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Let K(n; r) denote the complete r-partite graph K(n, n, ..., n). It is shown h:re that
for all even n(r — 1) 2 2, K(n; r) is the union of n(r — 1)/2 of its Hamilton circuits
which are mutually edge-disjoint, and for all odd n(r — 1) > 1, K(n; r) is the union of
(n(r - 1) - /2 of its Hamilton circuite and a 1-factor, all of which are mutuaily
edge-disjoint.

1. Introduction

Let K, and X, ., denote the complete graph on n vertices and the
complete bipartite graph on 2m vertices with m vertices in each vertex
vet, respectively. The following properties of K, and K, ,,, have long
been known. For all odd n > 3, K|, is the union of }(n — 1) of its
Hamilton circuits (which are mutually edge-disjoint). For all even
i 2 2, K, is the union of }n - 1 of its Hamilton circuits and a 1-factor
(which are mutually edge disjoint). For alleven m > 2, K,,, ,,, is the union
of +m of its Hamilton circuits (which are mutually edge-disjoint). In ad-
dition, Dirac shows that for all odd m > 1, K, ,,, is the union of } (m — 1)
of its Hamilton circuits and a 1-factor (which are mutually edge-disjoint).

Let K(n; r) denote the complete r-partite graph, K(n, n, ..., n). In. this
naper we show that for all even n(r — 1) > 2, K(n;r) is the union of
in(r — 1) of its Hamilton circuits (which are mutually edge-disjoint). For
all odd n(r — 1) > 1, K(n;r) is the union of J(n(r — 1) — 1) of its Hamilton
circuiis and a i-factor (which are mutually edge-disjoint).
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The following decompositions will be needed.

(2.1) Lucas [ 1, p. 237] showed that if n is odd, it is possible to pair
the numbers 1, 2, ..., n into & sets N;, 1 < i < n, with each set containing
1{(n - 1) pawrs of elements, such that the element i is not in N;. One such
decomposition is given by
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w?herﬂ the numbelsz‘ + s and / — s are taken modul» n. The pairs (a. B) in
; are taken such thata < §.

(2 2) Lucas also showed that if r is even, it is possible to pair the num-
bers 1.2, ....rintor — I sets R, for 1 <i<r -1 in{o }r pairs with no
elemente i omman A decomnoncitinon ic given hv B = 1y (i »\1
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where the indices are taken moduio n.
(2.4) For the graph K(2;7), let V; = {u;, v;}, | <i<r, be ther vertex
sets. We define

- TR TR
A 7

‘ul’ V,-
wicre the indices are taken modulo n.

(1.5) i(K,, ;) =n (see [3, p. 89]). To see this, label the vertices
1, 2,...,2n + 1. and define
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={z’,i~i,i+I,i-—'.’,...,i——n,i+n},,

where all subs C!'l s are taken as the !nggggrg 1‘ 2’ s In (mod 2-’1) Then
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‘The following two lemmas can be provea easily. Proofs are construciive
and an: given in detail in [4].
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Lemma 1. h(K(2; 2k + 1)) = 2k,
Lemma 2. h(K(2; 2k)) =2k - 1.

Theorem. For n odd and r even, K(n; r) is the union of }(n(r — 1) — 1)
edge-disjoint Hamilton circuits and a 1-factor. Otherwise h(K(n;r)) =
1

ta(r - 1).

Proof. If n and r are both even, say n = 2m and r = 2k, for each: of the
2k - 1 Hamilton circuits given in Lemma 2, m line-disjoint Hamilton
circuits of K(2m; 2k) can be constructed. Details of the construction
are given in [4]. For the case n even and r odd, using I.emma 1 a similar
construction gives the result. The details of the construction for the
case in which both n and r odd are given in [4].

If n is odd and r even, let the n sets N|, N,, ..., N, and the r — 1 sets
Ry Ry, ..., R,_, be as described in (2.1) and (2.2). Let (N;, Ry, vj4) de-
note the subgraph of K(n; r) where all the columns other than the ith
one are paired as given in V; and lines between each such pair of columns
are taken as given by v;,, in (2.4), and the vertices of the ith column are
joined as given in R;. Clearly (N;, R}, v;4,) is a I-factor and it can be easily
checked that the triplets (V;, R,-, Yi+1)s fori=1,2,...,.n,j=12,...,r-1,
decompose K(n;r) into n(r — 1) 1-factors. It can be proved that
(N Rjs v ) VU (N, Ry, vy ) withi # k. j # ¢ will give a Hamilton circuit
of K(n:r) It can be shown also that it is possibie to form }(n(r — 1) — 1)
pairs of line-disjoint 1-factors [(N;, R;, 7j4)) VU (N, Ry, vpe )l with i+ &,
j # I and a |-factor remains [4].

Example. K¢. n=5,r=4,N,=(2,5),(3,4); N3 =(1,3), (4,5); N3=(2,4),
(195);"\[74 = (33 5); (ls 2);N5 3(134)9 (29 3)9 Rl = (]54)5 (29 3);R2 =(254)5
(1,3); R, =(3,4), (1, 2). The Hamilton circuits are

; H, =Ny R, 1)U (V). Ry, 73),
‘f H, =Ny R, 1)U (N, Ry, 7,),
Hy =(N;j, Ry, v3) U (Ny Ry, vy),
H,=(Ny Ry, 73U (N3 Ryu ) s
Hy=(Ny Ry 1)U (Ns. Ry, 13),
Hg=(Ny Ry 13}V Vs Ry, 740
Hy =(Ng, R, 7)) V (Ng Ry, vy) s
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F,=(N,, R\,v,)isthe I-factor.
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