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Abstract

LetH be a properly discontinuous group of isometries of a negatively curved (Gromov hyperbolic)
metric spaceX. We give equivalent conditions onH to be quasi-convex. The main application of
this is to give alternate definitions of quasi-convex, or rational subgroups of negatively curved (word
hyperbolic) groups. 2001 Elsevier Science B.V. All rights reserved.

Keywords:Rational; Quasi-convex; Geometrically finite; Convex cocompact; Word hyperbolic;
Negatively curved; Conical limit point; Horospherical limit point

AMS classification:Primary 20F32, Secondary 57N10

1. Introduction

The main purpose of this paper is to extend the results of Bowditch [4,5] about equivalent
definitions of geometric finiteness to the setting of a general negatively curved (Gromov
hyperbolic) metric space. Because of problems with finite generation [3], we will restrict
ourselves to the case where there are no parabolic elements. In the cases already covered
by Bowditch, quasi-convex will be the same as geometrically finite without parabolics. All
of the actions we are interested in areproperly discontinuous(a setS of homeomorphisms
acts properly discontinuously onX if for each compactK ⊂X, {g ∈ S: g(K)∩K 6= ∅} is
finite).

Main Theorem. For X a negatively curved space andH a properly discontinuous group
of isometries ofX, the following conditions are equivalent.

(1) For anya ∈X, the setHa, of translates ofa byH is quasi-convex.
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(2) H acts cocompactly on the weak convex hull of its limit setΛH ⊂ ∂X (the union of
all lines inX joining limit points ofH ).

(3) If Ω is the domain of discontinuity ofH acting on∂X, thenH acts cocompactly on
X ∪Ω .

(4) All limit points ofH are conical.
(5) All limit points ofH are horospherical.

We will show (2) ⇒ (1)⇒ (4) ⇒ (5)⇒ (3)⇒ (2). The implication(2)⇒ (4) is
contained in [9].

Definition. If H satisfies any of the above we sayH is quasi-convex.

The most important application of this result is in the case whereH is a subgroup of a
negatively curved groupG, and soH acts properly discontinuously on the Cayley graph of
G, where (1) is the standard definition of what has been called a rational or quasi-convex
subgroup. In a negatively curved group, there are never parabolic subgroups, so the result
extends the results of Bowditch fully in this case. The proof that(1)⇒ (2) is similar to the
proofs in [20,13,15] which deal only with the case whereH is a subgroup of a negatively
curved groupG.

Condition (5) is rather interesting. It is known in the case of a Kleinian group, that if
every limit point is bounded parabolic or horospherical, then the group is geometrically
finite. The author has been unable to find an explicit statement of this result, but it is
implicit in [16, 2.6.1, 2.6.2]. This will also be true in the setting of [5] when the group is
acting on a simply connected complete manifold of pinched negative curvature. This will
follow from [5] by replacing conical with horospherical and using Lemma 7 which we
prove latter. (In fact, the only place which Bowditch uses conical limit points is to get the
corresponding result for conical limit points.)

The second possible application of this result is whenM is a manifold (orbifold)
with π1(M) negatively curved as a group. This need not imply thatM has a metric of
nonpositive curvature. This result will give us information about the universal cover of
M acted on by subgroups ofπ1(M) and also by other groups of homeomorphism which
preserve the structure obtained fromM.

Also we show that ifH is a quasi-convex group of isometries ofX, thenH is negatively
curved as a group and∂H (as a group) is homeomorphic toΛH . We also extend the results
of [20,18,13,15] to this slightly more general setting. In particular:

Corollary. If G is a properly discontinuous group of isometries of a negatively curved
metric spaceX andH <G is a quasi-convex group of isometries ofX with ΛH =ΛG,
thenG is quasi-convex andH is of finite index inG.

