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Abstract Comparative analyses of codon/amino acid usage in
Leishmania major, Trypanosoma brucei and Trypanosoma cruzi
reveal that gene expressivity and GC-bias play key roles in shap-
ing the gene composition of all three parasites, and protein com-
position of L. major only. In T. brucei and T. cruzi, the major
contributors to the variation in protein composition are hydrop-
athy and/or aromaticity. Principle of Cost Minimization is fol-
lowed by T. brucei, disregarded by T. cruzi and opposed by L.
major. Slowly evolving highly expressed gene-products of L. ma-
jor bear signatures of relatively AT-rich ancestor, while faster
evolution under GC-bias has characterized the lowly expressed
genes of the species by higher GC12-content.
� 2007 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The trypanosomatid pathogens Leishmania major, Trypano-

soma brucei and Trypanosoma cruzi, often referred together as

‘‘Tritryps’’ [1], are three closely related kinetoplastid parasitic

protozoa that cause some of the most debilitating diseases of

humankind – cutaneous leishmaniasis, African sleeping sick-

ness and Chagas disease, respectively [2]. All three parasites

possess complex life-cycles alternating between the specific in-

sect vectors and the mammalian hosts, undergoing distinct

developmental changes in the insect vectors [3–5] that allow

them to infect the human host. In spite of considerable re-

search efforts, no vaccine could be approved yet for any of

the diseases caused by these pathogens and the drugs in use

are highly toxic [4] and prone to the development of drug resis-
Abbreviations: ORF, Open reading frame; RSCU, relative synonymous
codon usage; CAI, codon adaptation index; RAAU, relative amino
acid usage; GC3S, G + C content at synonymous codon sites excluding
ATG for Met and TGG for Trp; GC12, G + C content at first and
second codon sites; COA, correspondence analysis; VSG, variable
surface glycoprotein; DGF-1, dispersed gene family protein -1; MMW,
mean molecular weight; PCM, principle of cost minimization
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tance [6]. There is, therefore, an urgent need to understand the

biology of these pathogens and people are trying to exploit

their genome information [3–5] in this regard. L. major, T. bru-

cei and T. cruzi contain about 32.8, 26 and 55-megabase size

haploid genomes distributed in 36, 11 and 28 chromosomes

with an average GC-content of 59.7%, 46.4% and 51%, respec-

tively. Comparative analyses [1] revealed that the three gen-

omes share 6158 ortholog clusters of protein-coding genes,

which exist in large syntenic blocks containing 80% of the

T. brucei and 93% of the L. major genes. They also share a

number of molecular and biochemical characters [7]. Yet the

Tritryps differ in features like mode of transmission by differ-

ent insects, different target tissues, distinct disease pathogenesis

and use of different strategies of immune evasion [1]. In L. ma-

jor genes, a negative correlation exists between GC12 and GC3,

the origin of which has remained an open question [8]. For T.

brucei and T. cruzi, however, this correlation is positive. In an

effort to analyze the compositional similarities and divergence

within and across these genomes in further details, we report a

comparative multivariate analysis of their codon and amino

acid usage patterns.
2. Materials and methods

2.1. Genome sequence data
The nuclear genome sequence of L. major with 8272 protein-coding

genes was extracted from Sanger database (http://www.sanger.ac.uk/)
and those of T. cruzi and T. brucei with 12570 and 9068 from TIGR
Database (http://www.tigr.org). Annotations of the open reading
frames (ORFs) were cross-checked with GeneDB. To reduce the sam-
pling error, the genes with less than 100 codons, internal stop codons,
untranslated codons and pseudogenes were excluded from the analysis,
resulting in the datasets of 7806, 6084 and 11627 predicted ORFs for
L. major, T. brucei and T. cruzi, respectively.
2.2. Parameters used to identify the trends of variations within protein-
coding genes

For each ORF/ORF-products under study, the following parame-
ters were calculated: relative synonymous codon usage (RSCU), codon
adaptation index (CAI) [9], the G + C content at synonymous codon
sites excluding ATG for Met and TGG for Trp (GC3S), relative amino
acid usage (RAAU), G + C content at first and second codon sites
(GC12), average hydropathy [10], Aromaticity [11] and Alcoholicity
[12] of the gene-products.
2.3. Datasets of highly and lowly expressed genes
Datasets of putative highly and lowly expressed genes were prepared

taking genes from the two extreme ends of Axis1 of correspondence
analysis (COA) on RSCU in all the three parasites (Supplementary
Table 1). Highly expressed genes were characterized by high codon
ation of European Biochemical Societies.
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adaptation index (CAI) (most of them being experimentally character-
ized house-keeping genes), whereas the lowly expressed genes were
characterized by low CAI values (Supplementary Fig. 1).

