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A Few Remarks on the Index 
of Context-free Grammars and Languages 

J. GRUSKA* 
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University of Minnesota 

A hierarchy of context-f ree  g r a m m a r s  and  languages  wi th  respect  to the  
index  of  context-free g r a m m a r s  is es tabl i shed and  the undecidabi l i ty  of  the  basic  
p rob lems  is proven.  

1. NOTATION 

Let  G = < V, Z, P, a> be a context-free grammar (in short, a grammar) 
where Z C V is the set of terminals, V - -  Z the set of nonterminals a ~ V - -  Z 
is the initial symbol of G and P C (V - -  Z)  × V* is a finite set of productions 
of G. L ( G ) z  {x; a ~ x ~Z*} is the context-free language (in short, a 

language) generated by G. 
Let  e denote the empty  word, ] x ] the lenght of word x, and I the set of 

positive integers. 
Following Brainerd (1968), the index of a derivation % in short Ind(~-), 

where 

~- : W 1 ~ W2 ,.. . ,  Wge 

is the smallest integer i 0 such that  neither of the words w i , 1 ~< i ~< k, has 
more than i 0 occurrences of nonterminals. For  an x cL(G), I n d ( x ) =  
min{Ind(r);  r is a derivation of x from a in G}. 

For  a grammar G and a language L let Ind(G) = max{Ind(x); x eL(G)};  
Ind(L) = min{Ind(G);L(G) =L}. If Ind(G) < m (Ind(L) < m), then the 
grammar  G (the language L) is said to be of finite index; otherwise of infinite 

index. 

* Present  Address :  Mathemat ica l  Inst i tute ,  Slovak Academy  of Sciences, Bratislava, 
Czechoslovakia.  
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2. SALOMAA'S PROBLEM 

In a recent paper, Salomaa (1969) raised the question of whether there are 
two grammars which generate the same language but only one of them is of 
finite index. The answer is in the positive. Indeed, by Salomaa (1969), there 
exists a grammar G 1 with the infinite index which generates the Dyck 
language L o over the alphabet {0, 1}. L o is a deterministic language and 
therefore a grammar Ge generating {0, 1}* - - L  0 exists. Combining these 
two grammars we get a grammar with the infinite index which generates the 
language {0, 1}* having the index 1. 

3.  F I N I T E  INDEX LANGUAGES 

By Salomaa (1969), there is a context-free language of infinite index. 
Languages of finite index form a very natural class of languages which has 
been studied in several papers under different names (superlinear languages, 
derivation-bounded languages, semilinear languages and so on). 

THEOREM l. The class of finite index languages is the small full AFL which 
contains linear languages and is closed under substitution. 

Proof. Each finite index language is a derivation-bounded language 
and by Ginsburg and Spanier (1968) the class of derivation-bounded 
languages forms a full AFL mentioned in the Theorem. On the other hand, 
each derivation-bounded language can be obtained from linear languages by 
substitution and, therefore, is of a finite index. 

Several infinite hierarchies of finite index languages have recently appeared 
in the literature (Greibach, 1969; Gruska, 1969). In the following theorem, 
a new hierarchy depending on the index of languages is proven. 

THEOREM 2. For every n e l u { o o }  there is a language L,~ such that 
Ind(L,) z n. 

Proof. Let L 0 be the Dyck language over the alphabet {0, 1}; i.e., the 
language generated by the grammar 

c~ ~ 0 a l ,  cr --~ a a ,  ~y --~ e. 

By Salomaa (1969), Ind(L0) = oo. Trivially, Ind({e}) ~ 1. For n finite and 
n > 1, let Ln = Lo t~ (0" 1 .)z,-1. The theorem will be proved by showing that 
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Ind(L. )  = n. Since Ln is generated by the grammar G~ with the initial 
symbol a 1 and the rules 1 

a i -+  Oo'il [ ¢ri+lO'i+ 1 [E, 1 ~ i ~ n - -  1, 

a~ --+ 0%1 [ ~, 

we have immediately Ind(L~) ~< n. To complete the proof, it remains to show 
that Ind(L~) ~> n. 

To  that  end, let G = (V, {0, 1}, P, @ be a grammar such that Ind(G) = 
Ind(L~), L(G) = L~ and, moreover, all rules of G have either the form 
A ~ uBv or A ~ uBCv with u, v being terminal  words and B, C being 
nonterminals. Clearly, such a G does exist. We can also assume that  G is a 
reduced grammar, i.e., all nonterminals are reachable and generate some 
terminal words. 

