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H I G H L I G H T S

� Spread of cell populations in two distinct in vitro assay geometries is analysed.
� Discrete and continuum models are compared to experimental results.
� Geometry of in vitro assay affects estimates of cell diffusivity by up to 50%.
� Cell proliferation rate estimates vary by up to 30% depending on assay geometry.
� Parameterised models accurately predict behaviour of spreading cell populations.
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a b s t r a c t

Cells respond to various biochemical and physical cues during wound-healing and tumour progression.
in vitro assays used to study these processes are typically conducted in one particular geometry and it is
unclear how the assay geometry affects the capacity of cell populations to spread, or whether the
relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry
of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations
in two different geometries. Assay 1 describes a tumour-like geometry where a cell population spreads
outwards into an open space. Assay 2 describes a wound-like geometry where a cell population spreads
inwards to close a void. We use a combination of discrete and continuum mathematical models and
automated image processing methods to obtain independent estimates of the effective cell diffusivity, D,
and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that
our estimates of D and λ accurately predict the time-evolution of the location of the leading edge and the
cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up
to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30%
lower for assay 2 compared to assay 1.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Cell migration and cell proliferation are essential mechanisms
that drive wound-healing and tumour progression (Clark, 1996;
Geho et al., 2005; Martin, 1997; Weinberg, 2006; Woodhouse et
al., 1997). During these processes, cells sense and respond to
various biochemical and physical cues (Ashby and Zijlstra, 2012;
Brock et al., 2003; Kilian et al., 2010; Lutolf and Hubbell, 2005;

Vogel and Sheetz, 2006). Although the role of biochemical cues
has been widely explored, it remains relatively unclear how
physical cues, such as the local geometry, affect the capacity of
cell populations to spread (Ashby and Zijlstra, 2012; Brock et al.,
2003; Kilian et al., 2010; Lutolf and Hubbell, 2005; Vogel and
Sheetz, 2006).

Wound-healing and tumour progression are often studied in
the same context since the mechanisms that drive these processes
are thought to be similar (Weinberg, 2006; Coussens and Werb,
2002; Chang et al., 2004; Friedl and Gilmour, 2009; Schafer and
Werner, 2008). Despite their similarities, these processes have
distinct geometries: (i) during wound-healing, cell populations
spread inwards to close the wound void, and (ii) during tumour
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progression, cell populations spread outwards causing the tumour
to expand (Weinberg, 2006; Ashby and Zijlstra, 2012).

Cell-based assays are commonly used to quantify the capacity
of cell populations to spread in vitro (Ashby and Zijlstra, 2012;
Kramer et al., 2013; Decaestecker et al., 2007; Kam et al., 2008,
2009; Valster et al., 2005). Several types of assays have been
developed to investigate cell population spreading in two and
three dimensions including Transwell, scratch, exclusion zone and
spheroid assays (Ashby and Zijlstra, 2012; Kramer et al., 2013;
Decaestecker et al., 2007; Valster et al., 2005). While these assays
have been used to study the behaviour of various cell lines in vitro,
most studies neglect to explicitly consider the role of geometry
when conducting or interpreting these assays and it is unclear
how results obtained for one particular geometry translate into
another (Ashby and Zijlstra, 2012; Kramer et al., 2013;
Decaestecker et al., 2007; Valster et al., 2005). Recent work using
microfabrication methods focused on creating various-sized chan-
nels through which cells could migrate, with the observation that
the speed of the leading edge of the cell population depends on
the channel width (Vedula et al., 2012). Therefore, it seems
reasonable to assume that assay geometry could play a role in
determining the rate at which cell populations spread.

An alternative approach to understand how differences in geome-
try affect cell population spreading is to conduct a two-dimensional
cell spreading assay where the direction of the spreading is intention-
ally varied. In this work, we will consider two types of assays:

Assay 1: This is a tumour-like assay initialised by placing cells
inside a barrier, which is then lifted, allowing the population to
spread outwards (Ashby and Zijlstra, 2012; Kramer et al., 2013).

Assay 2: This is a wound-like assay initiated by placing cells
outside a barrier, which is then lifted, allowing the population to
spread inwards (Ashby and Zijlstra, 2012; Kramer et al., 2013).

Without analysing any experimental data it is unclear whether
a population of otherwise identical cells will exhibit different rates
of spreading in the geometry of assay 1 compared to the geometry
of assay 2.

A circular barrier assay can be used to study both assay 1 and
assay 2 geometries, by initially placing the cells either inside or
outside the barrier, which is then lifted to initiate the cell
spreading (Ashby and Zijlstra, 2012; Kramer et al., 2013;
Simpson et al., 2013; Treloar and Simpson, 2013; Van Horssen
and Ten Hagen, 2010). Barrier assays are thought to be more
reproducible than traditional mechanical wounding assays, such
as scratch assays, as they do not damage the cell monolayer (Van
Horssen and Ten Hagen, 2010; Gough et al., 2011). In this work, we
will consider the spreading of cell populations in a barrier assay
that are driven by combinations of motility and proliferation.

The standard continuum mathematical model used to describe
how a population of motile and proliferative cells spread in two
dimensions is related to the Fisher–Kolmogorov equation, and is
given by

∂c
∂t

¼D∇2cþλc 1� c
K

� �
; ð1Þ

where cðx; y; tÞ ½cells=L2� is the dimensional cell density, D ½L2=T� is
the cell diffusivity (random motility coefficient), λ ½=T� is the cell
proliferation rate and K ½cells=L2� is the carrying-capacity density
(Murray, 2002; Sherratt and Murray, 1990; Swanson et al., 2003;
Maini et al. 2004a,b; Sengers et al., 2007; Cai et al., 2007). Physical
dimensions relevant to in vitro cell biology assays are μm and
hours for L and T, respectively. Discrete random walk-based
models which are related to Eq. (1) can also be used to study cell
population spreading. Discrete models allow us to visualise the
biological spreading process in a way that is directly comparable
with experimental results (Simpson et al., 2013; Anderson et al.,
2007; Anderson and Chaplain, 1998; Aubert et al., 2006; Deroulers

et al., 2009; Codling et al., 2008; Simpson et al., 2010; Turner and
Sherratt, 2002; Turner et al., 2004; McDougall et al., 2012). For
example, snapshots from a discrete model showing the location of
individual agents in the population can be easily compared to
experimental images that show the location of individual cells in
the population (Simpson et al., 2013; Treloar et al., 2013).

