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In this Letter we investigate the role of regular (curvature singularity-free) black holes in the framework 
of UV self-complete quantum gravity. The existence of a minimal length, shielding the trans-Planckian 
regime to any physical probe, is self-consistently included into the black hole probe itself. In this way 
we obtain to slightly shift the barrier below the Planck length, with the UV self-complete scenario self-
consistently confirmed.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

The nature of space and time at the Planck scale is a long-
standing argument of debate. Fluctuations in both geometry and 
topology are expected to become so violent to disrupt the very 
fabric of the spacetime manifold. The term “spacetime foam” is 
frequently used to portray this kind of gravitational quantum vac-
uum [1]. Any candidate theory of quantum gravity has to address 
this problem and provide some information about trans-Planckian 
physics, whatever it is. Even if String Theory is not yet a fully ac-
complished Unified Theory of Everything, it provides to day the 
most powerful framework to address quantum gravity problems. 
The price to pay for that is to dismiss the idea of “point-like” 
building blocks of matter in favor of one-dimensional, Planck size, 
fundamental objects. Unfortunately, the extended nature of (super) 
strings makes them unable to probe the trans-Planckian regime: as 
opposed to hypothetical point-like objects, increasing the energy is 
not enough to make them shorter and shorter; as more and more 
excitation modes are switched-on, the string elongates [2] bounc-
ing back to a long-distance regime.1 A quite different approach to 
the problem has been recently proposed by Dvali and collaborators 
in a series of papers [5,6], where String Theory is not explicitly in-
volved. We shall comment this feature in the conclusions.
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The general wisdom says that there is no self-consistent way 
to quantize gravity in the framework of “point-like” quantum field 
theory because in the foamy Planckian phase quantum fluctuations 
are out of control, and predictive power is lost even in super-
gravity models. Against this background, Dvali proposed a clever 
way to by-pass such a problem, by pointing-out the existence of 
a “black hole barrier” shielding the trans-Planckian regime to any 
physical probe. In a nutshell, gravity regularizes itself because of 
its unique ability to collapse high enough energy concentrations 
into black holes, with linear dimension increasing with energy, and 
not vice-versa. Thus, any point-like probe turns into a black hole 
when boosted to a “critical energy” −s∗ = h̄c/2G N . Any further 
mass-energy increase reverses the Lorentz contraction in a sort of 
Schwarzschild dilation of the gravitational radius Rs = 2G N

√−s/c2.
The effect of gravity is to shield the deep-UV region behind the 
curtain of an event horizon (see Fig. 1).

The far reaching conclusion of this simple reasoning is that, 
contrary to any current wisdom, the quantum gravity trans-
Planckian regime could be dominated by “classical”, infra-red, field 
configurations. This result is reminiscent of T -Duality in String 
Theory, where a stringy probe cannot distinguish a length scale 
L from a length α′/L. Thus, 

√
α′ is the ultimate accessible distance 

to a stringy object. Keeping this in mind, a unique, and often over-
looked, black hole property is to provide an ideal bridge between 
micro and macro physics [7–9]. Indeed, whatever the radius of the 
horizon, a black hole is always a “point-like” object, in the sense 
that the whole mass is packed inside an arbitrarily small region 
around the origin (classically the mass is collapsed into a single 
point). A black hole can be seen as a self-gravitating particle, and 
the infinite self-force the field applies to its own point-like source
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Fig. 1. The hyperbola represents the Compton wavelength of a “particle” of mass m.
The straight line shows the linear increase of the Schwarzschild radius with respect
to the mass of a black hole. The intersection between the two curves defines the
Planck length, lP, and the Planck mass, mP.

translates into the presence of a “curvature singularity”. From this
point of view, a 1 gr mass black hole can be seen either as an
infra-red field configuration of radius 105lP, or a trans-Planckian
test-particle with energy 105 EP.

