei belongs to G 	 N:

Proof. Choose any orthonormal base fu1;y; umg in Rm; and denote by Pi the
elements of G orthogonal to ui: If ym is the Haar measure on the orthogonal group
OðmÞ and

O ¼
[m
i¼1

fgAOðmÞ: gðPiÞANg;

then ymðOÞpmgðNÞ ¼ 0 by the definition of g in [13, Section 3.9]. Thus there is a
gAOðnÞ 	 O; and fgðu1Þ;y; gðumÞg is the desired base in Rm: &

Theorem 3.14. Let A be a bounded BV set, and let E0 and Es be Borel subsets of Rm

such that Im	1
1 ðE0Þ ¼ 0 and the measure Im	1

1 L Es is s-finite. Suppose v : clA-Rm

belongs to L1ð@�A;Hm	1;RmÞ; is continuous in clA 	 E0; and pointwise Lipschitz in

cl� A 	 Es: Then Z
A

div v dLm ¼
Z
@�A

v 
 nA dHm	1 ð3:6Þ

whenever jDvjAL1ðA;LmÞ:
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Proof. Denote by G0 and Gs the families consisting of all PAG such that the sets

E0-p	1ðxÞ and Es-p	1ðxÞ are, respectively, empty and countable forHm	1-almost
all xAP: In view of (3.5), the set N ¼ G 	 G0,Gs is g-negligible. Observation 3.13
implies Rm has an orthonormal base fe1;y; emg such that each PAG perpendicular
to some ei belongs to G0,Gs: Since neither our assumptions nor the equalities (3.5)
and (3.6) depend on the choice of an orthonormal base in Rm; we may assume
fe1;y; emg is the standard base of Rm: We show that if v ¼ ðv1;y; vmÞ and nA ¼
ðn1;y; nmÞ; then

Z
A

@vi

@xi

dLm ¼
Z
@�A

vini dHm	1 ð3:7Þ

for i ¼ 1;y;m: Our argument relies on @vi=@xiAL1ðAÞ—a fact guaranteed by the

assumption jDvjAL1ðAÞ for any choice of a base in Rm:

In view of symmetry, it suffices to verify equality (3.7) only for i ¼ m: As P ¼
fðx; 0ÞARm: xARm	1g is perpendicular to em; our choice of em and [12, Section 2.2.1,

Theorem 2] imply there is an Lm	1-negligible set ECRm	1 such that for all x in

Rm	1 	 E; the section

Ax ¼ ftAR: ðx; tÞAAg

is a BV subset of R; and the function t/vmðx; tÞ is continuous in clAx and Lipschitz
at all but countably many tAclAx: According to Fubini’s theorem, making E larger,

we may assume that the function t/ð@vm=@xmÞðx; tÞ belongs to L1ðAx;L
1Þ for

every x in Rm	1 	 E: Parts (1) and (6) of Theorem 3.2 yield

Z
Ax

@vm

@xm

ðx; tÞ dL1ðtÞ ¼
Z
@�Ax

vmðx; tÞ 
 nmðx; tÞ dH0ðtÞ

¼
Z
ð@�AÞx

vmðx; tÞ 
 nmðx; tÞ dH0ðtÞ

whenever x belongs to Rm	1 	 E: Integrating over Rm	1 and using Fubini’s theorem,
we obtain

Z
A

@vm

@xm

dLm ¼
Z
@�A

vmnm dHm	1: &

Remark 3.15. Let A be a bounded BV set, and let E0CRm be Im	1
1 -negligible. If

v : clA-Rm is bounded and continuous in @�A 	 E0; then vAL1ð@�A;Hm	1;RmÞ:
Indeed, as E0-@�A is an ðHm	1;m 	 1Þ rectifiable set, it is Hm	1-negligible by [7,
Theorem 3.2.26].
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4. Removable singularities

To illustrate our technique, we present first a simple proof of a slightly improved
classical result of Besicovitch [2] concerning the removable singularities of
holomorphic functions defined on an open subset of the complex plane C:

Theorem 4.1. Let UCC be an open set, and let f :U-C be locally bounded. Suppose

f is continuous outside a slight set EcCU and pointwise Lipschitz outside a thin set

EdCU : If f has a complex derivative almost everywhere in U ; then it can be redefined

on Ec so that it is holomorphic in U :