Previous studies have used Eq. (1) to estimate D and λ from
experimental observations with the additional implicit assumption
that these estimates could be relevant when considering the same cell
population spreading in a different geometry. This standard assump-
tion implies that estimates of D and λ obtained by calibrating Eq. (1) to
observations in one particular geometry could be used to accurately
predict the spreading of the same cell population, under the same
experimental conditions, in a different geometry. However, from a
biological point of view, it seems reasonable to anticipate that cell
populations could respond differently under different circumstances.
This means that our estimates of D and λ in Eq. (1) might be different
when calibrating this model to different experimental conditions. For
this reasonwe will refer to estimates of D as the effective cell diffusivity
and our estimates of λ as the effective cell proliferation rate, thereby
making it explicit that we are allowing for the possibility that these
estimates could depend on the specific details for the experiment from
which they are estimated.

In this work, we use a combined experimental and mathema-
tical modelling approach to investigate how the two-dimensional
spreading of a fibroblast cell population is influenced by the assay
geometry. In particular, we address the following questions:

1. Do estimates of the effective cell diffusivity, D, depend on the
geometry of the assay?

2. Do estimates of the effective cell proliferation rate, λ, depend
on the geometry of the assay?

3. Does the geometry of the assay affect the rate at which the
leading edge of the cell population moves?

4. Are the cell density profiles through the spreading cell popula-
tion sensitive to changes in the geometry of the assay?

To answer these questions, we conduct several circular barrier
experiments using assay 1 and assay 2 geometries. For both assay
geometries we independently estimate the effective cell diffusiv-
ity, D, using experiments where cell proliferation is suppressed.
The effective proliferation rate, λ, is then separately estimated
using experiments where proliferation is not suppressed. To
ensure that our estimates of D and λ accurately predict the
position of the leading edge of the spreading population as well
as the cell density profile throughout the spreading cell population
we compare predictions of the parameterised mathematical model
with experimental measurements. In summary, our results indi-
cate that estimates of D and λ appear to depend on the assay
geometry, with D being more sensitive than λ.

2. Experimental methods

2.1. Circular barrier assay

Fig. 1 shows a schematic diagram of the two barrier assay
geometries considered in this work. To perform these assays
metal-silicone barriers (Aix Scientifics, Germany) were cleaned,
sterilised, dried and placed in the centre of the wells of a 24-well
tissue culture plate. The wells in the tissue culture plate have a
diameter of 15,600 μm. The barrier has an approximate radius of
3000 μm inside the silicone tip (located at the end of the barrier)
and 4000 μm outside the silicone tip.

Experiments were conducted with fibroblast cells (supplemen-
tary material) where, in some cases the spreading was driven by
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cell motility only, whereas in other cases the spreading was driven
by a combination of cell motility and cell proliferation. For those
experiments where cell proliferation was suppressed, Mitomycin-
C (Sigma Aldrich, Australia) was added to the cell solutions for one
hour before the assays were initialised (Sadeghi et al., 1998).
Experiments using assay 1 and assay 2 geometries were initialised
by carefully placing the cells either inside (Fig. 1 (a)) or outside
(Fig. 1(b)) the barrier, respectively. In all cases great care was taken
to ensure that the cells were approximately evenly distributed at
the beginning of the experiment. All experiments were repeated
using two different initial cell densities: low density ð3:5�
10�4 cells=μm2Þ and high density ð1:1� 10�3 cells=μm2Þ. After
initially placing the cells in or around the barrier, the tissue culture
plate was left for one hour in a humidified incubator at 37 1C and
5% CO2 to allow the cells to attach to the surface, after which the
barriers were removed and the cell layer was washed with serum
free medium (SFM; culture medium without FCS) and replaced
with 0.5 mL of culture medium. Plates were incubated at 37 1C in
5% CO2 for four different durations, t¼0, 24, 48 and 72 h. Each
assay, for each time point, for each initial density and for each
geometry, was repeated in triplicate ðn¼ 3Þ.

2.2. Image acquisition and analysis

Two types of images were acquired from each experiment: (i)
population-scale images showing the location of the entire
spreading population, and (ii) individual-scale images detailing

the location of individual cells within the spreading population.
Details of the image acquisition and analysis are given in the
Supplementary material.

Schematic population-scale images of assay 1 and assay 2 are
shown in Fig. 1 (c) and (d), respectively. We use a standard
approach to measure the observed spreading by estimating the
radius, R, from the centre of the well to the leading edge of the cell
population as shown in Fig. 1 (c) and (d). Here, R1 corresponds to
the radius of the spreading cell population in assay 1, and R2
represents the radius of the void space in assay 2. Estimates of R1
and R2 were obtained by locating the position of the leading edge of
the spreading cell populations using customised image processing
software that was written using the MATLAB image processing
toolbox (v7.12) (MATLAB, 2014) (Supplementary material). The
same image analysis methods used to detect the location of the
experimental leading edge were applied to detect the edges in the
snapshots produced by the discrete model described in Section 3.
For assay 1, the area (regionprops) of the spreading population,
A, was estimated and converted into an equivalent circular radius,
R1 ¼

ffiffiffiffiffiffiffiffiffi
A=π

p
. For assay 2, the area of the void region, A, was

estimated and converted into an equivalent circular radius,
R2 ¼

ffiffiffiffiffiffiffiffiffi
A=π

p
.