2.4. Statistical analyses
Most analyses were performed using the program CodonW 1.4.2

(http://molbiol.ox.ac.uk/win95.codonW.zip). COA [13] was used to ex-
plore the variation of RSCU values and amino acid usage. In order to
detect the significant differences in codon and amino acid usage, 2 · 2
contingency table v2 method was used.

2.5. Estimation of non-synonymous and synonymous substitutions in
highly and lowly expressed genes

About 50 1:1:1 orthologs each for different species of Leishmania
(e.g., L. donovoni, L. braziensis, L. infuntum, etc.), T. brucei and T. cru-
zi were extracted using BLASTP for the potential highly expressed and
lowly expressed genes (lying at the two extremity of Axis1 of COA on
RSCU) of L. major. The homologs with e-values <e�50 were consid-
ered as orthologs. Pairwise alignments between the orthologs and the
estimation of the number of synonymous substitutions per synony-
mous site, dS and non-synonymous substitutions per non-synonymous
site, dN were carried out using ClustalW (with default settings) and
MEGA program (version 2.1) [14], respectively. Comparisons of the
substitution pattern between the datasets of highly and lowly expressed
genes were done using Kolmogorov–Smirnov statistical test.
3. Results

3.1. Major sources of variations in synonymous codon usages in

the three parasites

To identify the major sources of intra-species variations in

synonymous codon preferences in the three parasites, COA

on RSCU has been performed on L. major, T. brucei and T.

cruzi datasets, respectively. As shown in Table 1, Axis1 ac-

counts for 16.59%, 10.71% and 13.23% of the total variations

for RSCU in L. major, T. brucei and T. cruzi, respectively. In

all cases, Axis1 exhibits strong correlations with CAI and

GC3S, suggesting that the translational selection [9], along with

directional mutational pressure [15], play a major role in gov-

erning the synonymous codon usage. In L. major, Axis2 exhib-

its significant correlation with GT3S of the genes only, but in T.

brucei and T. cruzi, Axis2 is correlated not only with GT3S of

the genes, but also with the mean hydropathy, aromaticity and

Thr-content of the gene-products (Table 1).

In the Axis1–Axis2 plot of each genome under study, the

highly expressed genes are clustered at one end of Axis1

(Fig. 1a–c, red), indicating that these genes follow a distinct
Table 1
Major trends in synonymous codon usage in Leishmania major, Trypanosoma

Axis1

Total
variability

Source of
variation

Correlation coefficienta

(r-value)

L. major 16.59 CAI �0.96
GC3S �0.95

T. brucei 10.71 CAI 0.90
GC3S 0.85

T. cruzi 13.23 CAI �0.87
GC3S �0.94

aAll correlations are significant at P < 0.0001.
pattern of synonymous codon usage. A comparison of RSCU

values of the highly expressed genes with those of the lowly ex-

pressed genes shows that in all three parasites under study, a

similar subset of synonymous codons, mostly G-/C-ending,

(Table 2, bold letters) are preferred by the highly expressed

genes. In T. brucei and T. cruzi, the lowly expressed genes ex-

hibit relatively higher usage of A-/U-ending codons. But in L.

major, even the lowly expressed genes prefer to use G-/C-end-

ing codons for most of the amino acids, though the frequencies

of such codons are lower than those in the highly expressed

genes. This is in agreement with the higher GC-content of

the L. major genome (59.7%). As seen in Table 2, the extent

of bias in the synonymous codon usage is highest in L. major

and lowest in T. brucei, suggesting that among the three spe-

cies, the influence of translational selection is strongest in L.

major.