Proof. Let Rf and If denote, respectively, the real and imaginary part of f : The
vector fields u ¼ ðRf ;	If Þ and v ¼ ðIf ;Rf Þ are locally bounded in U and

continuous in U 	 Ec; in particular, they belong to L1
locðU ;R2Þ: The Cauchy–

Riemann equations yield

div u ¼ div v ¼ 0

almost everywhere in U : Using the integration by parts theorem, we inferZ
U

u 
 rj ¼ 	
Z

U

j div u ¼ 0;Z
U

v 
 rj ¼ 	
Z

U

j div v ¼ 0

for each jAC1
c ðUÞ: This means the vector field ðRf ;If Þ is a distributional

solution of the Cauchy–Riemann equations. As these equations form an elliptic
system, an application of the regularity theorem completes the argument; cf. [18,
Example 8.14]. &

Throughout the remainder of this paper UCRm is a nonempty open set, in which
we consider the equation

divðh 3ruÞðxÞ ¼ f ½x; uðxÞ�; ð4:1Þ

where

u :U-R; h :Rm-Rm; and f :U � R-R

are maps whose properties will be specified below. To avoid trivialities, we assume
mX2:

A classical solution of Eq. (4.1) is a function uAC2ðUÞ such that (4.1) holds for all
xAU : A weak solution of Eq. (4.1) is an almost everywhere differentiable function u

such that Z
U

h½ruðxÞ� 
 rjðxÞ dx ¼ 	
Z

U

jðxÞf ½x; uðxÞ� dx
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for each jACN

c ðUÞ: Under mild assumptions, we show that if u satisfies (4.1) at

almost all xAU ; then u is a weak solution of (4.1).

Theorem 4.2. Let EcCEd be, respectively, a slight and a thin subset of U ; and suppose

the following conditions are satisfied:

(1) u is differentiable almost everywhere in U ;
(2) h 3ru has a locally bounded extension to U that is continuous in U 	 Ec and

pointwise Lipschitz in U 	 Ed;
(3) u satisfies equation (4.1) for almost all xAU :

Then the equalityZ
U

½h 3ru� 
 dðDgÞ ¼ 	ðWÞ
Z

U

gðxÞf ½x; uðxÞ� dx

holds for each gABVN

c ðUÞ:

Proof. Select a gABVN

c ðUÞ: Since supp g is a compact subset of U ; there is a

Lipschitz domain O such that supp gCO and clOCU : By our assumptions, h 3ru

can be extended to a vector field v : clO-Rm that satisfies the assumptions of
Theorem 3.11. Since Tr g ¼ 0 on @O; the theorem follows. &

Under an additional assumption, Theorems 3.2, part (1), and 4.2 imply the
aforementioned result.

Corollary 4.3. If, in addition to the assumptions of Theorem 4.2, we assume the

function x-f ½x; uðxÞ� belongs to L1
locðUÞ; then u is a weak solution of (4.1).

We apply Corollary 4.3 to the Laplace equation Du ¼ 0 and to the minimal surface
equation

div
ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jruj2
q ¼ 0:

Proposition 4.4. Let EcCEd be, respectively, a slight and a thin subset of U ; and

suppose the following conditions are satisfied:

(1) u is continuous in U 	 Ec; and pointwise Lipschitz in U 	 Ed;
(2) ru has a locally bounded extension to U that is continuous in U 	 Ec and

pointwise Lipschitz in U 	 Ed;
(3) Du ¼ 0 almost everywhere in U :

Then u can be redefined on Ec so that it is harmonic in U :
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Proof. By Stepanoff’s theorem, ru and Du are defined almost everywhere in U : We
show first that uALN

locðUÞ: To this end, choose a ball B :¼ Bðz; rÞ whose closure is
contained in U ; and a c40 so that jruðxÞjpc for almost all xAB: An admissible

segment is the nonempty intersection l of B and a line in Rm such that l-Ec ¼ |; and
l-Ed is countable. Since I

m	1
1 pHm	1; proceeding as in the proof of Theorem 3.14,

we can find an orthonormal base e1;y; em in Rm so that the union Si of all
admissible segments parallel to ei differs from B by a negligible set. If l is an
admissible segment and x; yAl; then the one-dimensional version of the Gauss–

Green theorem yields juðyÞ 	 uðxÞjpcjy 	 xj: We infer u is Lipschitz on S ¼
Tm

i¼1 Si

with the Lipschitz constant not larger than mc: As B 	 S is a negligible set, our
assertion is proved.
Select a jACN

c ðUÞ; and a bounded BV set A such that clACU and suppjCintA:

Corollary 4.3, applied to the function h : x/x; implies
R

U
ru 
 rj ¼ 0: As the vector

urj satisfies the assumptions of the Gauss–Green theorem and uDjAL1ðAÞ; we
have

Z
U

uDj ¼
Z

A

uDj ¼
Z

A

ðuDjþru 
 rjÞ

¼
Z

A

divðurjÞ ¼
Z
@�A

ðurjÞ 
 nA ¼ 0;

indeed, since uDj belongs to L1ðAÞ by the first part of the proof, part (1) of Theorem
3.2 shows the W-integrals, which would normally occur in the previous equality, can
be replaced by the Lebesgue integrals. Thus u is a distributional solution of Du ¼ 0;
and the proposition follows from [18, Corollary of Theorem 8.12]. &

Corollary 4.5. Let EcCEd be relatively closed subsets of U that are, respectively,

slight and thin, and suppose uAC1ðU 	 EcÞ: If u is locally Lipschitz in U and harmonic

in U 	 Ed; then it is harmonic in U :

Proof. As Ec is relatively closed in U ; the bounded vector field ru has a locally
bounded extension u0 :U-Rm that is continuous in U 	 Ec: By our assumption, u is
CN in U 	 Ed: Since Ed is relatively closed in U ; both u and u0 are differentiable in
U 	 Ed: Now the corollary follows from Proposition 4.4. &

Remark 4.6. Let K be a compact subset of U ; and suppose u is locally Lipschitz in U

and harmonic in U 	 K : If Hm	1ðKÞ ¼ 0; then letting Ec ¼ Ed ¼ K ; Corollary 4.5
yields the classical result: u can be redefined on K so that it is harmonic in U : In special
situations, the same conclusion holds under weaker assumptions. For m ¼ 2; David

and Mattila [3] have shown it suffices to assume H1ðKÞoN and I1
1ðKÞ ¼ 0: For

mX3; it is not known whether the assumptionsHm	1ðKÞoN and Im	1
1 ðKÞ ¼ 0 are

sufficient; however, Mattila and Paramonov [14] proved that they are sufficient when
K belongs to a class of self-similar sets.
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Since closed Im	1
1 -negligible sets are generally not removable for Lipschitz

harmonic functions [14], the next proposition is interesting.

Proposition 4.7. Let E0CEs be relatively closed subsets of U such that Im	1
1 ðE0Þ ¼ 0

and the measure Im	1
1 L Es is s-finite. Suppose uAC1ðU 	 E0Þ is harmonic in U 	 Es:

If u belongs to the Sobolev space W
2;1
loc ðUÞ; then it can be redefined on E0 so that it is

harmonic in U :

Proof. Select a jACN

c ðUÞ; and a bounded BV set A such that clACU and

supp jCintA: As j ¼ rj ¼ 0 on @�A; we can apply Theorem 3.14 to the vector

fields urj and jru: As in the proof of Proposition 4.4, we obtain
R

U
uDj ¼R

A
jDu ¼ 0; and the proposition follows from [18, Corollary of Theorem 8.12]. &

Remark 4.8. In view of the Hölder and Sobolev inequalities, in Proposition 4.7 the

assumption uAW
2;1
loc ðUÞ is equivalent to assuming that all second partial derivatives

of u belong to L1
locðUÞ:

Prior to considering the minimal surface equation

div
ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jruj2
q ¼ 0; ð4:2Þ

recall that according to the regularity result of De Giorgi [8], each weak solution of
(4.2) in U which is locally Lipschitz is a real analytic function in U that solves (4.2) in
the classical sense. In other words, among locally Lipschitz functions in U there is no
difference between weak and classical solutions of (4.2).

Corollary 4.9. Let EcCEd be relatively closed subsets of U that are, respectively,

slight and thin, and suppose uAC1ðU 	 EcÞ: If u solves equation (4.2) in U 	 Ed; then u

can be redefined on Ec so that it is locally Lipschitz in U and solves equation (4.2) in U :

Proof. Since the function u is locally Lipschitz in the open set U 	 Ec; it is real
analytic in the open set U 	 Ed: Letting

hðxÞ :¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jxj2

q

for each xAU ; the map h3ru is bounded and continuous in U 	 Ec; and
differentiable in U 	 Ed: As Ec is a closed subset of U ; the map h 3ru has a
bounded extension to U which is still continuous in U 	 Ec and differentiable in
U 	 Ed: Theorem 4.2 implies that u is a weak solution of (4.2) in U : Consequently u

is a classical solution of (4.2) in U 	 Ec; and the corollary follows from [20]; cf.
Remark 4.10, (ii) below. &
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Remark 4.10. Special cases of Corollary 4.9 were obtained previously by various
authors. Specifically, the corollary was proved by

(i) De Giorgi and Stampacchia [9] if Ed ¼ Ec is a slight compact subset of U ;
(ii) Simon [20] if Ed ¼ Ec is a slight relatively closed subset of U ;
(iii) Harvey and Lawson [10] if Ec ¼ | and the measure Hm	1 L Ed is locally finite;

cf. [11].