Then, in the scenario briefly discussed above, the minimal, phys-
ically meaningful, length turns out to be the Planck length lP, which
is defined as the cross-over point between the Schwarzschild radius
of a mass m black hole and the Compton wavelength of a particle
with the same mass:

lP ≡ (Rs)min =
√

2h̄G N

c3
. (1)

Any distance d < lP has no physical meaning being shielded by the
horizon. Fig. 1 is a portrait of an elementary objects “phase space”.
Light objects with m < mP are what we colloquially call “particles”.
Their linear dimension is defined by the Compton wavelength en-
coding the quantum mechanical nature of a microscopic object. On
the other hand, heavy objects with m > mP are gravity-dominated
and they look like classical black holes of linear size Rs . The Planck
scale represents the critical point where Quantum Mechanics in-
tersects General Relativity and the Compton wavelength is “swal-
lowed” by a “classical” black holes (the term “classical” means “so-
lution of the Einstein equations”, and is not referring to the actual
size of the object).2 The existence of a black hole barrier follows
as a necessary consequence from the purely attractive character
of gravity and is instrumental to the realization of the UV self-
complete scenario. A possible critical remark to this scenario that
has been raised in the literature, is that a Planckian black hole is
highly unstable with respect to Hawking evaporation. Thus, it is
conceivable that a Planckian probe will disintegrate, soon after its
formation, into a burst of thermal radiation. While emitting Hawk-
ing radiation the black hole will shrink to smaller and smaller
size. Then, in principle, a decaying black hole can probe distances
smaller than the Planck length, at least during the final phase of its
evaporation process. More precisely, one should say that the struc-
ture of the probe in these extreme conditions is unknown: maybe
a transition to some excited string state could occur [12], and the

2 To appreciate the specific meaning of “classical” in this framework, it may be
useful to recall an analogy with Yang–Mills “instantons”. Also in this case one talks
of “classical solutions”, even if such field configurations are confined to microscopic
scale. With this analogy in mind, one can say that instantons play an essential role
in non-perturbative Yang–Mills theory, and black holes control gravity in the trans-
Planckian regime. In both cases, the dynamics of the theory is described in terms
of classical field configurations instead of particle-like excitations [10,11].
whole self-completeness argument would require to be adapted to
this different situation.

The purpose of this Letter is to provide an answer to this crit-
icism. The root of the problem can be traced back to the fact
that in the Schwarzschild geometry there is no lower bound to
the radius of the black hole horizon during the evaporation pro-
cess. This is, again, a consequence of the possibility to consider
the source of the field concentrated into an arbitrary small vol-
ume. On the other hand, if a minimal distance exists point-like
sources have no physical meaning. From standard quantum me-
chanics we know that “point-like”, classical, particles can at most
be represented by optimal localization, or minimal uncertainty, po-
sition states. In a recent series of papers [13–18] we introduced
this idea in General Relativity and found black hole solutions gen-
erated by a minimal width Gaussian distribution of matter. For the
reader’s convenience, we list below the main features of these ob-
jects.

i) They are curvature singularity free. This is a straightforward
consequence of spreading the source over a finite volume. The
arbitrary large curvature region close to the origin is turned
into a de Sitter vacuum core with finite curvature.

ii) They admit an extremal, degenerate, configuration even in
the neutral, non-rotating case. The presence of both an inner
(Cauchy) horizon and an outer (Killing) horizon is a character-
istic feature of this regular solutions.3

iii) The Hawking temperature is bounded from above and vanishes
for the extremal configuration. The heat capacity is positive in
the small black hole phase, making these solutions thermody-
namically stable.

iv) A detailed investigation of the quantum properties of these ob-
jects, in relation to production and decay at LHC can be found
in [19–21].

In what follows we will see how it is possible to make self-
consistent the UV self-completeness proposal by taking into ac-
count the existence of a minimal length in the black hole probe
itself. The advantage of this approach is that the minimal size black
hole is a zero Hawking temperature, stable, extremal configuration,
which will evade the above mentioned criticism.

2. Regular Schwarzschild black hole

Black hole type solutions of the Einstein field equations are
plagued by the presence of curvature singularities, where tidal
forces arbitrarily blow up. From a physical point of view, no mea-
surable quantity can become infinite. Indeed, the presence of a
singularity cannot be seen as a “physical” effect, rather it sounds
like a warning that we are pushing a classical theory, i.e. General
Relativity, where it stops to be effective and loses its predictive
power. A possible cure to the “singularity sickness” is suggested
by non-commutative geometry, where manifold fluctuations make
it impossible to measure lengths shorter than a minimal length√

θ . The parameter θ is a measure of how much non-commuting
coordinates deviate from their classical, commuting, counterparts.
In a series of papers we introduced a phenomenological approach
where the key feature of non-commuting geometry, i.e. the exis-
tence of a minimal length, is encoded into Einstein equations by
re-modelling matter sources in terms of minimal width Gaussian
distributions. For more details we refer the reader to the original