Let  rn = max{I a I; A --~ c~ is in P} and let n o be the number  of non- 
terminals of G. 

Let  ¢ : {0, 1}* ~ {0, 1}* be the mapping defined by ¢(x) = ¢(Y~Y2), if 
x = ylOly2 and ~b(x) = x otherwise. 

I f  x EL• and x = yz,  then ¢(y)  ~{0}* and ¢(z) ~{1}*, F rom that and 
from the structure of words in L~ ,  it follows 

if, in G, A ~ xAy  for a nonterminal A and terminal words x, y,  then 
¢(x) -~- 0 ~, ~b(y) = 1 ~ for some k >/O. (1) 

I f  in a derivation tree of a word x no path contains a nonterminal  twice, 
then I x I ~< m~°- In view of (1) this in turn implies 

if A * x i n G ,  then l¢(x)l  ~<m n°, (2) 

and, as a corollary, 

if A *  xe{1}*{O}*, then I x ]  ~<m ~°. (3) 

Now let N > 3m ~0+1 be an integer and let Yi ,  i >/0,  be words defined by 

YO = ~, Yi+l ~ 02NyiINOIgyil21g, i ~ O. 

For  every A in V, let v(A) = {A} tA {x; A * x ~ {1)*{0}*}. By (3), v(A) is a 
finite set. 

1 The productions are written in an abbreviated form A --~ ~1  [ c~2 I "'" I c ~  I instead 
o f A  --~ c~1, A -~ ~ ..... A --~ c%. 
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Let  us now construct a new grammar G'  from G by replacing every 
production _ / / ~  a of G by the set of productions {A - ~  z; z ~ v(a), where 
v(xa) = v(x)v(a), for any word x and symbol a. 

Clearly, L(G') = Ln ,  Ind(G ' )  = Ind(L~). The  length of right sides of 
productions of G' is not more than m ~0+1 and (1)-(3) hold also for G'. For  
the rest of this proof we will deal only with the grammar G' and, therefore, 

• • ~< t all derivation concepts, for example ~ ,  refer to G .  
Assume now for a moment  that  the following lemma has already been 

proved. 

LEMMA 3. Let A *~ xy~z, where .4 is a nonterminal, i >~ 0 and either 
x = OL z -- 1" or x = 0L z = 1N0" or x = 1~0 ~, z = 1% with v, I* <~ N being 
integers. Then Ind(r)  >~ i + l for any derivation -c of xy,z from A. 

This  yields immediately Ind(G ' )  /> n and thus Ind(L~) > /n .  
Hence, to complete the proof of the Theorem,  it remains only to prove the 

Lemma.  The  proof will be by induction on i. The  case i = 0 is trivial. 
Assume that  Lemma holds for 0, 1,..., i - -  1, and let 

A = Wo,  W~ ..... W~ = xy,z  (4) 

be a derivation of xyiz from A of the minimal index and as short as possible. 
Since N > 3rn "o+~, (2) implies that  there exists the smallest integer i 0 

such that Wio+l contains two nonterminals. Thus,  Wio = UioAioVio , where 

UioVio ~ {0, 1}* and Aio is a nonterminal.  
We claim that 

]Uiol <~ ]xl 4 - N 4 - m  ~0+1, [%o1 <~ Iz[ + N 4 - m  ~°+1. (5) 

Assume that  (5) does not hold. Then  there must  exist the smallest integer 
i 1 ~ i o such that Wq =- uil.d,1%l, u,v,~ ~ {0, 1}* and 

either ] u¢ 1 ] > ] x ] @ N ~- m n°+l or [ vii ] > ] z [ + N + m ~°+l. (6) 

Let  z,1 be such that  Ui12;i lVil  = Xy~Z. Since Yi = 02Nyi--llNONy,--ll~N and 
N > 3m ~o+1, from (6) it follows that  ¢(z,1) > m ~o what contradicts to (2). 
Thus  (5) holds. 