Proof. The fact thatG is quasi-convex follows from (2). The fact thatH is of finite index
in G follows from the fact that they both act cocompactly and properly discontinuously
on WCH(ΛG). That is ifK is a compact set whose translates underH coverWCH(ΛG),
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then every element ofG can be written as an element ofH times an element of the set
{g ∈G: g(K) ∩K 6= ∅} which is finite. 2

2. Negatively curved spaces

Let X be a proper geodesic metric space with metricd . When the words interval,
segment, ray, line, triangle, polygon, etc. are used it is to be understood that they are
geodesic. We will assume that all intervals (rays, lines, or segments) areparameterized
by arc length. Unless otherwise stated, closed rays will have domain[0,∞).

Definition. A triangle inX is said to beδ-thin if any point on the triangle is withinδ of
one of the other two sides of the triangle.

Definition. We sayX is negatively curvedif there is aδ > 0 such that all triangles inX
areδ-thin.

Notation. For a ∈ X we defineB(a,n) ≡ {x ∈ X: d(x, a) 6 n}. For A ⊂ X we define
Nbh(A,n)≡ {x ∈X: d(x,A)6 n}.

Remark. For the remainder of the paper,X will be a proper geodesic negatively curved
metric space with thin triangle constantδ, andH will be a properly discontinuous group
of isometries ofX.

Definition. Two rays R,S ⊂ X are equivalent if there is anN > 0 such thatR ⊂
Nbh(S,N).

Remark. If R andS are equivalent rays then, forr � 0, d(R(r), S)6 2δ.

Definition. We define∂X to be the set of equivalence classes of rays. The elements of∂X

are calledpoints at∞.

Remark. If all triangles areδ-thin, then alln-gons are(n − 2)δ-thin and idealn-gons,
n-gons with one or more vertices on∂X, are 2(n− 2)δ-thin.

Definition. Let T be a closed set ofX, andx ∈X. Define

πT (x)≡
{
t ∈ T : d(t, x)= d(T , x)}.

Notice that in generalπT (x) is not a single point. Fort ∈ T we define

π−1
T (t)≡ {x ∈X: t ∈ πT (x)

}
and we extend this to∂X by definingx ∈ ∂X to be inπ−1

T (t) if and only if there is some
rayR representingx with R ⊂ π−1

T (t).
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Definition. Let T be some geodesic interval (segment, ray, or line) andt ∈ domainT .
Define thehalf-space

H(T , t)≡ {x ∈X: T (a) ∈ πT (x) for somea > t
}
.

Define the correspondingdisk at∞,

D(T , t)≡ {[S] ∈ ∂X: lim
s→∞d(S(s),X−H(T , t))=∞

}
.

The disks defined above form the basis of a natural topology (equivalent to Gromov’s)
on ∂X so that∂X is compact metrizable [2], and in the case where the isometry group of
X acts cocompactly onX, ∂X is finite-dimensional [19]. Also the union of a half-space
with its corresponding disk forms a neighborhood of every point of the disk in the natural
compactificationX≡X ∪ ∂X of X.

Definition. For A ⊂ X we define thelimit set of A, Λ(A) ≡ A ∩ ∂X, whereA is the
closure ofA in X. Notice that the limit set is always closed.

Remark. A point at∞, x, is inΛA if and only if for anyb ∈X there is a sequence[b, an]
of closed intervals withan ∈A such that[b, an] converges, on compact subsets, to a rayR

emanating fromb with [R] = x [7, 3.10, 3.15, and 3.17].

Remark. If (xi) and (yi) are sequences of elements ofX with d(xi, yi) 6 N for some
fixedN , and ifxi→ x ∈ ∂X, thenyi→ x by [7, 3.16].

Thus the following is well defined:

Definition. If G is a group of isometries ofX then ΛG ≡ ΛGa where a ∈ X and
Ga ≡ {g(a): g ∈G}.

Definition. LetX0 andX1 be metric spaces. A relationR⊂X0×X1 is a quasi-Lipschitz
equivalence if the following three conditions are satisfied for someK > 0 for i = 0,1:

(1) ∀xi ∈Xi , d(xi,πi(R))6K.
(2) ∀xi ⊂Xi , πi ◦ π−1

|1−i| ◦ π|1−i| ◦ π−1
i (xi)⊂ B(xi,K).