3 The stability of the Cauchy horizon is an open issue which is currently under
investigation [31,32]. In any case, this discussion is not relevant to the problem we
are discussing in this work.
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papers [22–25]. We would only like to comment about the sen-
sitivity of the solution with respect to the choice of the source.
Regular black holes can be obtained both by coupling gravity to
non-linear electrodynamics [26–28], and by engineering appropri-
ate sources, e.g. [29,30] (for a general review about this topic, see
[22]). In our case, the Gaussian form of the matter distribution
is not a choice but an exact result recovered from the underlying
non-commutative geometry. Strictly speaking, we could extend the
Gaussian distribution to a Maxwell-like form, i.e. ρG(r) → rnρG(r),
n � 0 integer, without spoiling the regularity of the black hole
solution. The physical difference is clear, we replace a massive
droplet source with an hollow shell of matter. From the geo-
metrical side, the inner de Sitter core will be replaced by a flat
Minkowski central region. All the other appealing features of the
black hole solution are preserved.

The simplest solution of the modified Einstein equations is the
so-called “non-commutative” Schwarzschild metric

ds2 = − f (r)dt2 + f −1(r)dr2 + r2 dΩ2
2 ,

dΩ2
2 ≡ dθ2 + sin2 θ dφ2 (c = 1, G N = 1),

f (r) = 1 − 4M√
πr

γ

(
3

2
,

r2

4θ

)
,

γ

(
3

2
,

r2

4θ

)
=

r2/4θ∫
0

dt t1/2e−t, (2)

where,
√

θ is the width of the Gaussian mass-energy distribution
of the source. Expanding f (r) near the origin, one sees that the
central curvature singularity is replaced by a de Sitter vacuum
core characterized by an effective cosmological constant Λeff. =
M/(

√
πθ3/2). The line element (2) smoothly interpolates between

the de Sitter geometry at short distance, i.e. r � √
θ , and the

Schwarzschild metric at large distance r � √
θ . Some cautionary

remark about the short distance limit is due. This is the range
where our effective description breaks down and the very con-
cept of smooth spacetime loses its meaning. However, through the
looking glass of gravity a non-commutative fluctuating manifold is
filtered into a non-trivial “vacuum” of de Sitter type.

In the intermediate distance range non-standard black hole
configurations can be realized above a certain mass threshold. Let
us consider the zeros of the metric function, f (rH ) = 0, and plot
the total mass-energy M as a function of the Schwarzschild radius
rH (see Fig. 2)

M =
√

π

4

rH

γ (3/2, r2
H/4θ)

. (3)

Even a neutral, non-spinning, object of mass M1 > M0 is a black
hole with an outer (Schwarzschild) horizon of radius r+

1 and an
inner (Cauchy) horizon of radius r−

1 . As the mass decreases to-
wards M0 the two horizons merge into a single, degenerate, null
surface, with rH = r0. This is an extremal black hole. For lower
masses there are no more horizons and the object is a regular,
particle-like, lump of matter. The presence of two horizons and
the existence of an extremal configuration make the thermody-
namic behavior of this uncharged, non-spinning, black hole quite
similar to the thermal evolution of a standard, charged, Reissner–
Nordstrom black hole. The Hawking temperature is bounded from
above and vanishing as the extremal configuration is reached. This
is the so-called “scram-phase” [23] leading to a stable massive
remnant in the form of a degenerate extremal black hole. This end-
point configuration is the most relevant one in the framework of
self-complete quantum gravity as it provides us the smallest probe
Fig. 2. This is the plot of Eq. (3) in terms of rescaled variables x ≡ rH /
√

2θ ,
m̃ ≡ MG N/

√
2θ . m̃0, x0 are the mass and radius of the “extremal” black hole con-

figuration. If m̃ > m̃0 we have a non-degenerate black hole with event horizon of
radius x+ and inner Cauchy horizon of radius x− . For m̃ < m̃0 we have a particle-
like object with no horizons.

