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Abstract

Let H be a properly discontinuous group of isometries of a negatively curved (Gromov hyperbolic)
metric spaceX. We give equivalent conditions oH to be quasi-convex. The main application of
this is to give alternate definitions of quasi-convex, or rational subgroups of negatively curved (word
hyperbolic) groups 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The main purpose of this paper is to extend the results of Bowditch [4,5] about equivalent
definitions of geometric finiteness to the setting of a general negatively curved (Gromov
hyperbolic) metric space. Because of problems with finite generation [3], we will restrict
ourselves to the case where there are no parabolic elements. In the cases already covered
by Bowditch, quasi-convex will be the same as geometrically finite without parabolics. All
of the actions we are interested in areperly discontinuouga setS of homeomorphisms
acts properly discontinuously ot if for each compacK C X, {g € S: g¢(K)NK # @} is
finite).

Main Theorem. For X a negatively curved space atifl a properly discontinuous group
of isometries of(, the following conditions are equivalent.
(1) Foranya € X, the setHa, of translates of: by H is quasi-convex.
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(2) H acts cocompactly on the weak convex hull of its limitA&t C d X (the union of
all lines in X joining limit points ofH).

(3) If £2 is the domain of discontinuity @f acting ond X, thenH acts cocompactly on
XUS2.

(4) All'limit points of H are conical.

(5) All limit points of H are horospherical.

We will show (2) = (1) = (4) = (5) = (3) = (2). The implication(2) = (4) is
contained in [9].

Definition. If H satisfies any of the above we sHyis quasi-convex

The most important application of this result is in the case wligis a subgroup of a
negatively curved grou@, and soH acts properly discontinuously on the Cayley graph of
G, where (1) is the standard definition of what has been called a rational or quasi-convex
subgroup. In a negatively curved group, there are never parabolic subgroups, so the result
extends the results of Bowditch fully in this case. The proof thats (2) is similar to the
proofs in [20,13,15] which deal only with the case whéféas a subgroup of a negatively
curved grougG.

Condition (5) is rather interesting. It is known in the case of a Kleinian group, that if
every limit point is bounded parabolic or horospherical, then the group is geometrically
finite. The author has been unable to find an explicit statement of this result, but it is
implicit in [16, 2.6.1, 2.6.2]. This will also be true in the setting of [5] when the group is
acting on a simply connected complete manifold of pinched negative curvature. This will
follow from [5] by replacing conical with horospherical and using Lemma 7 which we
prove latter. (In fact, the only place which Bowditch uses conical limit points is to get the
corresponding result for conical limit points.)

The second possible application of this result is whénis a manifold (orbifold)
with 71(M) negatively curved as a group. This need not imply thahas a metric of
nonpositive curvature. This result will give us information about the universal cover of
M acted on by subgroups afi (M) and also by other groups of homeomorphism which
preserve the structure obtained frah

Also we show that ifH is a quasi-convex group of isometriesXfthenH is negatively
curved as a group artdH (as a group) is homeomorphictbH . We also extend the results
of [20,18,13,15] to this slightly more general setting. In particular:

Corollary. If G is a properly discontinuous group of isometries of a negatively curved
metric spaceX and H < G is a quasi-convex group of isometriesXfwith AH = AG,
thenG is quasi-convex and is of finite index inG.

Proof. The fact thatG is quasi-convex follows from (2). The fact that is of finite index
in G follows from the fact that they both act cocompactly and properly discontinuously
onWCH(AG). That is if K is a compact set whose translates unblezoverWCH(AG),
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then every element off can be written as an element &f times an element of the set
{g € G: g(K)NK # @} which is finite. O

2. Negatively curved spaces

Let X be a proper geodesic metric space with metticWhen the words interval,
segment, ray, line, triangle, polygon, etc. are used it is to be understood that they are
geodesic. We will assume that all intervals (rays, lines, or segmentgasaeneterized
by arc length Unless otherwise stated, closed rays will have dorf@ino).

Definition. A triangle in X is said to bes-thin if any point on the triangle is withid of
one of the other two sides of the triangle.

Definition. We sayX is negatively curvedf there is as > 0 such that all triangles iX
ares-thin.

Notation. For a € X we defineB(a,n) = {x € X: d(x,a) < n}. For A Cc X we define
Nbh(A,n)={x € X: d(x, A) <n}.