(3) ∀Ai ⊂Xi ,K diam(Ai)+K > diam(π|1−i| ◦ π−1
i (Ai)).

The first condition just says that any point ofXi is close toπi(R). The second says that if
we move a point from one space to the other and back, we are close to where we started.
The third says that the metrics are Lipschitz compatible through the relation. In this case
we sayX0 andX1 are quasi-isometric. It can be shown that this defines an equivalence
relation on proper geodesic metric spaces.

Theorem 1 [10]. Let W and Y be proper geodesic metric spaces withY negatively
curved. IfW is quasi-isometric to a subspaceZ of Y (whereZ need be neither proper
nor geodesic), thenW is negatively curved, and the quasi-Lipschitz equivalence gives a
topological embedding of∂W ontoΛZ.
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Corollary. If the negatively curved spacesW and Y are quasi-isometric, then the
corresponding quasi-Lipschitz equivalence gives rise to natural homeomorphisms between
∂W and∂Y , so that we can define the boundary of a quasi-isometric equivalence class of
negatively curved spaces.

Definition. The weak convex hullof a setA ⊂ X, denotedWCH(A), is the union of all
intervals (segments, rays, or lines) ofX which have both endpoints inA.

Definition. A set A ⊂ X is quasi-convex(ε) if the weak convex hullWCH(A) ⊂
Nbh(A, ε). We sayA is quasi-convexif it is quasi-convex(ε) for someε > 0.

Remark. It is easily shown that for any quasi-convex setA ⊂ X, A ∪ Λ(A) is quasi-
convex(ε), for someε > 0.

Definition. An setA⊂X is ∂-quasi-convex(ε) if ΛA 6= ∅ andWCH(ΛA)⊂Nbh(A, ε).

Remark. It should be clear that ifH is a group of isometries ofX such thatHa is quasi-
convex for somea ∈ X, then by thin quadrilaterals the same will be true for any other
x ∈X.

Remark. It should also be clear thatHa is ∂-quasi-convex for somea ∈X if and only if
H acts cocompactly onWCH(ΛH).

The following lemma is from [19].

Lemma 2. The weak convex hull of a setA⊂X is quasi-convex(4δ).

We are now ready for the first implication in the proof of the main theorem.

(2)⇒ (1)

Proof. We wish to show thatHa is quasi-convex for some (equivalently any)a ∈X. We
are given thatH acts cocompactly onWCH(ΛH) or equivalently thatHa is ∂-quasi-
convex(ε) for someε > 0. I.e.,WCH(ΛH)⊂ Nbh(Ha, ε). LetD = d(a,WCH(ΛH)), so
there is a lineL with endpoints inΛH and somex ∈ L with d(x, a) = D. SinceΛH
is invariant under the action ofH , it follows that for anyh ∈ H , h(x) ∈ h(L) where
the endpoints ofh(L) are inΛH , and of coursed(h(x),h(a)) = D. Since[a,h(a)] ⊂
Nbh([x,h(x)],D + 2δ) by [7], and since by Lemma 2[x,h(x)] ⊂ Nbh(WCH(ΛH),4δ),
it follows that[a,h(a)] ⊂Nbh(Ha, ε+D + 6δ). ThusHa is quasi-convex. 2
Definition. A limit point p of A⊂X is called aconical limit point ofA if there is someN
such that for all raysR representingp, Nbh(R,N)∩A 6= ∅. It follows that Nbh(R,N)∩A
is infinite for allR representingp. For a groupG of isometries ofX, andp ∈ΛH , thenp
is aconical limit point ofH if p is a conical limit point ofHa for some (equivalently any)
a ∈X.
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Remark. Clearly (1) implies (4). That is, for anyp ∈ΛH , there is a sequence(hi)⊂H
such that[a,hi(a)] → R, a ray representingp. By (1), this ray will be contained in a
uniform neighborhood ofHa, and thereforep is conical.

Definition. LetR be a ray inX emanating from the pointy ∈X. ThefunnelaboutR is

F(R)≡ {x ∈X: d(x,R)6 d(πR(x), y)
}
.

