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a b s t r a c t

In this work, we consider the following isotropic mixed-type equations:

y|y|α−1uxx + x|x|α−1uyy = f (x, y, u) (0.1)

in Br (0) ⊂ R2 with r > 0. By proving some Pohozaev-type identities for (0.1) and dividing
Br (0) naturally into six regionsΩi (i = 1, 2, 3, 4, 5, 6), we can show that the equation

yuxx + xuyy = sign(x + y)|u|2u (0.2)

with Dirichlet boundary conditions on each natural domain Ωi has no nontrivial regular
solution in Br (0).

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, we consider the following isotropic mixed-type equations:

y|y|α−1uxx + x|x|α−1uyy = f (x, y, u) (1.1)

in Br(0) for any given r > 0.
Tricomi problems and mixed-type equations like (1.1) with f (u) = 0 or f (u) = λu and other types have been widely

considered (see [1–14]). The existence and uniqueness were obtained in these earlier papers under suitable conditions on
different domains. For example, the mixed-type equation

Lu = sign t · |t|muxx + utt − b2sign t · |t|mu = 0

withm = const > 0 and b = const ≥ 0 was considered in [4,13] in the rectangular domain D = {(x, t)|0 < x < 1, − α <
t < β} and a criterion for the uniqueness and existence of a solution to this equationwith certain conditionswas established
by applying a method of spectral analysis for boundary value problems.

In the present work, we will consider the mixed-type Eq. (1.1) in a usual domain, that is, in a ball Br(0) with r > 0. It is
well known that the semilinear elliptic equation

−1u = f (u) inΩ
u = 0 on ∂Ω, (1.2)
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has no positive solution in H1
0 (Ω) if the bounded domain Ω ⊂ RN (N ≥ 3) is star-shaped with respect to some interior

point and f (u) = |u|p−1u with p ≥ 2∗
− 1 =

N+2
N−2 (see [10]), especially for Ω = Br(0). It is interesting to ask whether a

mixed-type equation like (1.1) leads to a similar result on a ball. We will show that the answer is positive.
To give our results, we divided Br(0) naturally into six domains Ωi (i = 1, 2, 3, 4, 5, 6) using the x-axis, y-axis

and characteristic line y = −x, where Ω1 =

(t cos θ, t sin θ)|0 ≤ t ≤ r,−π

4 ≤ θ ≤ 0

,Ω2 =


(t cos θ, t sin θ)|

0 ≤ t ≤ r, 0 ≤ θ ≤
π
2


,Ω3 =


(t cos θ, t sin θ)|0 ≤ t ≤ r, π2 ≤ θ ≤

3π
4


. By the symmetry of Br(0), we can set Ω4 =

−Ω1 = {(x, y) : (−x,−y) ∈ Ω1},Ω5 = −Ω2 andΩ6 = −Ω3 and OA = Ω1

Ω6 with O = (0, 0) and A =

√
2
2 r,−

√
2
2 r

,

OB = Ω1

Ω2 with B = (r, 0), OC = Ω2


Ω3 with C = (0, r) and OD = Ω3


Ω4 with D =


−

√
2
2 r,

√
2
2 r

. Then by

assuming that u = 0 on each boundary of the domainsΩi, we can show that u ≡ 0 in Br(0).
Since the shape of the domain that we consider is different from that of [4,13] and there are nonlinearities in our case,

we use amethod different from those of [4,13]. We follow the approach of [7–9,15] to get some identities with conservation
laws; then we will show that Eq. (0.2) has no nontrivial solution. The difference is that in [6–9], the Tricomi problem was
considered for a set-up not isotropic in x, y and with a domain different from ours. Problems (1.1) make it more feasible to
consider a natural ball.

In Section 2, we get some identities for Eq. (1.1) in Br(0). In Section 3, we prove the nonexistence for Eq. (0.2) in each
domainΩi (i = 1, 2, 3, 4, 5, 6)with the help of the identities that we obtained in Section 2.

2. Conservation laws and identities

In this section, we consider Eq. (1.1) on a star-shaped domain Br(0)with power-type nonlinearities f (x, y, u) = µ|u|p−1u.
We use conservation laws inspired by [7,8] to prove some identities for Eq. (1.1).