3.2. Distinct codon usage in variant surface glycoproteins

(VSG) in T. brucei and dispersed gene family protein-1

(DGF-1) in T. cruzi

All genes other than the highly expressed ones in L. major

constitute a single cluster in Fig. 1a, indicating that they follow

similar codon usage patterns. But in T. brucei (Fig. 1b), there

are three distinct clusters formed by (a) the highly expressed

genes (red), (b) the variant surface glycoproteins or VSG genes

(blue) and (c) the rest of genes (black). In T. brucei, the key to

survival is a huge repertoire of antigenically distinct VSGs,

expression patterns of which change periodically during a

chronic infection [16]. Switching the expressed VSG allows

the parasite population to escape immune killing mediated

by the antibodies produced against the previously expressed

VSG [17]. Segregation of VSGs (blue) in Fig. 1b indicates that

the synonymous base usage in VSGs is distinct from that in

other genes. Positive correlation of GC3S and CAI with Axis1

(Table 1) suggests that VSGs are characterized by relatively

low GC3S and CAI values (Fig. 1b), while the positive correla-

tion of GT3S with Axis2 (Table 1) implies significantly low

usage of G3/T3 in VSG genes (Supplementary Table 2).

T. cruzi does not use the strategy of antigenic variation for

host immune evasion, it rather exhibits a variable repertoire

of surface molecules and the highly polymorphic antigenic

components that represent a useful arsenal for host cell inva-

sion. The surface of T. cruzi is covered by different groups of

carbohydrate-rich mucin-like glycoproteins/mucin Tc MUCII
brucei and Trypanosoma cruzi as revealed by COA on RSCU of genes

Axis2

Total
variability

Source of
variation

Correlation coefficienta

(r-value)

4.58 GT3S 0.55

5.92 GT3S 0.59
Gravy 0.28
Aromaticity 0.27
Thr-content �0.27

6.68 GT3S 0.83
Gravy 0.18
Aromaticity 0.23
Thr-content �0.22

http://molbiol.ox.ac.uk/win95.codonW.zip


Fig. 1. Position of genes along Axis1 generated by COA on RSCU has
been plotted against Axis2 in: (a) Leishmania major; (b) Trypanosoma
brucei; and (c) Trypanosoma cruzi. Highly expressed genes, VSG,
mucin Tc MUCII proteins and DGF-1 are represented by red, blue
and green, respectively.
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that are differentially expressed during the mammal-dwelling

stages of parasite life cycle [18]. In the Axis1–Axis2 plot of

COA on RSCU of T. cruzi genes, the mucin Tc MUCII genes

(blue) merge with the moderately or lowly expressed genes,

indicating that the synonymous codon usage in these genes fol-

lows the general trend of the genome (Fig. 1c). However, there

is a group of genes, putatively encoding dispersed gene family

protein-1 (DGF-1) (green), which appears just above the clus-

ter of highly expressed genes (red) (Fig. 1c). As indicated by

the co-segregation of DGF-1 with highly expressed genes in

Fig. 1c, DGF-1s are also characterized by high GC3S and high

CAI values and their synonymous codon bias is similar to that

of the highly expressed genes (Supplementary Table 2), show-

ing thereby a potential for high expression.

3.3. Major sources of variations in amino acid usages – distinct

features of L. major proteins

In order to identify the major trends of intra-proteomic vari-

ations in amino acid composition in Tritryps, COA on amino
acid usage has been carried out for each species. The first two

axes generated by COA account for 44.48%, 16.63% and

19.91% of the total variations in L. major, T. brucei and T. cru-

zi, respectively (Table 3). A distinct feature of L. major is that

GC12 and CAI, along with Alcoholicity and Aromaticity con-

stitute the primary sources of intra-proteomic variations in

amino acid usage, mean Hydrophathy being the secondary fac-

tor. But in T. brucei and T. cruzi, the proteome composition

seems to be dictated, not by gene expressivity or GC-content,

but by the physicochemical factors like Hydropathy, Aroma-

ticity or Alcoholicity. In T. brucei, Gravy score and Aromatic-

ity, both act as the primary sources of variation, but in T.

cruzi, Gravy score alone is the primary source of such varia-

tion, Aromaticity and Alcoholicity of proteins being the sec-

ondary sources (Table 3).