Remark. For the remainder of the papeéX, will be a proper geodesic negatively curved
metric space with thin triangle constahtand # will be a properly discontinuous group
of isometries ofX.

Definition. Two rays R, S C X are equivalent if there is aw > 0 such thatR c
Nbh(S, N).

Remark. If R andS are equivalent rays then, fers>- 0,d(R(r), S) < 26.

Definition. We defined X to be the set of equivalence classes of rays. The elemef#s of
are calledpoints atoo.

Remark. If all triangles ares-thin, then alln-gons are(n — 2)§-thin and idealz-gons,
n-gons with one or more vertices 01X, are 2n — 2)§-thin.
Definition. Let T be a closed set of, andx € X. Define
nr(x)={teT:dt,x)=d(T,x)}.
Notice that in generatr (x) is not a single point. Fare T we define
i) ={xeX: tenr(x))

and we extend this t6 X by definingx € 9X to be innT_l(t) if and only if there is some
ray R representing with R C n;l(t).
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Definition. Let T be some geodesic interval (segment, ray, or line) maddomainT .
Define thehalf-space

H(T,t)={x € X: T(a) € 77 (x) for somea >1}.
Define the correspondirdjsk atoo,

D(T, 1) ={[S]€dX: Jim d(S(s). X — H(T, 1)) = oo}.

The disks defined above form the basis of a natural topology (equivalent to Gromov's)
ondX so thatd X is compact metrizable [2], and in the case where the isometry group of
X acts cocompactly oX, 9 X is finite-dimensional [19]. Also the union of a half-space
with its corresponding disk forms a neighborhood of every point of the disk in the natural
compactification = X U9 X of X.

Definition. For A ¢ X we define thdimit setof A, A(A) = A N dX, whereA is the
closure ofA in X. Notice that the limit set is always closed.

Remark. A pointatoo, x, isin AA if and only if for anyb € X there is a sequenge, a, |
of closed intervals witlu, € A such thafb, a,] converges, on compact subsets, to akay
emanating fronb with [R] = x [7, 3.10, 3.15, and 3.17].

Remark. If (x;) and(y;) are sequences of elementsXfwith d(x;, y;) < N for some
fixed N, and ifx; — x € 3X, theny; — x by [7, 3.16].

Thus the following is well defined:

Definition. If G is a group of isometries ok then AG = AGa wherea € X and
Ga={g(a): geG}.

Definition. Let Xp andX1 be metric spaces. A relatidR C X x X3 is a quasi-Lipschitz
equivalence if the following three conditions are satisfied for séme 0 fori =0, 1:

(1) Vxi € X;,d(x;, mi(R)) < K.

(2) Vx; C X, m; 07‘[&3” 0 TT|1—i| onfl(xi) C B(xi, K).

(3) VA; C X;, K diam(A;) + K > diam(mj1_; o ;1 (A)).
The first condition just says that any pointXf is close tor; (R). The second says that if
we move a point from one space to the other and back, we are close to where we started.
The third says that the metrics are Lipschitz compatible through the relation. In this case
we sayXp and X1 are quasi-isometric. It can be shown that this defines an equivalence
relation on proper geodesic metric spaces.

Theorem 1 [10]. Let W and Y be proper geodesic metric spaces withnegatively
curved. If W is quasi-isometric to a subspace of Y (whereZ need be neither proper
nor geodesiy; then W is negatively curved, and the quasi-Lipschitz equivalence gives a
topological embedding &fW onto AZ.
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Corollary. If the negatively curved spaced and Y are quasi-isometric, then the
corresponding quasi-Lipschitz equivalence gives rise to natural homeomorphisms between
aW andaY, so that we can define the boundary of a quasi-isometric equivalence class of
negatively curved spaces.

Definition. Theweak convex hulbf a setA c X, denotedNVCH(A), is the union of all
intervals (segments, rays, or lines)Xfwhich have both endpoints ia.

Definition. A set A ¢ X is quasi-convege) if the weak convex hullWCH(A) C
Nbh(A, ). We sayA is quasi-conveX it is quasiconvexe) for somes > 0.

Remark. It is easily shown that for any quasi-convex setc X, A U A(A) is quast
convexe), for somes > 0.

Definition. An setA C X is d-quasiconveXe) if AA # ¥ andWCH(AA) C Nbh(A, ¢).

Remark. It should be clear that iff is a group of isometries of such thatHa is quasi-
convex for somer € X, then by thin quadrilaterals the same will be true for any other
xeX.