For any given γ > 0, we consider the one-parameter family of homogeneous dilations Φλ and the scaled functions uλ
defined by

uλ(x, y) = Φλu(x, y) = λγ u(x/λ, y/λ). (2.1)

Following direct calculations, it is easy to see that if u is a solution of (1.1) with power-type nonlinearity f (x, y, u) =

µ|u|p−1u (where p ≥ 1), so is uλ for any λ > 0 whenever γ =
α−2
p−1 . Hence we have a multiplicative group R+ of dilations as

a symmetry group and an infinitesimal generator

Mu =
d
dλ


λ=1

uλ =
α − 2
p − 1

u − xux − yuy (2.2)

as a multiplier (see [7,8,15] for more details); then we have the following results:

Theorem 2.1. Suppose that u ∈ C2(Br(0)) is a solution of the equation

y|y|α−1uxx + x|x|α−1uyy = f (u), (x, y) ∈ Br(0) ⊂ R2 (2.3)

where α, r > 0 and f (t) = µ|t|p−1t with p ≥ 1; we have the identities

div{yuxMu + x[F(u)+ L0u], xuyMu + y[F(u)+ L0u]} = 2F(u)−
α

2
uf (u), (2.4)

where

L0u =
y|y|α−1u2

x + x|x|α−1u2
y

2
, (2.5)

Mu is as given in (2.2) and F(t) =
 t
0 f (s)ds is a primary function of f (t).

Proof. By multiplication of (2.3) with u followed by direct calculations, we get

div{y|y|α−1uux, x|x|α−1uuy} = y|y|α−1u2
x + x|x|α−1u2

y + uf (u)

= 2L0u + uf (u). (2.6)

Also, multiplying (2.3) with xux and yuy separately, we find

div{(xux)(y|y|α−1ux, x|x|α−1uy)} = y|y|α−1u2
x + 2xy|y|α−1uxuxx + |x|α+1uyuxy + |x|α+1uxuyy (2.7)

and

div{(yuy)(y|y|α−1ux, x|x|α−1uy)} = |y|α+1uyuxx + |y|α+1uxuxy + x|x|α−1u2
y + 2yx|x|α−1uyuyy. (2.8)
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Combining (2.6)–(2.8), we derive that

div[(y|y|α−1ux, x|x|α−1uy)Mu] =
α − 2
1 − p

uf (u)+
α − 2
p − 1

(y|y|α−1u2
x + x|x|α−1u2

y)

− (xux)[y|y|α−1uxx + x|x|α−1uyy] − (y|y|α−1u2
x + xy|y|α−1uxuxx + |x|α+1uyuxy)

− (yuy)[x|x|α−1uyy + y|y|α−1uxx] − (x|x|α−1u2
y + yx|x|α−1uyuyy + |y|α+1uxuxy)

= f (u)Mu +
α − 2
p − 1

(y|y|α−1u2
x + x|x|α−1u2

y)

− (y|y|α−1u2
x + xy|y|α−1uxuxx + |x|α+1uyuxy)

− (x|x|α−1u2
y + yx|x|α−1uyuyy + |y|α+1uxuxy). (2.9)

In addition we have that

div{(x, y)F(u)} = 2F(u)+ (xux + yuy)f (u)

= 2F(u)+


α − 2
p − 1

u − Mu

f (u) (2.10)

and

div{(x, y)L0u} = div

(x, y)


y|y|α−1u2

x + x|x|α−1u2
y


/2


=
1
2
y|y|α−1u2

x + xy|y|α−1uxuxx +
α + 1

2
x|x|α−1u2

y + |x|α+1uyuxy

+
α + 1

2
y|y|α−1u2

x + |y|α+1uxuxy +
1
2
x|x|α−1u2

y + yx|x|α−1uyuyy. (2.11)

Combining (2.9)–(2.11), we have that

div{y|y|α−1uxMu + x[F(u)+ L0u], x|x|α−1uyMu + y[F(u)+ L0u]}

= 2F(u)+
α − 2
p − 1

uf (u)+


2(α − 2)
p − 1

+ α


L0u. (2.12)

Then combining (2.12) with (2.6), we finally get that

div

yuxMu −


α − 2
p − 1

+
α

2


y|y|α−1uux + x[F(u)+ L0u], xuyMu −


α − 2
p − 1

+
α

2


x|x|α−1uuy + y[F(u)+ L0u]


= 2F(u)−

α

2
uf (u) (2.13)

and Theorem 2.1 is proved. �

Suppose that f is a power-type nonlinearity f (t) = µ|t|p−1t where p =
4
α

− 1 for any 1 ≤ α ≤ 2; it is obvious that
2F(t)−

α
2 tf (t) = 0. So, p =

4
α

− 1 is called the critical exponent for (1.1). Similarly, multiplying (1.2) with x · ∇u, we have

div


∇ux · ∇u − x
|∇u|2

2
+ xF(u)


= NF(u)−

N − 2
2

uf (u)

and the critical exponent for (1.2) with f (u) = |u|p−1u is p =
N+2
N−2 .