In consistence with these observations, highly expressed

genes (red) of L. major cluster at the extreme right end of Axis1

in the Axis1–Axis2 plot of COA on amino acid usage (Fig. 2a),

whereas in T. brucei and T. cruzi, highly expressed genes merge

with the main cluster of gene-products (Fig. 2b, c). VSGs

(blue) of T. brucei appear towards the right of the highly ex-

pressed genes (Fig. 2b). As can be seen from the Supplemen-

tary Table 3, VSGs are characterized by exceptionally high

frequencies of Ala, Thr, Asn and Lys and low frequencies of

Val, Arg, Met, etc. In T. cruzi (Fig. 2c), the cluster of highly

expressed genes (red) is well segregated from the mucin Tc

MUCII proteins (blue) and the DGF-1 (green), indicating that

the highly expressed genes differ appreciably from other two

groups of proteins in amino acid composition (Supplementary

Table 3).

Fig. 2a and Table 3 together suggest that the highly ex-

pressed genes of L. major are characterized by relatively low

GC12, low Alcoholicity and high Aromaticity. These were

not expected because (i) L. major is a relatively GC-rich organ-

ism with average GC-content 59.7% and (b) according to the

principle of cost minimization (PCM) [19], the highly ex-

pressed genes of most of the unicellular organisms including

parasitic ones [20] often prefer to use residues having low aro-

maticity and low mean molecular weight (MMW). Our analy-

sis reveals that the CAI values of L. major genes exhibit

significant positive correlations with Aromaticity and MMW

of the respective gene-products (r = 0.10 and 0.18, P < 0.001,

respectively), implying that L. major genes not only disregard

the PCM, they rather oppose the principle in a sense that the

highly expressed genes of this organism selectively use the res-

idues of high bioenergetic cost. In T. brucei, CAI values of the

genes exhibit negative correlations with MMW and Aromatic-

ity (r = �0.25 and �0.15, P < 0.001, respectively), implying

that the PCM is obeyed by this parasite, but in T. cruzi, neither

MMW nor Aromaticity bears any significant correlation with

CAI.

Figs. 1a and 2a indicate that the highly expressed genes of L.

major are characterized by lower GC12 and higher GC3S as

compared to other genes of the species, which is in accordance

with the negative correlation between GC12 and GC3 of its

genes [8]. Table 4 reveals that GC1 and GC2 of the highly ex-

pressed genes of L. major are similar to those of the highly and

lowly expressed genes of T. cruzi and T. brucei. But GC1/GC2

of the lowly expressed genes of L. major is significantly higher

from GC1/GC2 of all other groups of genes of Tritryps (Table

4). Fig. 3 shows the average amino acid frequencies in the

highly and lowly expressed genes of three parasites under



Table 2
RSCU values of different groups of genes of Leishmania major, Trypanosoma brucei and Trypanosoma cruzi

Amino acid Codon L. major T. cruzi T. brucei

HEGa LEGa HEG LEG HEG LEG

Phe UUU 0.25 1.13c 0.93 1.68c 0.67 1.42c

UUC 1.75b 0.87 1.07b 0.32 1.33b 0.58

Leu UUA 0.01 0.31c 0.08 1.17c 0.20 1.25c

UUG 0.20 1.00c 0.71 1.52c 0.95 1.36c

CUU 0.38 1.20c 0.78 1.68c 1.41 1.33
CUC 1.49b 1.28 0.97b 0.46 1.49b 0.69
CUA 0.08 0.46c 0.08 0.45c 0.33 0.54c