Remark. It should also be clear thdfa is 9-quasi-convex for some € X if and only if
H acts cocompactly o&W/CH(AH).

The following lemma is from [19].
Lemma 2. The weak convex hull of a s&tC X is quasi-conveids).

We are now ready for the first implication in the proof of the main theorem.

2=

Proof. We wish to show that{a is quasi-convex for some (equivalently amy¥ X. We
are given thatH acts cocompactly ofWWCH(AH) or equivalently thatHa is d-quasi-
convexg) for somee > 0. l.e.,, WCH(AH) C Nbh(Ha, ¢). Let D = d(a, WCH(AH)), so
there is a lineL. with endpoints inAH and somex € L with d(x,a) = D. SinceAH
is invariant under the action aff, it follows that for anyh € H, h(x) € h(L) where
the endpoints ofi(L) are in AH, and of coursel(h(x), h(a)) = D. Sincela, h(a)] C
Nbh([x, A(x)], D + 28) by [7], and since by Lemma |, #(x)] C Nbh(WCH(AH), 45),
it follows that[a, h(a)] € Nbh(Ha, ¢ + D + 6§). ThusHa is quasi-convex. O

Definition. A limit point p of A C X is called aconical limit point ofA if there is some&V
such that for all ray® representing, Nbh(R, N) N A # @. It follows that NbHR, N) N A
is infinite for all R representing. For a groupG of isometries ofX, andp € AH, thenp
is aconical limit point ofH if p is a conical limit point ofH a for some (equivalently any)
aeX.
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Remark. Clearly (1) implies (4). That is, for any € AH, there is a sequencgé;) C H
such thatla, h;(a)] — R, a ray representing. By (1), this ray will be contained in a
uniform neighborhood oH a, and thereforg is conical.

Definition. Let R be a ray inX emanating from the point € X. Thefunnelaboutr is
F(R)={xeX: d(x,R) <d(mr(x),y)}.

For A c X we sayp € AA is afunneled limit point ofd if for any ray R representing,
F(R)NA#@.If G isagroup of isometries of, we definep € AG to be afunneled limit
point of G if p is a funneled limit point olza for somea. By [7, 3.16], this is independent
of choice ofa.

It is obvious that all conical limit points are funneled, however the converse is false.
Lemma 3. There are funneled limit points which are not conical.

Proof. Let F = F(x, y), the free group offx, y}, andT the simplicial tree which is the
Cayley graph ofF" with generating setx, y}. Choose two sequences of positive integers
(n;), (m;) such thain; <n; <m;41 foralli > 0andm;/n; — 0. Let B = {x" yx™i}, and

G < F the subgroup generated By The fact that, in any freely reduced word# none

of the y terms will cancel, shows that is free with basisB andx” ¢ G for n £ 0. Since

(x) is a quasi-convex subgroup &f it follows by Theorem 13 that®°, the point at infinity

on the positivex-axis, is not a conical limit point of;. On the other hand, any ray which
represents® has a subray starting at the vertekof T for somen. Sincem; /n; — 0 it
follows that the corresponding funnel contains a vent&yx™i for somei. Thusx® is a
funneled limit point ofG. O

Definition. Let R, S be rays with domaing:, co) and[b, oo), respectively. We sag and
S asymptoticly fellow travéN), denotedr ~y S, if forall £ > 0,d(R(¢), S(¢)) < N.

Notice that~y is not an equivalence relation as it is not transitive, however we have the
following lemma of [7].

Lemma 4. If R,S are equivalent rays, then there existse R and an isometry
p: la, 00) — [0, 00) so that the geodesic rayg and S o p asymptoticly fellow travébs).

Definition. Let R:[0, co) — X be a ray. Define the horoball correspondingtto be
H(R) = U S([b, 00)).

S~esR
b>0

Notice that in the case whepeis hyperbolic:-space, this is in fact theSéeighborhood
of the horoball about the endpoint &fthrough the poinRk (0) (which is itself a horoball).
We define a point € 9 X to be a horospherical limit point df if the setHa meets every
horoball about.
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Remark. Itis an easy exercise to show that for any ®yF (R) C H(R). Namely given
any pointp € F(R) we construct a ray emanating frogrequivalent tor [7] and from the
definition of F(R), it soon follows thalp € H(R).

Lemma 5. Let R:[0,00) — X be a ray, andR’ = R|j125..0) reparameterized to have
domain[0, o0). H(R') C F(R).