A directly corollary of Theorem 2.1for mixed-type Eq. (1.1) with critical exponent nonlinearity reads as follows:

Corollary 2.1. Suppose that u ∈ C2(Br(0)) is a solution of the equation

y|y|α−1uxx + x|x|α−1uyy = µ|u|
4
α−1, (x, y) ∈ Br(0) ⊂ R2 (2.14)

for any α ∈ [1, 2]; then we have the conservation law

div{y|y|α−1uxMu + x(F(u)+ L0u), x|x|α−1uyMu + y(F(u)+ L0u)} = 0. (2.15)
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3. Nonexistence

In [1–5,10–14] and other papers, the existence and uniqueness of solutions for equations like (1.1) with linearities
f (x, y, u)were obtained on kinds of domainswith different boundary conditions. In these papers, the uniquenesswas proved
directly. In the present work, we will prove the uniqueness of Eq. (1.1) with a power-type critical nonlinearity f (x, y, u) in a
different way. We will give a proof of the uniqueness of (1.1) with α = 1 below. One can see from the proof of Theorem 3.1
that with α = 1, it is natural to divide Br(0) into domains Ωi (i = 1, 2, 3, 4, 5, 6) by using the x-axis, the y-axis and the
characteristic line {(x, y) : x + y = 0}; the proof will be clearer.

In this section, we consider Eq. (1.1) on Br(0) with α = 1 and f (x, u) = sign(x + y)|u|p−1u, where p = 3 is the critical
exponent (see Corollary 2.1). That is, we consider the following equation:

yuxx + xuyy = sign(x + y)|u|2u, (x, y) ∈ Br(0) ⊂ R2. (3.1)

We will use the identities that we got in Section 2 to prove our results in this section. To prove our results, we set the
following boundary conditions:

u| 6
i=1

∂Ωi

= 0. (3.2)

Note that one can get the same results for the linearity f (x, y) in the same way; we omit this here.

Theorem 3.1. Let u ∈ C2(Br(0)) be a solution of Eq. (3.1) satisfying the boundary condition (3.2); then u ≡ 0 inΩ1

Ω4.

Proof. We will give the proof for u ≡ 0 in Ω1 only. Since x + y > 0 in Ω1 except for the points on segment OA, we have
that f (u) = |u|2u is of power type with a critical exponent andΩ1 is simply connected and star-shaped with respect to the
origin O = (0, 0). By Corollary 2.1, we have the conservation law div(U1,U2) = 0 where

U1(x, y) = 2xF(u)− yuux − xyu2
x − 2y2uxuy + x2u2

y,

U2(x, y) = 2yF(u)− xuuy − xyu2
y − 2x2uxuy + y2u2

x .
(3.3)

SinceΩ1 is simply connected, the conservative vector field V = (V1, V2) = (U2,−U1) admits a potential function ϕ; that
is, we have

ϕx = V1 = U2,

ϕy = V2 = −U1.
(3.4)

In fact, we can define

ϕ(P) =

∫
ΓP

V1dx + V2dy, P ∈ Ω1 (3.5)

where ΓP is a segment from O = (0, 0) to the point P ∈ Ω1.
Without loss of generality, we take r = 1 for Br(0). Then, for each P = (x, 0) ∈ OB, we can parameterize ΓP(t) = (tx, 0)

with t ∈ [0, 1] to find

ϕ(x, 0) =

∫ x

0
V1(t, 0)dt

and so

ϕx(x, 0) = V1(x, 0) = −xuuy − 2x2uxuy.

Since u(x, 0) ≡ 0 for each x ∈ [0, 1], ϕ is constant on OB and vanishes at O(0, 0), so it vanishes identically, which implies
that

ϕ(B) = ϕ(O) = 0. (3.6)

On
⌢
AB, we define

v(θ) = ϕ(cos θ, sin θ), θ ∈


−
π

4
, 0

. (3.7)

Since u ≡ 0 along
⌢
AB, by (3.3) we have that

v′(θ) = −yV1 + xV2

= −x[2xF(u)− yuux − xyu2
x − 2y2uxuy + x2u2

y] − y[2yF(u)− xuuy − xyu2
y − 2x2uxuy + y2u2

x ]

= −2(x2 + y2)F(u)+ xyu(ux + uy)+ 2xy(x + y)uxuy + (x2y − y3)u2
x + (xy2 − x3)u2

y

= (x + y)[2xyuxuy + (x − y)(yu2
x − xu2

y)]. (3.8)
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Note that uθ = −yux + xuy on
⌢
AB. Then, it follows from u ≡ 0 on