Individual-scale images were used to construct a detailed
transect across the spreading populations. Overlapping images
were acquired at regular spatial intervals from the leading edge
of the cell population to either the centre of the well (assay 1)
or the edge of the well (assay 2). Automated image analysis,

Fig. 1. Schematic of the circular barrier assay for assay 1 and assay 2 (not to scale). (a) Assay 1: cells are placed inside the barrier allowing the cell population to spread
outwards. (b) Assay 2: cells are placed outside the barrier allowing the cell population to spread inwards. The population-scale views for the assay 1 and assay 2 geometries
are shown in (c) and (d), respectively, and indicate the radii measurements that were extracted from assay 1 and assay 2. Here, R1 corresponds to the radius of the circular
area enclosed by the spreading cell population for assay 1 (dR1=dt40) and R2 indicates the radius of the circular void area for assay 2 ðdR2=dto0Þ.
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supplemented with manual counting, was used to count the
number of individual cells within various subregions across the
transects and these counts were used to construct detailed cell
density profiles (Supplementary material).

3. Modelling methods

To quantify and interpret our experimental observations, we
use an interacting random walk model which is related to Eq. (1).
The details of our discrete model have been previously reported in
Simpson et al. (2010).

3.1. Discrete model

The discrete model is implemented on a two-dimensional
square lattice with spacing Δ, which corresponds to the average
diameter of the cells. We estimate Δ by measuring the area of
several cells using ImageJ (2013) software and convert these
estimates into an equivalent circular diameter, giving Δ� 25 μm.
We assume that the cells form a two-dimensional monolayer,
which is reasonable since our images indicate that individual cells
do not pile up onto other cells in the vertical direction. To account
for volume exclusion and finite size effects, the model permits
only one agent to occupy each lattice site (Deroulers et al., 2009;
Simpson et al., 2010). This exclusion mechanism explicitly
accounts for any differences in the availability of free space in
assay 1 compared to assay 2. Each site is indexed (i,j), where i,
jAZþ , and each site has position ðx; yÞ ¼ ðiΔ; jΔÞ. Simulations are
initialised by placing agents uniformly, at random, either inside a
circle of radius 3000 μm located at the centre of the lattice for
assay 1 simulations, or outside a circle of radius 4000 μm for assay
2 simulations. Here, the initial radii for assay 1 and assay
2 correspond to the physical internal and external radii imposed
by the silicone tip of the barrier.

A random sequential update method (Chowdhury et al., 2005)
is used to perform the simulations. If there are N(t) agents at time
t, during the next time step of duration τ, N(t) agents are selected
at random, one at a time, and given the opportunity to move with
probability PmA ½0;1�. We use an unbiased motility mechanism
where an agent at (x,y) attempts to step to ðx7Δ; yÞ or ðx; y7ΔÞ
with equal probability of 1/4. Once the N(t) potential motility
events have been assessed, another N(t) agents are selected at
random, one at a time, and given the opportunity to proliferate
with probability PpA ½0;1�. We model proliferation with an
unbiased mechanism whereby a proliferative agent at (x,y)
attempts to deposit a daughter agent at ðx7Δ; yÞ or ðx; y7ΔÞ,
with each target site chosen with equal probability of 1/4.
Potential motility and proliferation events that would place an
agent on an occupied site are aborted (Deroulers et al., 2009;
Simpson et al., 2010).

3.2. Continuum model

To relate the discrete model to Eq. (1), we note that the average
occupancy of site (i,j), evaluated using R identically prepared
realisations, is

〈Ci;j〉¼
1
R ∑

R

k ¼ 1
Ck
i;j; ð2Þ

here the superscript denotes the kth identically prepared realisa-
tion of the same stochastic process and the occupancy of site (i,j) is
denoted by Ck

i;j, with Ck
i;j ¼ 1 for an occupied site, and Ck

i;j ¼ 0 for a
vacant site. The corresponding continuous density, cðx; y; tÞ, is
governed by Eq. (1) with carrying capacity, K¼1 agents/lattice
site (Simpson et al., 2010).

The associated diffusivity and proliferation rate (Simpson et al.,
2010) are given by

D¼ Pm

4
lim
Δ;τ-0

Δ2

τ

 !
; λ¼ lim

τ-0

Pp

τ

� �
: ð3Þ

We note that 〈Ci;j〉A ½0;1� is equivalent to cðx; y; tÞ as R-1,
provided that Pp=Pm is sufficiently small (Simpson et al., 2010).
Strictly speaking, the continuum model is valid in the limit that
Δ-0 and τ-0 jointly with the ratio Δ2

=τ held constant, implying
that Pp ¼OðτÞ (Simpson et al., 2010). As we will show in Section 4,
the cell populations in all assays maintain an approximately
circular geometry for the entire duration of the experiment
(Section 4.1), hence, we implement Eq. (1) in an axisymmetric
coordinate system

∂c
∂t

¼D
∂2c
∂r2

þ1
r
∂c
∂r

� �
þλcð1�cÞ; ð4Þ

where the dimensional cell density, cðr; tÞ, has been scaled relative
to the carrying capacity density, cðr; tÞ ¼ cðr; tÞ=K so that
cðr; tÞA ½0;1�. We estimate the carrying capacity density by making
the standard assumption that the maximum packing density of
cells corresponds to a square packing (Simpson et al., 2013). Since
Δ� 25 μm, we have K ¼ 1=252 � 1:6� 10�3 cells=μm2 (Simpson
et al., 2013).

Numerical solutions of Eq. (4) are obtained using a finite-
difference approximation on a grid with a uniform grid spacing
δr, and implicit Euler stepping with uniform time steps of duration
δt (Bradie, 2005; Simpson et al., 2005). Picard iteration, with
absolute convergence tolerance, ϵ, is used to solve the resulting
system of nonlinear equations. For all numerical results presented
we tested that the numerical solutions were grid independent.
Solutions of Eq. (4) are obtained on the domain 0rrr7800 μm,
with a symmetry condition, ∂c=∂r¼ 0, at r¼0 μm and a zero flux
boundary condition at r¼7800 μm for both assay 1 and assay
2 geometries. The value r¼7800 μm corresponds to the physical
radius of the well (r¼ 15;600=2). The initial condition for assay
1 is given by

cðr;0Þ ¼
c0; 0rrr3000 μm;

0; 3000rrr7800 μm;

(
ð5Þ

where c0A ½0;1� is the initial nondimensional cell density within
the barrier. The initial condition for assay 2 is given by

cðr;0Þ ¼
0; 0rro4000 μm;

c0; 4000rrr7800 μm:

(
ð6Þ

The initial nondimensional cell density for low density experi-
ments is c0 ¼ 3:5� 10�4=1:6� 10�3 � 0:22, whereas the initial
nondimensional cell density for the high density experiments is
c0 ¼ 1:1� 10�3=1:6� 10�3 � 0:66.