Fig. 3. The dashed curve is the rescaled Compton hyperbola for the critical value√
θ 	 lP/3.393. The continuous curve is the outer horizon branch of (3).

we can think of. Let us give a closer look to the extremal black
hole represented by the minimum of the curve in Fig. 2. The min-
imum is characterized by

f (r0) = 0, (4)(
dM

drH

)
rH =r0

= 0 ⇒ r3
0 = 4θ3/2γ

(
3

2
,

r2
0

4θ

)
er2

0/4θ . (5)

Notice that in terms of the length unit
√

θ the horizon curve be-
comes θ -independent while the Compton hyperbola can be shifted
by varying the value of θ :

lC√
2θ

= h̄

2θ(m/
√

2θ)
= l2P

4θ
· 1

m/
√

2θ
= l2P

4θ
· 1

m̃
.

Thus, having the rescaled horizon curve fixed and the rescaled
Compton wavelength freely adjustable, it is consistent to look for
the value of θ allowing an intersection point between the two
curves for the values of mass and event horizon radius that define
an extremal configuration. This peculiar crossing point is obtained
for

√
θ 	 lP/3.393 (Fig. 3). A relationship between the minimal

length r0 and the Planck length not involving M0 can then be ob-
tained combining (4), (5) and r0 = l2P/(2M0)

r3
0 =

√
πr0

θ3/2er2
0/(4θ) = 2

√
π

(√
θ

)3

r2
0 er2

0/(4θ)lP (6)

M0 lP
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so that

L∗
def.= r0 	 2

√
π

9.8138

(3.393)3
lP 	 0.891lP and M∗

def.= M0 = h̄

L∗
are the new values for the “Planck” length and mass. Thus, the
black hole barrier is just slightly shifted below the Planck scale and
the UV self-completeness scenario is self-consistently preserved.

3. Conclusions

We conclude this Letter by pointing out some interesting con-
nections among self-complete quantum gravity, string theory, non-
commutative geometry, regular back holes and un-particles.

The very concept of point-particle is only a low energy ap-
proximation for a one-dimensional string, and the naive idea that
shorter and shorter length scales can be probed by injecting
more and more energy into the probe breaks down at the string
scale ls = √

α′ . To make contact with the UV self-complete sce-
nario we recall the Correspondence Principle for Black holes and
Strings [12]. In [33] Susskind suggested that there exists a one-to-
one correspondence between Schwarzschild black holes and fun-
damental string states. The argument follows from the fact that in
the strong coupling regime the size of an highly excited string is
less than its Schwarzschild radius. On the other hand, the inter-
est for non-commutative geometry was boosted in the high energy
physics community by the recognition that spacetime coordinates
turn into non-commuting objects as an effect of string–D-brane
coupling in the presence of a Neveu–Schwartz background field
[34,35]. Uncertainty in the localization of any physical event, near
and beyond a certain length scale lNC = √

θ , becomes an unavoid-
able feature of any physical theory. We encoded this intrinsic limit
into our regular black hole solution by smearing the central cur-
vature singularity, or mass-energy density, into a minimal width
Gaussian distribution.

Finally, self-complete quantum gravity provides a different view
of the minimal distance which can be probed in a gendanken high
energy experiment as the radius of a thermodynamically stable,
extremal, regular black hole. Our self-consistent approach allows
to push the black hole barrier slightly below the Planck length,
but it is still there. Is this the end of the story?

A couple of years ago Georgi introduced a possible new sector
of the elementary particle Standard model, where scale invariance
is realized in the form of a continuous mass spectrum [36,37].
The new objects have been called un-particles to distinguish them
from ordinary matter. The interactions between particles and un-
particles introduce an entire new phenomenology to be, hopefully,
tested at LHC. As far as gravity is concerned, un-gravitons4 lead
to deviations from the Newton law [40] which turn, at the non-
perturbative level, into modifications of the Schwarzschild geome-
try [41–44]. The un-graviton modified metric results to be formally
equivalent to the line element in the presence of fractal extra di-
mensions. The non-trivial way in which scale invariance is realized
in the un-particle sector seems to be the key to access a new frac-
tal phase of spacetime geometry [45–49]. A recent analysis of high
energy un-matter diffusion provided a new interpretation of

√
θ

as the critical temperature marking the transition from a smooth
geometry to a trans-Planckian “spacetime steam” [50]. This new
scenario and its connection with the UV self-complete quantum
gravity model are currently under investigation.

4 The effective actions for various unparticle fields have been discussed in [38,39].
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