ForA⊂X we sayp ∈ΛA is a funneled limit point ofA if for any rayR representingp,
F(R)∩A 6= ∅. If G is a group of isometries ofX, we definep ∈ΛG to be afunneled limit
point ofG if p is a funneled limit point ofGa for somea. By [7, 3.16], this is independent
of choice ofa.

It is obvious that all conical limit points are funneled, however the converse is false.

Lemma 3. There are funneled limit points which are not conical.

Proof. Let F = F(x, y), the free group on{x, y}, andT the simplicial tree which is the
Cayley graph ofF with generating set{x, y}. Choose two sequences of positive integers
(ni), (mi) such thatmi < ni < mi+1 for all i > 0 andmi/ni→ 0. LetB = {xni yxmi }, and
G<F the subgroup generated byB. The fact that, in any freely reduced word inB, none
of they terms will cancel, shows thatG is free with basisB andxn /∈G for n 6= 0. Since
〈x〉 is a quasi-convex subgroup ofF , it follows by Theorem 13 thatx∞, the point at infinity
on the positivex-axis, is not a conical limit point ofG. On the other hand, any ray which
representsx∞ has a subray starting at the vertexxn of T for somen. Sincemi/ni→ 0 it
follows that the corresponding funnel contains a vertexxni yxmi for somei. Thusx∞ is a
funneled limit point ofG. 2
Definition. LetR,S be rays with domains[a,∞) and[b,∞), respectively. We sayR and
S asymptoticly fellow travel(N ), denotedR ∼N S, if for all t � 0, d(R(t), S(t))6N .

Notice that∼N is not an equivalence relation as it is not transitive, however we have the
following lemma of [7].

Lemma 4. If R,S are equivalent rays, then there existsa ∈ R and an isometry
ρ: [a,∞)→[0,∞) so that the geodesic raysR andS ◦ ρ asymptoticly fellow travel(6δ).

Definition. LetR : [0,∞)→X be a ray. Define the horoball corresponding toR to be

H(R)≡
⋃
S∼6δR
b>0

S
([b,∞)).

Notice that in the case whereX is hyperbolicn-space, this is in fact the 6δ neighborhood
of the horoball about the endpoint ofR through the pointR(0) (which is itself a horoball).
We define a pointx ∈ ∂X to be a horospherical limit point ofH if the setHa meets every
horoball aboutx.
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Remark. It is an easy exercise to show that for any rayR, F(R)⊂H(R). Namely given
any pointp ∈ F(R) we construct a ray emanating fromp equivalent toR [7] and from the
definition ofF(R), it soon follows thatp ∈H(R).

Lemma 5. Let R : [0,∞)→ X be a ray, andR′ = R|[12δ,∞) reparameterized to have
domain[0,∞).H(R′)⊂ F(R).

Proof. Let a ∈ H(R′), so there exists a rayS emanating froma so that there are points
s ∈ S andr ∈ R′ with d(r, s)6 6δ and 0� d(s, a)6 d(r,R(12δ)) (remember thatR(12δ)
is the first point ofR′). Letp ∈ πR(a). As [p,a] moves geodesically away fromR, if z is
the pointδ units fromp on [p,a], thenz is no more thanδ from a point of[r, a] which
in turn is no more thanδ from a point of[a, s] ∪ [s, r]. Thusd(p, [a, s] ∪ [s, r]) 6 3δ.
Choosings very far from a we have someq ∈ [a, s] with d(q,p) 6 3δ. It follows by
the triangle inequality that|d(r,p) − d(s, q)| 6 9δ and that|d(a,p)− d(a, q)| 6 3δ. It
follows that |d(s, a)− [d(r,p) + d(p,a)]| 6 12δ. However, sincea ∈ H(R′), d(s, a) 6
d(r,R(12δ)), so d(r,p) + d(p,a) 6 d(r,R(12δ)) + 12δ = d(r,R(0)). Sincep ∈ R it
follows thatd(p,a)6 d(p,R(0)) and soa ∈ F(R). 2
Corollary. The funneled limit points are exactly the horospherical limit points, and so
(4)⇒ (5).