3.3. Standard measure of spatial spreading

In addition to analysing the data using the mathematical
modelling framework described in Sections 3.1 and 3.2, we also
interpret our results using a standard measure that is often
reported in the experimental cell biology literature (Ashby and
Zijlstra, 2012; Gough et al., 2011; Van Horssen and Ten Hagen,
2010; McKenzie et al., 2011; Treloar and Simpson, 2013; Zaritsky et
al., 2011, 2013). This standard measure can be written as

MðtÞ ¼ RaðtÞ�Rað0Þ
Rað0Þ

� 100; ð7Þ

where M(t) represents the percentage change in the observed
radius at time t relative to the initial radius, a¼1 or 2 represents
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assay 1 and assay 2, respectively, and R(t) is the detected radius at
time t.

4. Results

4.1. Cell diffusivity estimates

We first investigated whether estimates of Dwere sensitive to the
assay geometry. To identify Dwe considered experiments where cells
were pretreated with Mitomycin-C to suppress cell proliferation.
Population-scale images in Fig. 2(a) and (b) illustrate the distribution
of cells in the assay 1 geometry at t¼0 and t¼72 h for an experiment
with a high initial cell density inside the barrier. The corresponding
images for the assay 2 geometry are shown in Fig. 2(c) and (d). For
both geometries, the area occupied by the cell population increases
with time and the circular geometry is maintained. From these
images alone it is difficult to interpret whether the spreading in assay
1 is any different from the spreading in assay 2.

To quantify any differences between the observed spreading in
assay 1 and assay 2, we used the image analysis methods (Section
2.2) to detect the position of the leading edge of the spreading cell
populations in each geometry. The detected leading edges are
superimposed onto the images in Fig. 2(a)–(d). For assay 1, the
area enclosed by the leading edge was converted into an equiva-
lent circular radius, R1. Similarly, for assay 2, the area of the void
space enclosed by the leading edge was converted into an
equivalent circular radius, R2. For the assay 1 population-scale
images in Fig. 2, R1 increases from 3000 μm to 4171 μm, over

t¼72 h, giving Mð72Þ ¼ 39% using Eq. (7). Similarly, for the
population-scale images of assay 2, R2 decreases from 4000 μm
to 2950 μm, giving Mð72Þ ¼ �26%. The corresponding results for
the experiments initialised with low cell density give Mð72Þ ¼ 26%
for assay 1 and Mð72Þ ¼ �14% for assay 2 (Supplementary mate-
rial). Although it is straightforward to compute and compare
estimates of M(t) for the different assays, these estimates do not
provide us with any quantitative insight into the role of the
mechanisms that drive the spreading process.

We estimated D for each geometry by comparing the experi-
mental data with simulation data from the discrete mathematical
model. Simulations, as described in Section 3, were performed
using the discrete model to replicate the initial distribution of cells
in both geometries at both initial densities. To estimate D we
performed simulations where we systematically varied the dura-
tion of the time step, τ, which is equivalent to varying the effective
cell diffusivity, D¼ PmΔ

2
=ð4τÞ, in the continuum model. This

procedure enabled us to determine the value of D that produces
a prediction that best matches the experimental data. In all cases,
we set Pp¼0 and Pm¼1. We considered 30 equally spaced values of
D in the interval DA ½0;5000� μm2/h, and for each value of D we
simulated each experiment three times (n¼3), over t¼24, 48 and
72 h. The image analysis software was used to the locate the
position of the leading edge of the simulated cell populations in
the same way that the image analysis was used to detect the
leading edge in the experimental images. In all cases, the detected
leading edge was converted to an equivalent circular radius.

Population-scale images in Fig. 2(f) and (g) show the distribution
of agents in the discrete model in assay 1 and the corresponding

Fig. 2. Estimates of cell diffusivity. Experimental and modelling images are shown in (a)–(d) and (f)–(i) comparing the position of the leading edge of the spreading cell
population for assay 1 and assay 2 geometries at high initial cell density. Experimental images in (a) and (b) show the distribution of cells at t¼0 and t¼72 h respectively for
a barrier assay using the assay 1 geometry where cells are initially placed uniformly inside the barrier after Mitomycin-C pretreatment. Equivalent images using the assay
2 geometry, where cells are initially placed outside the barrier, are shown in (c) and (d). The black solid line indicates the position of the leading edge of the spreading
population as detected by the image analysis software. The area enclosed by the spreading cell population was converted to an equivalent circular area. For the assay
1 geometry, the area detected encloses the spreading cell population, while for the assay 2 geometry, the area detected encloses the void. Images in (f)–(i) show the
corresponding snapshots of the discrete model on a 624�624 lattice with Δ¼ 25 μm. Simulations were performed using Pm¼1 and Pp¼0. Model simulations in (f) and
(g) correspond to τ¼ 0:0526 h and (h) and (i) correspond to τ¼ 0:1000 h. The detected leading edge of the discrete cell population is indicated by the black solid line. The red
(assay 1) and green (assay 2) circles which are superimposed onto the experimental and discrete images correspond to the cðr; tÞ ¼ 0:019 contour of the numerical solution of
Eq. (4) with λ¼ 0, D1 ¼ 2900 μm2=h and D2 ¼ 1500 μm2=h. Results in (e) and (j) compare E(D), using Eq. (8), between the position of the leading edge of the simulated cell
population, using various values of D, and the position of the leading edge of the corresponding experimental image for assay 1 (red) and assay 2 (green) at low and high
initial cell densities, respectively. The scale bar corresponds to 1500 μm. (For interpretation of the references to colour in this figure caption, the reader is referred to the web
version of this paper.).
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detected position of the leading edge, at t¼0 and t¼72 h, for an
experiment where a high density cell population was initially
placed inside the barrier. The population-scale images in Fig. 2
(h) and (i) illustrate the equivalent results for assay 2. We note that
the distribution of agents in Fig. 2(g) and (i) does not appear to be
influenced by the underlying lattice structure at this scale since the
simulations were initialised at a relatively low density, and the
density of agents at the leading edge is, by definition, very low. This
qualitative observation is consistent with recent theoretical com-
parisons between lattice-based and lattice-free descriptions of
spreading cell populations which confirmed that there is no
difference between a lattice-based and a lattice-free model at the
leading edge of spreading populations (Plank and Simpson, 2013).