⌢
AB that

− yux + xuy = 0 (3.9)

on
⌢
AB. Inserting (3.9) into (3.8) gives the expression

v′(θ) = (x + y)[2x2u2
y + (x − y)(x2u2

y − xyu2
y)/y]

= u2
y[(x

2
+ y2)x(x + y)/y]

= u2
y(cos θ + sin θ) cos θ/ sin θ

≤ 0 (3.10)

for −
π
4 < θ < 0. This implies that for any P ∈

⌢
AB

ϕ(B) ≤ ϕ(P) ≤ ϕ(A). (3.11)

Next we examine ϕ along characteristic segments. For each P = (x,−x) ∈ OA we use the parameterization

Γ (t) = (t,−t), t ∈ [0, x]. (3.12)

Setting

w(x) = ϕ(Γ (t))

=

∫ x

0
V1(t,−t)dt −

∫ x

0
V2(t,−t)dt

and ψ(x) = u(Γ (x)), for 0 < x <
√
2
2 we have that

w′(x) = V1(x,−x)− V2(x,−x)
= xu(ux − uy)− 4x2uxuy + 2x2(u2

x + u2
y)

= xu(ux − uy)− 2x2(ux − uy)
2

= xψ(x)ψ ′(x)− 2x2[ψ ′(x)]2. (3.13)

Since ψ(x) = u(Γ (x)) ≡ 0 implies that ψ ′(x) ≡ 0 on

0,

√
2
2


, from (3.13) we have that

w′(x) ≡ 0, on


0,

√
2
2


. (3.14)

(3.14) implies that

ϕ(A) = w

√
2
2


= w(0) = 0. (3.15)

Consequently, combining (3.6) and (3.11) with (3.15) we get that for any P ∈
⌢
AB, 0 = ϕ(B) ≤ ϕ(P) ≤ ϕ(A) = 0. Hence

ϕ| ⌢AB = 0.
Finally, we show that u ≡ 0 in Ω1. To prove that, we consider u on the arc

⌢
QP = {Γ (θ) = (τ cos θ, τ sin θ); θ ∈

[−π/4, 0]} for some 0 < τ < 1 with P on segment OB and Q on segment OA. Then

0 = ϕ(Q )− ϕ(P)

=

∫ 0

−
π
4

(xV2 − yV1)dθ

=

∫ 0

−
π
4

[−2τ 2F(u)+ xyu(ux + uy)+ 2xy(x + y)uxuy + y(x2 − y2)u2
x + x(y2 − x2)u2

y]dθ

=

∫ 0

−
π
4

[−2τ 2F(u)]dθ + I + II (3.16)

where

I =

∫ 0

−
π
4

xyu(ux + uy)dθ (3.17)
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and

II =

∫ 0

−
π
4

2xy(x + y)uxuy + y(x2 − y2)u2
x + x(y2 − x2)u2

ydθ. (3.18)

Note that uθ = xuy − yux; we have that

I =

∫ 0

−
π
4

xyu(ux + uy)dθ =

∫ 0

−
π
4

[xyuux + yuxuy]dθ

=

∫ 0

−
π
4

[yu(xuy − yux)] + [y2uux + xyuux]dθ

=

∫ 0

−
π
4

[yuuθ + y(x + y)uux]dθ. (3.19)

On one hand, on
⌢
QP , we have that∫ 0

−
π
4

yuuθdθ =

∫ 0

−
π
4

yd

u2

2


= y


u2

2

0
−π/4

−

∫ 0

−
π
4

x

u2

2


dθ, (3.20)

|y(x + y)uux| = (x + y)|uyux| ≤ (x + y)u2/2 + (x + y)y2u2
x/2. (3.21)

So, from (3.19)–(3.21), we have that

I ≤

∫ 0

−
π
4

[yu2/2 + (x + y)y2u2
x/2]dθ. (3.22)

On the other hand,

II =

∫ 0

−
π
4

[xy(x + y)(ux + uy)
2
− (x + y)(x2u2

y + y2u2
x)]dθ. (3.23)

Hence, from (3.16), (3.22) and (3.23) we get that

0 ≤

∫ 0

−
π
4

[
−2τ 2F(u)+ y

u2

2
+ xy(x + y)(ux + uy)

2
− (x + y)


x2u2

y + y2
u2
x

2

]
dθ ≤ 0.

Note that the integral in (3.19) is strictly negative unless u ≡ ux ≡ uy ≡ 0; hence u ≡ 0 on
⌢
QP = {(τ cos θ, τ sin θ), θ ∈

[−π/4, 0]}. By the arbitrariness of τ , we have that u ≡ 0 inΩ1 and Theorem 3.1 is proved. �

Then we give the uniqueness onΩ3 stated as follows:

Theorem 3.2. Let u ∈ C2(Br(0)) be a solution of Eq. (3.1) satisfying the boundary condition (3.2); then u ≡ 0 inΩ3

Ω6.