Definition. Let H be a properly discontinuous set of isometries ofX containing the
identity. Choose0∈X, and letH0≡ {h(0): h ∈H }. SinceH is properly discontinuous,
H0 is closed and we may defineD = π−1

H0(0). Clearly for anyh ∈ H , h(D) = π−1
H0(h0).

DefineD= {h(D): h ∈H }.

Remark. By proper discontinuity and the definition ofD, D is locally finite onX.

Remark. Notice thatD ∩ X is star-like about0, that is if x ∈ D ∩ Γ then [x,0] ⊂ D.
Using thin triangles we see thatD ∩X is quasi-convex(δ).

Lemma 6. D is the closure ofD ∩X in X and so quasi-convex inX.

Proof. By proper discontinuity ofH , D ∩ X is closed inX, and by definition ofD, if
x ∈ ∂X∩D thenx is a limit point ofD∩X. Thus we need only show that ify ∈Λ(D∩X)
theny ∈ D. Take a sequence of pointsai ∈ D with ai → y. Some subsequence of the
sequence of segments[0, ai] will converge [7, 3.10] to a rayR which representsy and
R ⊂D ∩X by the fact thatD ∩X is star-like about0. Thus by definitiony ∈D. 2
Lemma 7. If y is a horospherical limit point ofH theny /∈⋃D.

Proof. By the corollary to Lemma 5, it suffices to show that no funneled limit point is
contained inD. Suppose to the contrary thatR ⊂D is a ray emanating from0 representing
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a funneled limit point ofH . By definition of funneled, there is ar ∈ R andx ∈ H0 such
thatd(0, r) > d(x, r) and sor /∈D which contradictsR ⊂D. 2
Definition. The domain of discontinuityΩ of H is defined to be∂X−ΛH . SinceΛH is
closed,Ω will be an open set of∂X.

By proper discontinuity ofH , D is locally finite onX. To show that it is also locally
finite onΩ we need the following technical results.

Lemma 8 [7]. For any intervalR, ΛH(R, r + 8δ)⊂D(R, r).

Lemma 9 [7]. For any intervalR, any geodesic interval joiningD(R, r + 8δ) to the
complement ofD(R, r) passes within2δ of the pointR(r + 4δ) ofR.

Lemma 10. Ω ⊂⋃D.

Proof. Let the rayR represent an element ofΩ . For somer > 0, H(R, r) ∩ H0= ∅.
Let A = πH0(B(R(r + 4δ),2δ)), sinceD is locally finite onX, A is a finite subset of
H0 and by Lemma 9,πH (H(R, r + 8δ))⊂ A. By Lemma 8 any sequence of points ofX
converging to the point represented byR will have a subsequence all of whose elements
project to a singleh(0) ∈A and thus the point ofΩ represented byR will be in h(D).

Corollary. D is locally finite onΩ .

Proof. Notice that in the proof of Lemma 10 we actually showed thatπH(D(R, r +
16δ))⊂ A. Thus only elements ofD of the formhD whereh(0) ∈ A hit D(R, r + 16δ),
and soD is locally finite onΩ sinceA was finite, andH properly discontinuous.2

This corollary provides an alternate proof of a result of Coornaert that the action of
a properly discontinuous group of isometries of a negatively curved space is properly
discontinuous onΩ , its domain of discontinuity [8].

Definition. Define the quotientsM =X/H andMΩ = (X ∪Ω)/H .

Theorem 11. If D ∩ΛH = ∅ thenMΩ is compact.

Proof. Let f :X ∪Ω→MΩ be the quotient map ofH . We know by Lemma 10 that the
translates ofD underH coverX ∪Ω , and sinceD ∩ΛH = ∅ we have thatD ⊂X ∪Ω .
SinceD is a compact set (Lemma 6),f is a continuous map, andf (D)=MΩ , the result
follows. 2
Corollary. (5)⇒ (3).

