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Let It’Qn; r) denote the complete s-partite graph Kin, n, ‘.., n). it is shown hzre that 
for all even n(r - I) 2, Kfn; P) is the union of n(r - ‘I)/2 of its Hamilton circrlits 
which are mutually edge-disjoint, and for all odd nfr - 1) 3 1, K(n; P) is the union of 
b(P - f) - r,,rs f l t ii o I s amilton c.ircuite and a l-factor, all of which are mutually 
edge-disjoint . 

denote the complete graph on M vertices and the 
complete bipartiti graph on 32 vertices with n2 vertices in each vertex 

respctively. The following properties of Kn and 
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or defjnjtions see [ 33. The number of mvtc~liy edge-tiisjoict amil- 
ton circuits of a graph G whose union is 6 wd ‘v denoted by I?(G) and 
the eomp!ete r-part& graph Gth y1 vertices in ea+ set will be denoted 
&,” 

fofbwi~g decampositions will be needed. 
t 2.1) Lucas f I, p. 237 ] shchwed that if AV is odd, it is possible to pair 

the numbers 1, 2, . . . . PI into irl’ sets /Vi, 1 G i G ?I, with each gt containing 
gcn -- ) PNS of efemeats, such that the element i is not in ;t’j. One such 
decomposition is yziven ty- 

~v:he~~ the numbclj i + s and ,i -- s are taken rnodu’lq2 n. The pairs (cu, p) in 
i we taken such that G < /I?. 

t 2.2) Lucas also showed that if r is even, it is possible o pair the num- 
” ~~~~~ I * 2, . . . . I into P - i sets R, for 1 < i < I -- f ine*.p ir pairs with no 

in common. A decomposition is given by Ri = Ni w ((i. r)), 
is as above. The pairs (CU, 0, in hi’; c:nd Rj are taken such bhat 

(3.& For the graph K(n; 2), let V= {u,, v2, . ..) vn) and IV= {w,. bv2, . . . . H;I} 
the two vertex sets. e define 

ices are taken module t2. 
,@.J = n (see 63, p. 891). To see this, label the vertices 
t c. and define 

22 
f L - l,i+l,i-2 ,..., i-n,i+n}, 

aliE cripts are taken ~8s 
U 
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. h(K(2; 2k + 1)) = 2k. 

(2; IX)) = 2k - 1. 

Proof. If n and r are both even, say n = 2~ and r = 2k, for each of the 
ZX: - I Ilarniltsn circuits given in Lemma 2, m line-disjoin! 
circuits of K( %r; i 2k) can be constructed. Details of t 
are given in 14 1. For the case n even and r odd, using mma I a simifar 

construct ion giv s the result. The details of the const 
case in which both p1 and t odd are given in f4f. 

If c1 is odd and r even, le the n sets NIP IV,, . . . . Nn and the r - 1 sets 
R,. R,. a*-, R,__, be as described in (2.1) and (2.2). Let (IV,, RI, ri+r) de- 
note the subgraplr of K(rt; r) where ali the columns other than the ith 
one are paired as given in Ni and lines between each such pair of columns 
are taken as given by 71+1 in (2.4), and the vertices of the ith collumn are 
joined as given in RI. Clearly (IV,, .Aj, yj+ 1) is a l-factor and it can be easily 
checked that the triplets (Ni. !?j, ri+r 1, for = 1, 2, . ..) rt, j = 1, 2, ‘..) Y - 1, 
decompose K(n; r) into n(~ - 1) l-factors. cats be proved that 
(A& Rj. ~i+r) w (iv,, RI, yf+l) with i f k, j i will give a Hamilton circuit 
of K(n: r) It can be shown also that it is possible to form i(n(r - 1) - 1) 

airs of lih+disjoint l-factors [ (A$, Rj 9 y-+1 ) u ( , N,, yI+l)l with i # k, 
j # I and a it-factor remains [4). 

Kg. ?l = 5, d = 9 A$ = (2,5), (3,4); N2 = (I 9 3), (4,s); N, =I 
= (3, S), ( 1,2); A$ = ( 1,4), ( 

(1,3)&=(3,4),(1,2).TheHamilto 
,3);R, =U,4),(2,3);& =(2 
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