Proof. Leta € H(R'), so there exists a ray emanating fromz so that there are points
s € Sandr € R' withd(r,s) <68 and 0K d(s,a) < d(r, R(125)) (remember thar (125)

is the first point ofR’). Let p € mg(a). As[p, a] moves geodesically away froml, if z is
the points units from p on [p, a], thenz is no more thard from a point of[r, a] which
in turn is no more thad from a point of(a, s] U [s, r]. Thusd(p, [a,s] U [s,r]) < 3§.
Choosings very far froma we have some € [a, s] with d(g, p) < 38. It follows by
the triangle inequality thad (r, p) — d(s, ¢)| < 98 and that|d(a, p) — d(a,q)| < 35. It
follows that|d(s,a) — [d(r, p) +d(p,a)]| < 125. However, since:r € H(R'), d(s,a) <
d(r, R(125)), sod(r, p) + d(p,a) < d(r, R(125)) + 125 = d(r, R(0)). Sincep € R it
follows thatd (p,a) < d(p, R(0)) and soa € F(R). O

Corollary. The funneled limit points are exactly the horospherical limit points, and so
4 = (5.

Definition. Let H be a properly discontinuous set of isometriesXofcontaining the
identity. Choos® € X, and letHO= {h(0): h € H}. SinceH is properly discontinuous,
HO's closed and we may define = 7;,5(0). Clearly for any € H, h(D) = 7 ;,5(h0).
DefineD = {h(D): h € H}.

Remark. By proper discontinuity and the definition &f, D is locally finite onX.

Remark. Notice thatD N X is star-like abouD, that is ifx € D N I" then[x,0] C D.
Using thin triangles we see th&tN X is quasi-conves).

Lemma 6. D is the closure o N X in X and so quasi-convex i .

Proof. By proper discontinuity off, D N X is closed inX, and by definition ofD, if

x € X N D thenx is alimit point of DN X. Thus we need only show thatjfe A(DN X)
theny € D. Take a sequence of poinig € D with ¢; — y. Some subsequence of the
sequence of segmen8, «;] will converge [7, 3.10] to a rayk which represents and

R C DN X by the fact thatD N X is star-like abou®. Thus by definitiony € D. O

Lemma 7. If y is a horospherical limit point of theny ¢ | JD.

Proof. By the corollary to Lemma 5, it suffices to show that no funneled limit point is
contained inD. Suppose to the contrary thRtC D is a ray emanating froi representing
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a funneled limit point ofH . By definition of funneled, there isae R andx € HO such
thatd (0, r) > d(x, r) and sor ¢ D which contradictR C D. O

Definition. The domain of discontinuity2 of H is defined to b& X — AH. SinceAH is
closed,s2 will be an open set of X.

By proper discontinuity off, D is locally finite onX. To show that it is also locally
finite on £2 we need the following technical results.

Lemma 8 [7]. For any intervalR, AH(R,r +88) C D(R,r).

Lemma 9 [7]. For any interval R, any geodesic interval joinind (R, r + 88) to the
complement oD (R, r) passes withir2s of the pointR(r + 45) of R.

Lemma 10. 2 C UD.

Proof. Let the rayR represent an element @¢?. For somer > 0, H(R,r) N HO= (.

Let A = myo(B(R(r + 45), 28)), sinceD is locally finite onX, A is a finite subset of
HOand by Lemma 9z gy (H(R, r + 83)) C A. By Lemma 8 any sequence of pointsXf
converging to the point represented Bywill have a subsequence all of whose elements
project to a singlé:(0) € A and thus the point af2 represented by will be in i (D).

Corollary. D is locally finite ons2.
Proof. Notice that in the proof of Lemma 10 we actually showed that(D(R,r +
168)) C A. Thus only elements db of the formh D whereh(0) € A hit D(R, r + 165),
and saD is locally finite ong2 sinceA was finite, andd properly discontinuous. O
This corollary provides an alternate proof of a result of Coornaert that the action of
a properly discontinuous group of isometries of a negatively curved space is properly
discontinuous 02, its domain of discontinuity [8].
Definition. Define the quotient8/ = X/H andMgo = (X U 2)/H.

Theorem 11. If DN AH = thenM, is compact.

Proof. Let f: X U 2 — Mg be the quotient map aff. We know by Lemma 10 that the
translates of> underH coverX U §2, and sinceD N AH = ) we have thath C X U £2.
SinceD is a compact set (Lemma 6, is a continuous map, ang(D) = Mg, the result
follows. O

Corollary. (5) = (3).