Proof. Use Lemma 7. 2
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We now complete the Main Theorem by showing that (3) implies (2).

(3)⇒ (2)

Proof. Let N = WCH(ΛH)/H . This is a closed subset ofM since it can be shown
(using [7, 3.10], for example) thatWCH(ΛH) is a closed set inX. SinceH acts properly
discontinuously,M is a metric space with the metric inherited fromX. Letyi be a sequence
of points inN. To show thatN is compact it suffices to show that some subsequence of the
yi converges inN. SinceN⊂MΩ andMΩ is compact by hypothesis, we may assume that
yi→ y ∈MΩ . It suffices to show thaty ∈M, sinceN is closed inM.

Supposey /∈M. Let z be a lift ofy toΩ . WCH(ΛH)∪ΛH is a closed set inX, and so
there is a open setU with z ∈ U so thatU ∩ (WCH(ΛH) ∪ΛH)= ∅. ProjectingU into
MΩ gives an open set containingy which missesN, and we have a contradiction.2

We now need the following result from [6].

Quasi-isomorphism Theorem. If X andY are geodesic metric spaces andG is a group
which acts properly discontinuously and cocompactly on both, thenX andY are quasi-
isomorphic.

Now that we have shown the equivalence of the different definitions of quasi-convex,
we will give a proof of the following result from [9].

Theorem 12. If H is a quasi-convex group of isometries of the negatively curved space
X, thenH is a negatively curved group andΛH ∼= ∂H and this homeomorphism isH
equivariant.

Proof. H is quasi-convex soH acts cocompactly onWCH(ΛH). Let

Y =Nbh
(
WCH(ΛH), ε

)
,

whereε� 0 so thatWCH(WCH(ΛH))⊂ Y . ClearlyY is a proper geodesic metric space
(since it is a closed path connected set in a proper geodesic metric space). Also notice that
Y , as a geodesic metric space, is quasi-isometric toWCH(ΛH), as a subspace ofX, under
the identity function ofWCH(ΛH). Thus from Theorem 1,Y is negatively curved with
∂Y ∼=ΛWCH(ΛH)=ΛH , and this homeomorphism isH equivariant, and of courseH
still acts cocompactly and properly discontinuously onY . It follows that any locally finite
Cayley graph ofH will be quasi-isometric toY (by the Quasi-isometry Theorem) and
so, wheneverH is finitely generated,H will be negatively curved. It is easy to show that
any group which acts cocompactly and properly discontinuously on a proper connected
metric space is finitely generated, and soH is finitely generated and therefore negatively
curved. 2

The following results are abstractions of results in [20,17,13,15]. See [1] for similar
results in the classical setting.
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Theorem 13. Let G be a properly discontinuous group of isometries of the negatively
curved spaceX andH,K < G. If p is a conical limit pointH , and ifK is quasi-convex
with p ∈ΛK, thenp is a conical limit point ofH ∩K.

Proof. Choosea ∈ X and a rayR emanating froma representingp. SinceK is quasi-
convex, forN � 0, R ⊂ Nbh(Ka,N). Sincep is a conical limit point ofH , for N � 0
we can choose a sequencehi ∈H so thatd(hi(a),R)6N andd(hi(a), hj (a)) > 4N for
i 6= j . Fix N large enough for both. Chooseki ∈K so thatd(ki(a), hi(a))6 2N . Define

C = {g ∈G: g(B(a,2N)) ∩B(a,2N) 6= ∅},
SinceB(a,2N) is compact andG is properly discontinuous, it follows thatC is a finite
subset ofG. Sinced(hi(a), ki(a)) 6 2N , it follows that d(a,h−1

i ki(a)) 6 2N and so
h−1
i ki ∈ C. Taking subsequences if necessary, we may assume (sinceC is finite) that all
h−1
i ki are equal to a singleg ∈ C. Thus for all i, h−1

1 k1 = h−1
i ki , or hih

−1
1 = kik−1

1 ∈
H ∩K. Noticed(hih

−1
1 (a), hi(a))= d(h−1

1 (a), a) and so there are infinitely many points
of H ∩ K (specificallyhih

−1
1 (a)) in Nbh(R′,N + d(h−1

1 (a), a) for any subrayR′ ⊂ R.
The result follows. 2
Corollary. Let G be a properly discontinuous group of isometries of the negatively
curved spaceX, andH,K < G be two quasi-convex groups of isometries ofX. Then
Λ(H ∩K)=ΛH ∩ΛK, andH ∩K will also be a geometric group of isometries.