To determine the value of D for which our model results best
match the observed data, we compared the radii estimates from
the discrete simulations, at t¼24, 48 and 72 h, to the correspond-
ing experimental data, using an estimate of the least-squares error
given by

EðDÞ ¼∑3
i ¼ 1ðERi

a�SRi
aÞ2

∑3
i ¼ 1ðERi

aÞ2
; ð8Þ

where i indicates the three time points, t¼24, 48 and 72 hours,
and a corresponds to the assay geometries, 1 and 2. In all cases, ER
and SR are the radii extracted from the experimental cell popula-
tions and the corresponding simulated populations, respectively,
averaged over ðn¼ 3Þ identically prepared replicates.

Results in Fig. 2(e) and (j) show E(D) for experiments in each
geometry for both initial cell densities. For all experiments there is
a well-defined minimum which indicates the least-squares esti-
mate of D. We note that the estimate of D is different for each
geometry and each initial cell density. Our analysis indicates that
for experiments using a low initial cell density we have
D� 1700 μm2=h for assay 1, while D� 800 μm2=h for assay 2.
Our results for the experiments using a high initial cell density

show a similar trend where D� 2900 μm2=h for assay 1, while
D� 1500 μm2=h for assay 2. For both initial cell densities, our
least-squares estimate of D is approximately 50% smaller for assay 2.
These differences suggest that the cell motility mechanism is
affected by the assay geometry and we note that these differences
were not obvious through visual inspection of the experimental
images or through the use of the commonly reported quantity,
M(t), given by Eq. (7).

To confirm that our estimates of D allow us to accurately model
the experimental data we compared the numerical solution of
Eq. (4), with λ¼ 0, to population-scale images from the experi-
ments and discrete simulations in Fig. 2(a)–(d) and (f)–(i). To
compare the numerical solution of Eq. (4) with the experimental
images we choose an appropriate contour of the solution,
cðr; tÞ ¼ 0:019, which best describes the averaged spreading
observed in the experiments (Supplementary material). The cor-
respondence between the position of the leading edge in the
experimental images and the cðr; tÞ ¼ 0:019 contour of the solution
of Eq. (4) in Fig. 2(a)–(d) and (f)–(i) confirms that our estimates of
D are appropriate for each geometry and initial cell density.

4.2. Cell proliferation estimates

To estimate λwe considered experiments where proliferationwas
not suppressed. Individual-scale images were used together with the
image analysis techniques to count the number of cells, at a fixed
position, as a function of time. For each experiment, the number of
cells in four different subregions, each of dimension 250 μm
�250 μm, was counted. The locations of the subregions were chosen
so that the cell density at that location is approximately spatially
uniform and locally we have cðr; tÞ � cðtÞ. The cell counts were
converted into a measurement of the nondimensional cell density,
cðtÞ ¼ cðtÞ=K . Fig. 3(a) and (f) illustrates the approximate location and

Fig. 3. Estimates of the cell proliferation rate. Cell proliferation rate estimates were obtained by counting the number of cells in four different subregions in each
experimental replicate. The location of subregions was located away from the leading edge so that the cell density in that subregion was approximately spatially uniform
giving cðr; tÞ ¼ cðtÞ. The location and the size of the four subregions for assay 1 and assay 2 geometries are shown in (a) and (f) respectively, where the scale bar corresponds
to 1500 μm. Images in (b) and (c) and (g) and (h) show snapshots of dimensions 250 μm �250 μm for experiments with high cell density without Mitomycin-C pretreatment,
at t¼0 and t¼72 h for assay 1 and assay 2 geometries, respectively. The Propidium Iodide staining highlights the cell nucleus and blue crosses indicate cells that were
counted. Results in (d) and (i) compare the mean non-dimensional cell density ðn¼ 4Þ from experiments with an initial low and high cell density for both assay 1 (red) and
assay 2 (green) at t¼0, 24, 48 and 72 hours, with error bars indicating one standard deviation from the mean. The appropriately parameterised logistic growth curves using
the cell proliferation rate estimates from Table 1 are superimposed in (d) and (i). Results in (e) and (j) show EðλÞ, given by Eq. (11), for various values of λ, for experiments at
low and high cell densities, respectively. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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size of each of the four subregions for assay 1 and assay 2,
respectively.

Images in Fig. 3(b) and (c), and (g) and (h) show snapshots of a
subregion analysed for assay 1 and assay 2, respectively. These
results correspond to experiments that were initialised with a high
cell density. We note that the cell density increases rapidly with
time and that there appears to be no visual difference in the cell
density behaviour between either geometry. The evolution of c(t)
is shown in Fig. 3(d) and (i) for both geometries and each initial
cell density.

We note that Eq. (4) can be simplified when the cell density,
cðr; tÞ, is spatially uniform so that locally we have cðr; tÞ ¼ cðtÞ.
Hence, Eq. (4) simplifies to the logistic equation

dcðtÞ
dt

¼ λcðtÞð1�cðtÞÞ; ð9Þ

which has the solution

cðtÞ ¼ cð0Þ expðλtÞ
1þcð0Þ ðexpðλtÞ�1Þ ; ð10Þ

where cð0Þ is the nondimensional initial cell density.
To estimate λ, we found the value of λ that minimised an

estimate of the least-squares error between our experimental
measurements and Eq. (10), given by

EðλÞ ¼∑3
i ¼ 1ðEPi

a�SPi
aÞ2

∑3
i ¼ 1ðEPi

aÞ2
; ð11Þ

where i denotes the three time points, t¼24, 48 and 72 h, and a
corresponds to the assay geometries, 1 and 2. In all cases, EP
corresponds to the nondimensional cell density extracted from the
experimental images averaged over (n¼4) replicates and SP is the
corresponding nondimensional cell density using Eq. (10).