Proof. Use Lemma 7. O
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We now complete the Main Theorem by showing that (3) implies (2).

3= (2

Proof. Let A = WCH(AH)/H. This is a closed subset dff since it can be shown
(using [7, 3.10], for example) th&/CH(A H) is a closed set itX . SinceH acts properly
discontinuouslyM is a metric space with the metric inherited frdmLet y; be a sequence
of pointsinA. To show thata is compact it suffices to show that some subsequence of the
yi converges ink. SinceA C Mg andMg, is compact by hypothesis, we may assume that
yi = y € Mg,. It suffices to show that € M, sincea is closed inM.

Suppose ¢ M. Letz be alift of y to 2. WCH(AH) U AH is a closed set i, and so
there is a open séf with z € U so thatU N (WCH(AH) U AH) = (. ProjectingU into
Mg, gives an open set containingvhich missesa, and we have a contradiction

We now need the following result from [6].

Quasi-isomorphism Theorem.If X andY are geodesic metric spaces aadis a group
which acts properly discontinuously and cocompactly on both, themd Y are quasi-
isomorphic.

Now that we have shown the equivalence of the different definitions of quasi-convex,
we will give a proof of the following result from [9].

Theorem 12. If H is a quasi-convex group of isometries of the negatively curved space
X, then H is a negatively curved group andH = 9 H and this homeomorphism &
equivariant.

Proof. H is quasi-convex s@/ acts cocompactly oWCH(AH). Let
Y =Nbh(WCH(AH), ¢),

wheree > 0 so thatWCH(WCH(AH)) C Y. ClearlyY is a proper geodesic metric space
(since itis a closed path connected set in a proper geodesic metric space). Also notice that
Y, as a geodesic metric space, is quasi-isometN@H(A H ), as a subspace &f, under

the identity function o WCH(A H). Thus from Theorem 1Y is negatively curved with

Y = AWCH(AH) = AH, and this homeomorphism & equivariant, and of coursé

still acts cocompactly and properly discontinuouslylarit follows that any locally finite
Cayley graph ofH will be quasi-isometric ta¥ (by the Quasi-isometry Theorem) and

so, wheneveH is finitely generatedf will be negatively curved. It is easy to show that
any group which acts cocompactly and properly discontinuously on a proper connected
metric space is finitely generated, andi&as finitely generated and therefore negatively
curved. O

The following results are abstractions of results in [20,17,13,15]. See [1] for similar
results in the classical setting.
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Theorem 13. Let G be a properly discontinuous group of isometries of the negatively
curved spacX and H, K < G. If p is a conical limit pointH, and if K is quasi-convex
with p € AK, thenp is a conical limit point ofH N K.

Proof. Chooses € X and a rayR emanating fronu representing. SincekK is quasi-
convex, forN > 0, R Cc Nbh(Ka, N). Sincep is a conical limit point ofH, for N > 0
we can choose a sequeriges H so thatd(h;(a), R) < N andd(h;(a), h;(a)) > 4N for
i # j. Fix N large enough for both. Choogge K so thatd (k; (a), hi(a)) < 2N. Define

C ={geG: g(B(a,2N)) N B(a,2N) # 0},

SinceB(a, 2N) is compact and5 is properly discontinuous, it follows that is a finite
subset ofG. Sinced(h;(a), k;(a)) < 2N, it follows thatd(a,hi_lki(a)) < 2N and so
hi_lk,» € C. Taking subsequences if necessary, we may assume Giicénite) that all
h'k; are equal to a singlg € C. Thus for alli, hy k1 = b Yk;, or hihT* = kikyt e

H N K. Noticed(hihy*(a), hi(a)) = d(hy*(a), @) and so there are infinitely many points
of H N K (specificallyh;h;*(a)) in Nbh(R', N + d(hy(a), a) for any subrayR’ C R.
The result follows. O

Corollary. Let G be a properly discontinuous group of isometries of the negatively
curved spaceX, and H, K < G be two quasi-convex groups of isometriesXaf Then
A(HNK)=AHN AK,andH N K will also be a geometric group of isometries.

Proof. LetJ = HNK.ClearlyAJ c AHN AK, and so by using definition (4), it suffices
to show that every € AH N AK is a conical limit point of/. Apply Theorem 13. O
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