CUG 3.85b 1.76 3.38b 0.73 1.63b 0.83

Ile AUU 0.43 1.27c 1.12 1.75c 1.26 1.42c

AUC 2.53b 1.20 1.60b 0.42 1.50b 0.46
AUA 0.05 0.53c 0.28 0.83c 0.23 1.12c

Val GUU 0.31 0.84c 0.60 1.54c 0.96 1.38c

GUC 0.90 0.93 0.60b 0.49 0.76b 0.47
GUA 0.08 0.54c 0.10 0.74c 0.41 0.83c

GUG 2.71b 1.68 2.70b 1.23 1.88b 1.33

Ser UCU 0.54 1.05c 0.37 1.59c 0.98 1.19c

UCC 1.69b 0.85 1.02b 0.87 1.34b 0.73
UCA 0.07 0.81c 0.33 1.34c 0.73 1.14c

UCG 1.79b 1.18 1.79b 0.57 0.99b 0.58
AGU 0.14 0.69c 0.51 1.03c 0.67 1.45c

AGC 1.76b 1.42 1.99b 0.59 1.29b 0.91

Pro CCU 0.27 0.95c 0.42 1.25c 0.78 1.28c

CCC 0.99b 0.76 1.02b 0.63 1.32b 0.77
CCA 0.15 0.97c 0.51 1.46c 0.89 1.31c

CCG 2.59b 1.31 2.04b 0.66 1.01b 0.64

Thr ACU 0.21 0.75c 0.36 0.99c 0.72 1.11c

ACC 1.19b 0.90 0.80b 0.71 0.95b 0.62
ACA 0.22 1.18c 0.39 1.53c 1.00 1.48c

ACG 2.38b 1.18 2.45b 0.77 1.33b 0.78

Ala GCU 0.45 0.88c 0.68 1.09c 1.02 1.24c

GCC 1.49b 0.95 0.91b 0.72 1.18b 0.62
GCA 0.14 1.00c 0.40 1.38c 0.79 1.35c

GCG 1.92b 1.17 2.01b 0.80 1.01b 0.79

Tyr UAU 0.09 0.74c 0.28 1.31c 0.58 1.27c

UAC 1.91b 1.26 1.72b 0.69 1.42b 0.73

His CAU 0.16 0.69c 0.34 1.29c 0.53 1.16c

CAC 1.84b 1.31 1.66b 0.71 1.47b 0.84

Gln CAA 0.05 0.66c 0.21 1.23c 0.55 1.27c

CAG 1.95b 1.34 1.79b 0.77 1.45b 0.73

Asn AAU 0.11 0.76c 0.36 1.37c 0.58 1.22c

AAC 1.89b 1.24 1.64b 0.63 1.42b 0.78

Lys AAA 0.04 0.67c 0.37 1.27c 0.46 1.20c

AAG 1.96b 1.33 1.63b 0.73 1.54b 0.80

Asp GAU 0.36 0.90c 0.43 1.41c 0.82 1.35c

GAC 1.64b 1.10 1.57b 0.59 1.18b 0.65

Glu GAA 0.10 0.66c 0.35 1.28c 0.62 1.19c

GAG 1.90b 1.34 1.65b 0.72 1.38b 0.81

Cys UGU 0.09 0.69c 0.32 1.28c 0.62 1.20c

UGC 1.91b 1.31 1.68b 0.72 1.38b 0.80

Arg CGU 0.60 1.02c 0.94 1.48c 1.69b 0.94
CGC 4.82b 1.77 2.44b 0.64 2.85b 0.44
CGA 0.06 0.98c 0.44 1.12c 0.38 0.79c
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Table 2 (continued)

Amino acid Codon L. major T. cruzi T. brucei

HEGa LEGa HEG LEG HEG LEG

Arg CGG 0.36 1.03c 1.07b 0.69 0.66b 0.55
AGA 0.03 0.53c 0.21 1.23c 0.10 1.81c

AGG 0.14 0.68c 0.90b 0.83 0.32 1.47c

Gly GGU 0.73 0.99 0.75 1.32c 1.64b 1.15
GGC 2.92b 1.46 2.07b 0.75 1.23b 0.57
GGA 0.08 0.74c 0.32 1.24c 0.59 1.57c

GGG 0.28 0.81c 0.86b 0.69 0.54 0.71c

Bold letters: The codon optimally used by a particular amino acid residue.
aHEG and LEG: Groups of potential highly and lowly expressed genes taken from two extreme ends of axis1 of COA of RSCU of genes in the
respective species.
bCodons having significantly higher frequencies in HEG compared to LEG (P < 0.001).
cCodons having significantly higher frequencies in LEG compared to HEG (P < 0.001).