Results in Fig. 3(e) and (j) show EðλÞ for experiments in both
geometries and both initial cell densities. For all cases, our results
show that there is a well-defined minimum in EðλÞ. For experi-
ments without Mitomycin-C pretreatment at low density we have
λ¼0.056/h for assay 1 and λ¼0.042/h for assay 2. Similarly, for the
experiments without Mitomycin-C pretreatment at high density
we have λ¼0.059/h for assay 1 and λ¼0.041/h for assay 2. The
relevant logistic growth curves, given by Eq. (10) with our
estimates of λ, are superimposed in Fig. 3(d) and (i). These growth
curves confirm that, on average, our estimates of λ provide a good
match to the observed data.

To explore whether our estimates of λ are sensitive to the
location of the subregion, we re-estimated λ in two additional
subregions located in different positions that were at least
2000 μm behind the leading edge (Supplementary material).
These additional results show that there is a relatively small
variation in λ, confirming that our estimates of λ are relatively
insensitive to the choice of the location of the subregions,
provided that we are sufficiently far behind the leading edge
where cðr; tÞ � cðtÞ. Therefore, given this insensitivity, we will use
the values of λ reported here in the main manuscript. We also
estimated λ for the experiments with Mitomycin-C pretreatment
(Supplementary material) where cell proliferation was assumed to

be suppressed. This gave λo0:003=h, indicating that the number
of cells did not significantly increase or decrease over the duration
of the experiment. This implies that Mitomycin-C pretreatment
prevented proliferation and did not induce cell death.

4.3. Predicting the behaviour of spreading cell populations in
different geometries

A summary of our estimates of D and λ for both geometries and
both initial cell densities is given in Table 1. The variability in our
estimates is also reported, and the details of how the variability
was determined are given in the Supplementary material.

We will now consider whether the parameterised mathema-
tical model can accurately predict the position of the leading edge
of the spreading cell populations and the details of the cell density
profiles throughout the entire spreading cell populations.

4.3.1. Position of the leading edge
Population-scale images in Figs. 4 and 5 compare the position

of the leading edge of the cell population for assay 1 and
assay 2 with the corresponding predictions from Eq. (4) using
the appropriate parameter values given in Table 1. The solution of
Eq. (4) is represented in terms of the cðr; tÞ ¼ 0:019 contour
(Supplementary material). Overall, the agreement between the
experiments and the model predictions indicates that the para-
meter estimates appear to accurately capture the observed differ-
ences between the two geometries, both with and without
proliferation, and at all time points considered.

Results in Fig. 6 compare the time evolution of the observed
values of M(t) (Eq. (7)) with the corresponding predicted values of
M(t) using appropriately parameterised solutions of Eq. (4). We
note that the prediction of the mathematical model at t¼24 h for
assay 2 appears to systematically underestimate M(t). This small
discrepancy could be due to our experimental procedure since the
imaging process requires a brief interruption to the incubation
conditions when the assay was stopped for imaging. We anticipate
that this disruption would have a negligible impact on those
experiments conducted for a long period of time whereas the
impact could be more important for experiments conducted over a
shorter period of time. Despite this discrepancy at one time point
in assay 2, our overall comparison between the observations and
the modelling predictions indicates that the parameterised model
accurately predicts the time-evolution of the position of the
leading edge and reliably captures the differences in our experi-
ments where cell proliferation was either suppressed or permitted.

4.3.2. Cell density profiles
We now consider comparing the observed cell density profile

with the cell density profile predicted by our parameterised
mathematical model. Individual-scale images across a transect
through the spreading population were used to estimate spatial
distribution of the nondimensional cell density. We divided each
transect into 20–30 subregions, each of length approximately
150 μm, along the transect axis. Fig. 7(a) and (f) shows the location
of the transects relative to the entire population. Snapshots of the

Table 1
Summary of parameter estimates for assay 1 and assay 2 geometries with the uncertainty given in the parentheses.

Assay Initial density Diffusivity D
(μm2/h)

Proliferation rate
λ (/h)

Doubling time
td ¼ lnð2Þ/λ (h)

1 Low 1700 (1000–1900) 0.056 (0.048–0.065) 12.4 (10.6–14.5)
High 2900 (2400–3200) 0.059 (0.055–0.078) 11.7 (8.8–12.6)

2 Low 800 (500–1200) 0.042 (0.037–0.054) 16.5 (12.8–18.7)
High 1500 (1000–1900) 0.041 (0.035–0.055) 16.9 (12.6–19.8)
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images analysed from experiments with a high initial cell density
are given in Fig. 7(b)–(e) for assay 1, and in Fig. 7(g)–(j) for assay 2.
Image analysis software was used to count the number of cells in
each subregion, and this was converted into an estimate of the
nondimensional cell density, cðtÞ ¼ cðtÞ=K , which was used to
construct the histograms in Fig. 8. The appropriately parame-
terised solutions of Eq. (4) are superimposed onto these histo-
grams. Comparing the solutions of Eq. (4) with the experimental
measurements confirms that the appropriately parameterised
model reliably captures the entire cell density profiles in assay
1 and assay 2, and for both types of experiments where cell
proliferation was suppressed or not.

4.4. Comparing estimates of D and λ in different geometries

We now compare whether estimates of D and λ obtained by
calibrating the model in one particular geometry can be used to
predict the extent of spatial spreading in a different geometry.
Results in Fig. 9 compare the population-scale images at t¼72 h
with the corresponding predictions of the mathematical model
using both the estimates of D and λ obtained from assay 1 and the
estimates of D and λ from assay 2. In all cases we see that the
prediction of the mathematical model, parameterised with the

appropriate estimates of D and λ, provides an excellent match to
the observed spreading, as expected. However, we also show that
the prediction of the mathematical model, parameterised with the
alternative estimates of D and λ, provide a very poor prediction.
The difference between the observed position of the leading edge
and the prediction of the mathematical model is most evident in
the proliferative populations where the discrepancy is as much as
500 μm. These comparisons confirm that estimates of D and λ
obtained by focusing on one particular geometry may not be
suitable to make predictions in another geometry.