5. Closing remarks

In U consider the equation

divðh 3ruÞ ¼ 0; ð5:1Þ

and define a distribution F by the formula /F ;jS :¼
R

U
ðh 3ruÞ 
 rj for each

jACN

c ðUÞ: Let E be a relatively closed subset of U : If (5.1) has a weak solution in
U 	 E; then supp FCE: Moreover, u is a weak solution of (5.1) in U whenever
F ¼ 0: Stated differently, E is removable whenever supp FCE implies F ¼ 0: In
Section 4 the conclusion F ¼ 0 was inferred from the smallness of E (in the sense of

measures Hm	1 or Im	1
1 ) and the regularity results for weak solutions.

The previous paragraph suggest the following definition.

Definition 5.1. LetF be a family of distributions in an open set UCRm: A collection
E of subsets of U is called removable with respect to F if F ¼ 0 for each FAF such
that supp FCE for some EAE:

If v :Rm-Rm is a locally bounded Borel vector field, denote by Fv the flux of v

(Example 2.3), viewed as a distribution.

Example 5.2. Let Fc consist of all Fv such that vAC1ðRm 	 supp FvÞ: For instance,

uðxÞ :¼
0 if x1 ¼ x2 ¼ 0;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2þðx2Þ2

p ð	x2; x1; 0;y; 0Þ otherwise

(

for each x :¼ ðx1;y; xmÞ in Rm; defines FuAFc: We claim the collection of all slight
sets is removable with respect to Fc: Indeed, if FvAFc and S ¼ supp Fv is a
negligible set, then by Theorem 3.11,Z

Rm

j div v ¼ 	
Z
Rm

v 
 rj ¼ 	/Fv;jS ¼ 0

for every jACN

c ðRm 	 SÞ: Thus div v ¼ 0 almost everywhere outside S; and

consequently almost everywhere in Rm: Now if S is a slight set, then another
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application of Theorem 3.11 shows that /Fv;jS ¼ 0 for each jACN

c ðRmÞ: In
particular Fu ¼ 0; since supp Fu is a linear space of dimension m 	 2: On the other
hand, if h is the indicator of ½0;NÞCR and wðxÞ :¼ ðhðx1Þ; 0;y; 0Þ for each x ¼
ðx1;y; xmÞ in Rm; then FwAFc;Fwa0; and supp Fw is not a slight set.

Example 5.3. IfFd consists of all FvAFc for which v is continuous, then proceeding
as Example 5.2, it is easy to see that the collection of all thin sets is removable with
respect toFd: Let h be the Cantor-Vitali function extended to a continuous function
on R by 0 and 1, and let wðxÞ :¼ ðhðx1Þ; 0;y; 0Þ for each x ¼ ðx1;y; xmÞ in Rm:
Then FwAFd; and as Fwa0; we see that supp F is not a thin set.

It is legitimate to ask whether the removable collections for the families Fc and
Fd indicated in the previous examples are the largest possible. The next example,
based on the continuum hypothesis (CH), may bear on this question with regard to
the family Fc:

Example 5.4. Let KCRm be a compact set with Hm	1ðKÞ40: According to
Frostman’s lemma [13, Theorem 8.8], there is a finite Radon measure m in Rm such

that mðKÞ40; supp mCK ; and m½Bðx; rÞ�prm	1 for each xARm and r40: In view of

[15, Theorem 4.7], we can find a positive constant c so that j
R
Rm g dmjpcjjgjj for each

gABV ; in particular,

F : g/

Z
Rm

g dm : BVN

c -R

is a nontrivial w-charge with supp FCK: Yet, following the argument of [4, Section

3], one can show that under CH there is an Hm	1-measurable vector field

v :Rm-Rm such that FðgÞ ¼
R
Rm v 
 dðDgÞ for every gABVN

c : In particular, v is

ðDgÞ-measurable for all gABVN

c ; and F is the ‘‘flux’’ of v:
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