Table 3
Major trends in amino acid usage in Leishmania major, Trypanosoma brucei and Trypanosoma cruzi as revealed by COA on amino acid usage of the
encoded proteins

Axis1 Axis2

Total
variability

Sources of
variation

Correlation coefficienta

(r-value)
Total
variability

Sources of
variation

Correlation coefficienta

(r-value)

L. major 30.21 GC12 �0.86 14.27 Aromaticity 0.67
CAI 0.44 Gravy 0.51
Alcoholicity �0.78
Aromaticity 0.53

T. brucei 10.71 Gravy �0.82 5.92 Alcoholicity 0.56
Aromaticity �0.76

T. cruzi 13.23 Gravy �0.68 6.68 Aromaticity �0.78
Alcoholicity 0.63

aAll correlations are significant at P < 0.0001.
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study. Frequencies of many amino acids differ widely in the

highly and lowly expressed genes of L. major and in some

cases, the values come at the two extreme ends (Fig. 3, pink

square and triangle). Fig. 3 also shows that the frequencies

of residues encoded by AU-rich codons such as Phe, Ile, Tyr,

Asn and Lys are significantly lower, but those of Pro, Ala

and Ser are higher in the lowly expressed genes of L. major

than the lowly expressed genes of two trypanosomes.

3.4. Greater conservation of highly expressed genes

Estimation of dN, dS and dN/dS on the orthologs of highly

and lowly expressed genes of L. major and other species of

Leishmania and those of L. major–T. brucei, L. major–T. cruzi

and T. brucei–T. cruzi (Table 5) shows that in all three species,

both dN and dN/dS values are significantly lower for the highly

expressed genes than the lowly expressed genes, suggesting that

the non-synonymous codon positions of the highly expressed

genes are more conserved than their lowly expressed counter-

parts. This means that the amino acid composition of the

highly expressed genes of Tritryps is closer to the ancestor.

Therefore, a plausible reason of the AT-richness of the highly

expressed genes of L. major as compared to the lowly ex-

pressed genes of the same species could be that they have been

derived from a relatively AT-rich ancestor and the lowly ex-

pressed genes, being evolved at a faster rate under increasing

GC-bias, have become GC-richer than their highly expressed

counterparts. The higher GC1/GC2-content of the lowly ex-

pressed genes of L. major as compared to those of T. brucei

and T. cruzi, could be due to stronger mutational bias in L.

major towards increasing GC. That the GC-bias in Leishmania
is stronger than that in Trypanosomes is apparent from appre-

ciably higher GC3-content of both highly and lowly expressed

genes of the former than those of the later (Table 4).

There is no significant difference in dS values of the highly

and lowly expressed genes in Tritryp lineage. This was unex-

pected because the highly expressed genes usually exhibit sig-

nificantly lower dS than the respective lowly expressed genes

in the organisms under translational selection [21].

It is interesting to note that dS values of T. cruzi vs L. major

is significantly lower than those of T. brucei vs T. cruzi or T.

brucei vs L. major (Table 6). This means that since their sepa-

ration from the Leishmania lineage [22], T. brucei has deviated

at the synonymous codon positions at much faster rate than T.

cruzi. However, the dN value of T. brucei vs T. cruzi is signif-

icantly lower than that of T. brucei vs L. major and T. cruzi

vs L. major (Table 6), indicating that the protein sequences

in African and American trypanosomes have not been diverted

much since their separation from the common ancestor.
4. Discussion

The present study reveals the major differences between the

selection forces shaping the gene/protein composition of Tritr-

yps. In L. major, not only the synonymous codon usage, but

also the amino acid variation is dictated by mutational bias

and translational selection. On contrary, in T. brucei and T.

cruzi, the physicochemical factors like hydropathy or aroma-

ticity govern the amino acid variation solely and even the syn-

onymous codon usage partially (the major contribution to



Fig. 2. Position of genes along Axis1 generated by COA on amino acid
usage has been plotted against Axis2 in: (a) Leishmania major; (b)
Trypanosoma brucei; and (c) Trypanosoma cruzi. Highly expressed
genes, VSG, mucin Tc MUCII proteins and DGF-1 are represented by
red, blue and green, respectively.

Fig. 3. Amino acid composition of highly and lowly expressed genes of
Tritryps. Pink, blue, green triangles and squares represent highly and
lowly expressed genes of Leishmania major, Trypanosoma brucei and
Trypanosoma cruzi, respectively.
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synonymous codon usage, however, come from GC-bias and

translational selection).