Results in Fig. 10 present a similar comparison between the
observed shape of the cell density profile near the leading edge
and the predictions of the mathematical model. Cell density
profiles within a distance of 2000 μm of the leading edge were
constructed by dividing this region into 9–15 equidistant subre-
gions of length approximately 100 μm. Image analysis software
was used to count the number of cells in each subregion, and this
count was converted into a nondimensional cell density,
cðtÞ ¼ cðtÞ=K . Again, our results confirm that the predictions of
the mathematical model, parameterised with the appropriate
estimates of D and λ, provide a good match to the shape and
position of the observed density profiles. In contrast, the predic-
tion of the mathematical model, parameterised with the

Fig. 4. Extent of spatial spreading in assay 1 is compared to the corresponding predictions of the mathematical model. The position of the leading edge of the spreading cell
population in assay 1 was determined by analysing images from the experiments initialised with low cell density in (a) and (b), and high cell density in (c) and (d). Images in
rows 1, 2, 3 and 4 show the spreading cell population at t¼0, 24, 48 and 72 h, respectively. The coloured area corresponds to the spreading cell population. Experiments with
Mitomycin-C pretreatment (motility only) are shown in the first and third columns, while experiments without Mitomycin-C pretreatment (motility and proliferation) are
shown in the second and fourth columns. In each image, we superimpose the cðr; tÞ ¼ 0:019 contour of the relevant solution of Eq. (4) in black. The scale bar corresponds to
1500 μm. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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alternative estimates of D and λ, fails to match either the position
or the shape of the leading edge. Therefore, our results suggest
that great care should be taken when estimating D and λ in one
situation and then applying the parameterised model to make
predictions in another situation.

Our data describing the shape of the cell density profile in
Fig. 10 can also be used to provide a separate estimate of D by
matching the solution of Eq. (4) with this data for the experiments
where proliferation was suppressed. Additional results (Supple-
mentary material) confirm that estimates of D obtained using this
approach are very similar to our results reported in Section 4.1
where we focused on the leading edge data only. Most impor-
tantly, when we estimate D using the shape of the cell density
profiles we find a very similar discrepancy between our estimates

of D when we use the density profiles from assay 1 compared to
the density profiles from assay 2. Although we have estimated D
using both the density profiles and the leading edge data sepa-
rately, we chose to focus on the results associated with the leading
edge data since this method is simpler to implement since it
avoids the need for counting individual cells and constructing cell
density profiles.

5. Discussion and conclusion

Various approaches that attempt to investigate how popula-
tions of cells spread typically neglect the influence of the assay
geometry (Kilian et al., 2010; Doxzen et al., 2013). In this work, we

Fig. 5. Extent of spatial spreading in assay 2 is compared to the corresponding predictions of the mathematical model. The position of the leading edge of spreading cell
population in assay 2 was determined by analysing images from the experiments initialised with low cell density in (a) and (b), and high cell density in (c) and (d). Images in
rows 1, 2, 3 and 4 show the spreading cell population at t¼0, 24, 48 and 72 h, respectively. The white circular area corresponds to the void region. Experiments with
Mitomycin-C pretreatment (motility only) are shown in the first and third columns, while experiments without Mitomycin-C pretreatment (motility and proliferation) are
shown in the second and fourth columns. In each image, we superimpose the cðr; tÞ ¼ 0:019 contour of the relevant solution of Eq. (4) in red. The scale bar corresponds to
1500 μm. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 6. Experimental measurements of the position of the leading edge of the spreading population were compared to the corresponding predictions of the mathematical
model in terms of M(t). The mean radii estimated from experimental images at t¼0, 24, 48 and 72 h (n¼3) were converted into a measurement of M(t) using Eq. (7). The
errors bars indicate one standard deviation from the mean. Results are given for both assay 1 and assay 2 for low (a) and (b), and high (c) and (d) initial cell densities,
respectively. Solid curves represent M(t) calculated using the position of the cðr; tÞ ¼ 0:019 contour from the relevant solution of Eq. (4). Red curves correspond to
experiments with Mitomycin-C pretreatment, whereas blue curves correspond to experiments without Mitomycin-C pretreatment.

Fig. 7. Location of the subregions used to construct cell density profiles and individual-scale images showing the locations of cells within these subregions. Experimental cell
density profiles were constructed by counting the number of cells in 20–40 subregions along a transect spanning the spreading cell population. The relative size and
approximate location of these subregions are illustrated in (a) and (f), where the scale bar corresponds to 1500 μm. Individual-scale images in (b)–(e) and (g)–(j) show
snapshots of various subregions of dimensions 250 μm �250 μm. The subregions in (b)–(e) correspond to assay 1, and the value of the radial coordinate r in each of these
subregions increases such that (b) is close to the centre of the well and (e) is located towards the edge of the outward spreading population. The subregions in (g)–
(j) correspond to assay 2, and the value of the radial coordinate r in each of these subregions increases such that (g) is located close to the leading edge of the inward
spreading population and (j) is located towards the edge of the well. The Propidium Iodide staining highlights the cell nucleus and blue crosses indicate cells that were
counted in the analysis. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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used a circular barrier assay to analyse the spreading behaviour of
a fibroblast cell population in two distinct geometries: (i) assay
1 resembled a tumour-like outward spreading process, and (ii)
assay 2 resembled a wound-like inward spreading process. To
quantify the differences between these assays we used a combined
experimental and a mathematical modelling approach to estimate
D from experiments where cell proliferation was suppressed. We
then separately estimated λ from experiments where proliferation
was not suppressed. Given our estimates of D and λ, we then
independently verified that our parameterised model could pre-
dict both the position of the leading edge and the shape of the cell
density profiles in both assays for two different initial densities.