Proof. Let J =H ∩K. ClearlyΛJ ⊂ΛH ∩ΛK, and so by using definition (4), it suffices
to show that everyp ∈ΛH ∩ΛK is a conical limit point ofJ . Apply Theorem 13. 2

Acknowledgement

I wish to thank the University of Southampton for their hospitality while working on this
paper in the Fall of 1995.

References

[1] J. Anderson, Intersections of analytically and geometrically finite subgroups of Kleinian groups,
Trans. Amer. Math. Soc. 343 (1994) 87–98.

[2] J. Alonso, T. Brady, D. Cooper, T. Delzant, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro,
H. Short, Notes on word hyperbolic groups, in: E. Ghys, A. Haefliger, A. Verjovsky (Eds.),
Group Theory from a Geometrical Viewpoint, World Scientific, Singapore, 1992.

[3] B. Bowditch, Discrete parabolic groups, J. Differential Geom. 38 (1993) 559–583.
[4] B. Bowditch, Geometric finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245–317.
[5] B. Bowditch, Geometric finiteness with variable negative curvature, Duke Math. J. 77 (1995)

229–274.
[6] J. Cannon, The theory of negatively curved spaces and groups, in: T. Bedford, C. Series (Eds.),

Hyperbolic Geometry and Ergodic Theory, Oxford University Press, Oxford, 1991, pp. 315–
369.



E.L. Swenson / Topology and its Applications 110 (2001) 119–129 129

[7] J. Cannon, E. Swenson, Recognizing constant curvature discrete groups in dimension 3, Trans.
Amer. Math. Soc. 350 (2) (1998) 809–849.

[8] M. Coornaert, Sur le domaine de discontinuité pour les groupes d’isométrie d’un espace
métrique hyperbolique, Rend. Sem. Mate. Univ. Cagliari 59 (1989) 185–195.

[9] M. Coornaert, Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de
Gromov, Pacific J. Math. 159 (1993) 241–270.

[10] M. Coornaert, T. Delzant, A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes
in Mathematics, Vol. 1441, Springer, Berlin, 1991.

[11] S.M. Gerston, H. Short, Rational subgroups of biautomatic groups, Ann. of Math. 134 (1991)
125–158.

[12] E. Ghy, P. de la Harpe, Sur les groupes hyperboliques d’apres Mikael Gromov, Progress in
Mathematics, Vol. 83, Birkhäuser, Zürich, 1990.

[13] R. Gitik, M. Mitra, E. Rips, M. Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1)
(1998) 321–329.

[14] M. Gromov, Hyperbolic groups, in: S. Gersten (Ed.), Essays in Group Theory, MSRI
Publication, Vol. 8, Springer, New York, 1987.

[15] I. Kapovich, H. Short, Greenberg’s Theorem for quasi-convex subgroups of word hyperbolic
groups, Canad. J. Math. 48 (6) (1996) 1224–1244.

[16] P. Nicholls, The ergodic theory of discrete groups, London Math. Soc. Lecture Note Ser.,
Vol. 143, Cambridge University Press, Cambridge, 1989.

[17] P. Susskind, G. Swarup, Limit sets of geometrically finite hyperbolic groups, Amer. J. Math. 114
(1992) 233–250.

[18] G. Swarup, Geometric finiteness and rationality, J. Pure Appl. Algebra 88 (1993) 327–333.
[19] E. Swenson, Boundary dimension in negatively curved spaces, Geom. Dedicata 57 (1995) 297–

303.
[20] E. Swenson, Limit sets in the boundary of negatively curved groups, Preprint, 1994.