Lower values of GC12, dN and dN/dS of the highly expressed

genes of L. major, as compared to their lowly expressed coun-

terparts suggest that the highly expressed gene-products are

closer to their ancestral composition, which might have been

relatively rich in AT-content, while the lowly expressed gene-

products have evolved at faster rate under increasing GC-bias.
Table 4
GC-content of highly and lowly expressed genes of Tritryps at three codon

Highly expressed genes

Leishmania major Trypanosoma brucei Trypa

GC 0.62 0.54 0.57
GC1 0.58 0.57 0.58
GC2 0.41 0.40 0.40
GC3 0.85 0.63 0.73
Due to purifying selection, the GC-bias could not affect much

the non-synonymous sites of the highly expressed genes of L.

major, but as the translational selection acts more strongly

on the synonymous sites of the highly expressed genes than

that of the lowly expressed genes and as the optimal codons

of L. major are mostly G-/C-ending, the synonymous sites of

the highly expressed genes have evolved towards higher GC-

values. As a consequence, the highly expressed genes of L. ma-

jor are characterized by lower GC12 and higher GC3 than their

lowly expressed counterparts and probably due to this, a sig-

nificant negative correlation has been developed between

GC12 and GC3 of L. major genes [8]. In T. brucei and T. cruzi,

the GC-bias was not strong enough to create a significant dif-

ference in GC12 composition of the highly and lowly expressed

genes. Furthermore, proteins in L. major could afford to evolve

against the principle of cost minimization, and T. cruzi pro-

teins could ignore it, but T. brucei has evolved in accordance

with the principle. It is, however, not clear why the synony-

mous sites of the highly expressed genes, which are under

translational control, are evolving at almost same rate as the

lowly expressed genes in all three organisms under study.

Appreciable differences in codon/amino acid usage patterns

also exist among specific groups of genes/gene-products of

the African and American trypanosomes. Most interesting

among them are the diverse trends in codon and/or amino acid

usage in the immunogenic arsenals of the two trypanosomes,

i.e., the VSGs of T. brucei and mucin Tc MUCII proteins of
positions

Lowly expressed genes

nosoma cruzi L. major T. brucei T. cruzi

0.61 0.51 0.51
0.61 0.57 0.57
0.45 0.42 0.42
0.77 0.52 0.55



Table 5
Estimation of dN, dS, dN/dS between orthologs of highly and lowly expressed genes of Leishmania major

dN dS dN/dS

HEGa LEGa Db HEG LEG D HEG LEG D

L. major–Leishmania sp. 0.028 0.049 0.361** 0.146 0.204 0.321* 0.203 0.232 0.306*

L. major–Trypanosoma brucei 0.167 0.362 0.596** 0.575 0.558 0.249 0.337 0.771 0.545**

L. major–Trypanosoma cruzi 0.175 0.354 0.666** 0.460 0.501 0.242 0.411 0.830 0.500**

T. brucei–T. cruzi 0.108 0.270 0.667** 0.614 0.630 0.326 0.206 0.537 0.589**

aHighly and lowly expressed genes, respectively.
bMaximum difference between the cumulative distributions.
*P < 0.01 in Kolmogorov–Smirnov test.
**Significance value P < 0.001.

Table 6
Estimation of number of synonymous substitutions per synonymous
site (dS) and number of non-synonymous substitutions per non-
synonymous site (dN)

Ortholog pairs Mean dS Mean dN Mean dN/dS

T. brucei vs T. cruzi 0.63 0.21 0.51
T. brucei vs L. major 0.60 0.28 0.56
T. cruzi vs L. major 0.55 0.27 0.61
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T. cruzi. Among the other fascinating observations made in the

present study are the significant contributions of DGF-1 to in-

tra-genomic variations in codon/amino acid usages in T. cruzi.

Frequent occurrence of putative transmembrane domains, or-

dered globular structure and EGF-like domain signature of

DGF-1 (data not shown) suggest that they might have been

associated with some essential membrane function, important

for creating host–parasite interactions.

Another observation that deserves mention is the higher rate

of synonymous substitution between the T. cruzi–T. brucei

orthologs than that between T. cruzi–L. major orthologs.

The observation, though unanticipated, is in accordance with

the phylogenetic study of 18S rRNA sequences [23], which

proposed that since their divergence from the Leishmania line-

age, T. brucei and the other mammalian tsetse-transmitted try-

panosomes might have been evolving several times faster than

T. cruzi and its relatives.
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