Our results suggest that assay geometry can affect the beha-
viour of spreading cell populations since our estimate of D for

assay 2 was up to 50% lower than our estimate of D for assay 1,
while our estimate of λ was up to 30% lower for assay 2 compared
to assay 1. This observation is important because most experi-
mental and mathematical modelling studies of in vitro cell
spreading typically focus on one geometry only and make the
implicit assumption that observations and measurements in one
geometry are relevant for others. Our results, highlighted in
Figs. 9 and 10, indicate that this implicit assumption can produce
misleading results.

This work highlights the importance of using mathematical
modelling tools to quantify the contributions of cell motility and
cell proliferation in driving the observed spreading behaviour. For
example, standard measures of cell spreading, such as Eq. (7), do
not provide any detailed information regarding how the

Fig. 8. Cell density profiles comparing the extracted experimental data and the relevant solution of Eq. (4) using the parameter estimates in Table 1. Assay 1 results for
experiments both with (dark grey) and without Mitomycin-C (light grey) pretreatment, at t¼0, 24, 48 and 72 h, are shown in rows 1 (low initial density) and 3 (high initial
density). Equivalent results for assay 2 are shown in rows 2 (low initial density) and 4 (high initial density). Arrows indicate the direction of the spreading cell population.
The red (motility only) and blue (motility and proliferation) curves superimposed on all results correspond to the relevant solutions of Eq. (4). (For interpretation of the
references to colour in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 9. Predicting the spread of a cell population using estimates of D and λ from a different geometry: comparing the location of the leading edge. Population-scale images
that correspond to experiments at t¼72 h are given in (a)–(d) for a low initial cell density, and in (e)–(h) for a high initial cell density. Experiments with Mitomycin-C
pretreatment (motility only) are shown in the first and third columns, while experiments without Mitomycin-C pretreatment (motility and proliferation) are shown in the
second and fourth columns. In each image we superimpose the cðr; tÞ ¼ 0:019 contour of the relevant solution of Eq. (4) using the parameter estimates for assay 1 (red) and
for assay 2 (blue). The scale bar corresponds to 1500 μm. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
paper.)

Fig. 10. Predicting the spread of a cell population using estimates of D and λ from a different geometry: comparing the cell density profile at the leading edge of the
spreading population. Cell density profiles that correspond to experiments at t¼72 h are given in (a)–(d) for a low initial cell density, and in (e)–(h) for a high initial cell
density. Experiments with Mitomycin-C pretreatment (motility only) are shown in the first and third columns, while experiments without Mitomycin-C pretreatment
(motility and proliferation) are shown in the second and fourth columns. In each image, we superimpose the solution of Eq. (4) using the parameter estimates for assay 1
(red) and for assay 2 (blue). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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underlying mechanisms contribute to the observed spreading.
Furthermore we have shown that these standard measures cannot
be compared between different geometries since comparing
estimates of M(t) for assay 1 with estimates of M(t) for assay 2 is
not insightful. Our analysis of the data using Eq. (7) could have
been performed in terms of the observed area, A(t), instead of the
observed radius, R(t) (Ashby and Zijlstra, 2012; McKenzie et al.,
2011; Zaritsky et al., 2011; Treloar and Simpson, 2013). However,
regardless of whether M(t) is measured in terms of R(t) or A(t) we
find the same trends in the data which means that our conclusions
about M(t) are relevant regardless of these details. In contrast, a
mathematical modelling approach that explicitly represents the
underlying cell motility and cell proliferation mechanisms can
overcome this difficulty since we can extract, and quantify,
detailed information about both the cell motility and cell prolif-
eration mechanisms separately.

The focus of our work has been to assess quantitative differ-
ences between two different assay geometries. It is also worth-
while to discuss some qualitative differences between assay 1 and
assay 2. We found that the experimental procedure for assay 1 was
more straightforward to implement and analyse for two reasons.
First, assay 2 requires the use of a greater number of cells in the
experimental procedure which means that discrete simulations
are more time consuming to perform. Second, we found that it is
more difficult to initialise the cells uniformly outside the barrier
compared to inside the barrier. Despite this difficulty, we always
ensured that all experiments were initiated as uniformly as
possible by performing a large number of experiments and
discarding all those results in which the cells were not uniformly
initialised.

To illustrate the consequences of our study, we confirmed that
estimates of D and λ from one particular geometry could give
misleading results by applying the mathematical model parame-
terised with these estimates to make a prediction of the cell
spreading in the other geometry that we considered. These results
confirmed that the solution of our mathematical model with
estimates of D and λ from assay 1 failed to predict the position
of the leading edge and the shape of the density profile in assay 2.
Similarly, we confirmed that the solution of the mathematical
model with estimates of D and λ from assay 2 failed to predict the
position of the leading edge and the shape of the density profile in
assay 1.

A key assumption in this work is that the cell spreading always
took place in a two-dimensional monolayer for the entire duration
of the experiments. Initially, we also performed experiments
where cells were placed into and around the barriers at a higher
density than we reported here. In these additional experiments we
observed that cells did not form a monolayer due to the high initial
density. These additional experiments were not analysed here
since the two-dimensional model is inappropriate.

One limitation of our study is that we have not resolved the
question of why cells appear to behave differently in different
geometries. One possible mechanism that could explain our
observations is that the total number of cells initially present in
assay 2 is always larger than that in assay 1. Assuming that each
cell consumes nutrients at a particular rate, we might expect that
the supply of nutrients in assay 2 would be depleted faster than
that in assay 1 which is consistent with our observations that D
and λ are apparently smaller in assay 2. To test this hypothesis we
suggest that additional measurements of the availability of nutri-
ents could be made and that these measurements could be
incorporated into an extension of the mathematical model where
D and λ explicitly depend on nutrient availability. This suggestion
could be important since many mathematical models of collective
cell spreading make the implicit assumption that the supply of
nutrients is unlimited (Maini et al. 2004a,b; Sengers et al., 2007;

Cai et al., 2007). Other options for extending this work are to
include further experiments to examine the role of other geome-
tries, such as using barriers with different curvatures. Unfortu-
nately the barriers that we used in this study are fixed in shape
and so a different experimental apparatus would be required to
study such an extension.
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