Proof. Since inΩ3, x+y > 1 except at the points on the characteristic line OD, we have f (x, y, u) = |u|2uwhich is of power
typewith a critical exponent. Note thatΩ3 is star-shaped too; by Corollary 2.1we have the conservation lawdiv(U1,U2) = 0
as in Theorem 3.1. Then we have equations which are similar to (3.3) and (3.5) for any (x, y) ∈ Ω3, to (3.8)–(3.10) for any
(x, y) on

⌢
CD, and to (3.12), (3.14) and (3.15) for any (x, y) ∈ OD. Finally, we get that ϕ|∂Ω3 = 0.

Next we will show that u ≡ 0 in Ω3. In the same way as in Theorem 3.1, we consider the arc {Γ (θ) =

(τ cos θ, τ sin θ); θ ∈ [π/2, 3π/4]} for any given 0 < τ < r; then we have

0 =

∫ 3π
4

π
2

(xϕy − yϕx)dθ

=

∫ 3π
4

π
2

[−2τ 2F(u)+ xyu(ux + uy)+ 2xy(x + y)uxuy + y(x2 − y2)u2
x + x(y2 − x2)u2

y]dθ

=

∫ 3π
4

π
2

[−2τ 2F(u)]dθ + I + II (3.24)

where

I =

∫ 3π
4

π
2

xyu(ux + uy)dθ
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and

II =

∫ 3π
4

π
2

2xy(x + y)uxuy + y(x2 − y2)u2
x + x(y2 − x2)u2

ydθ.

Note that uθ = xuy − yux; we have that

I =

∫ 3π
4

π
2

xyu(ux + uy)dθ =

∫ 3π
4

π
2

[xuyux + xyuuy]dθ

=

∫ 3π
4

π
2

[xu(yux − xuy)] + [x2uuy + xyuuy]dθ

=

∫ 3π
4

π
2

[−xuuθ + x(x + y)uuy]dθ. (3.25)

In fact, on the arc {Γ (θ) = (τ cos θ, τ sin θ); θ ∈ [π/2, 3π/4]} we have that∫ 3π
4

π
2

xuuθdθ =

∫ 3π
4

π
2

xd

u2

2


= x


u2

2

3π/4
π/2

+

∫ 3π
4

π
2

y

u2

2


dθ, (3.26)

|x(x + y)uuy| = (x + y)|xuyu| ≤ (x + y)u2/2 + (x + y)x2u2
y/2. (3.27)

So, from (3.25)–(3.27), we have that

I ≤

∫ 3π
4

π
2

[xu2/2 + (x + y)x2u2
y/2]dθ. (3.28)

Also, it follows from (3.24), (3.23) and (3.28) that

0 ≤

∫ 3π
4

π
2


−τ 2|u|4/2 + x

u2

2
+ xy(x + y)(ux + uy)

2
− (x + y)


x2

u2
y

2
+ y2u2

x


dθ ≤ 0. (3.29)

Note that inΩ6, we have f (x, y, u) = −|u|2u. In the same way as above, we finally get

0 ≥

∫ 3π
4

π
2


τ 2|u|4/2 + x

u2

2
+ xy(x + y)(ux + uy)

2
− (x + y)


x2

u2
y

2
+ y2u2

x


dθ ≥ 0 (3.30)

where we use

|x(x + y)uuy| = (x + y)|u · xuy| ≥ (x + y)u2/2 + (x + y)x2u2
y/2,

instead of (3.27). By (3.29) and (3.30) and the arbitrariness of τ , we get that u ≡ 0 inΩ3

Ω6 and Theorem3.3 is proved. �

Then we give the uniqueness onΩ2 andΩ5, that is, we have:

Theorem 3.3. Let u ∈ C2(Br(0)) be a solution of Eq. (3.1) satisfying the boundary condition (3.2); then u ≡ 0 inΩ2

Ω5.

Proof. Note that bothΩ2 andΩ5 are elliptic domains; by the Hopf maximum principle, one can show that u cannot reach
its positive maximum or negative minimum inΩ2, so it does this inΩ5. That is, u ≡ 0 inΩ2


Ω5 if (3.2) is satisfied. �

From Theorems 3.2–3.4 we have:

Theorem 3.4. Let u ∈ C2(Br(0)) be a solution of Eq. (3.1) satisfying the boundary condition (3.2); then u ≡ 0 in Br(0).
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