Using (5), we can now complete the proof of Lemma.  Clearly, W,o+l = 
UioU'BCv'%o for some terminal  words u' and v'. Since (4) was the shortest 
derivation of z from d among those with minimal  index, none of the words 
u, v where B * ~2, C * ~7, z = U~oU'U-V-v'v~o is in {1}*{0}*. But it means that 
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17and ga re  of the form xly~_lZ 1 with either x 1 = 0% zl  = 1"~ or x 1 = 0 ~, z 1 = 
1N0 "~ or x 1 = 1~0 N, z 1 = l"x and v l , / x  1 ~< N.  By induction hypothesis 
Ind(.1) >~ i, Ind(T2) >~ i for any derivations 71 of g from B and ~'2 of g from C. 
Hence Ind( . )  >~ i + 1, completing the proof. 

4. UNDECIDABILITY 

For  any n E I U {Go} there exist a context-free grammar G~ and a context- 
free language L~ such that Ind(G~) = n = Ind(Ln). For  n infinite it follows 
from Salomaa's  result (1969). For  n finite, the existence of L~ was proved in 
the previous section and as G~ we can take the grammar with the rules 
a - +  A,~, A - -~  a. 

On the other hand, as it will be shown in this section, for any k a I k) {oo} 
it is undecidable for a context-free grammar  G whether or not Ind(G)  = k 
or whether or not Ind(L(G)) - -  k. 

Two more resuks are proved in this section. I f  we think of Ind  as being a 
criterion of complexity of grammars and languages, then they may be 
interpreted as follows: (i) I t  is undecidable whether a given grammar G is a 
simplest grammar for L(G); (ii) There  is no effective way to find a simplest 
grammar for L(G), given a grammar G. 

All these results will follow easily from the following lemma. 
To  simplify the ensuing discussion, let us denote by P(x,  y)  the predicate 

which holds true if and only if x and y are n-tuples of nonempty  words for 
some integer n and the post-correspondence problem for x and y has a 
solution. 

LEMMA 4. For any n-tuples x ~ (xl ,..., xn), y = (Yl  ,..., Yn) of  nonempty 
words over Z ~ {0, 1}, and context-free grammars G 1 and G2 with Li z L(Gi), 

a grammar G can be effectively found such that L(G) z L '  • L", where 

L'  ~ (ucwev R; u, v ~ £,  u ~ v, w ~ L~} 

and 

L" = {xil"'" x ~ c w c y ~ ' " y ~ ;  k ~ 1, w ~L2} ~. 

Furthermore, i l L  2 C_ L1,  then 

~< Ind(Ga) i f  P(x, y)  does not hold 
Ind(G) 

= max{Ind(G~), Ind(G2) } i f  P(x, y)  holds, 

For a w o r d x  = x l x ~ ' " x n , x  R =  x n " ' x 2 x l .  
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and if, moreover, Ind(L1) ~ Ind(L2) = Ind(G2), then 

~< Ind(L1) i f  P(x, y)  does not hold 
Ind(L(G)) 

= Ind(L2) i f  e(x ,  y)  holds. 

Proof. Let G i = ( V i ,  Z ,  P , ,  S t )  , V 1 (3 V 2 = O, A 1 ,  A 2 ,  Aa,  S', S", 
s C vl  w v~. 

Let G have the initial symbol S and productions P~ k3 P~ together with 

S - - , - S ' [ S " ,  

S ' - +  0S'0X 1S'I 10A 1 [ 1A1 [0A21 [ 1A20IAa0 ] Aal, 

A 1 --~ OA 1 ] 1A 1 [ cS~c, 

A 2 --~ A20 ] Az l  ] A1,  

A a --+ AaO [ Aal ] cS~c, 

S" ~ x iS"y f  I x~cg2eyi  R, 1 <~ i <~ n. 

Clearly, S' generates L' and S" generates L". 
Let now Lz C L 1 . If P(x, y)  does not hold, then L" C_C L'  and, therefore, 

Ind(G) -~ Ind(G~). If P(x, y)  holds, then Ind(G) = max{Ind(G~), Ind(G2) }. 
To prove the last assertion of the Lemma, we will use the fact that 

Ind(L n R) ~< Ind(L) if L is a CFL and R a regular set. It can be shown 
easily going through a standard proof of the theorem that the intersection of 
a language L and a regular set R is again a language (see, for example, 
Ginsburg, 1966). 

Let now Ind(L1)~< Ind(L2)= Ind(G2). If P(x , y )  does not hold, then 
Ind(L(G)) ~ Ind(L1). 

If P(x, y)  holds, then there are indices il ,... , i k such that 

OCl,X~= "'" Xa~ ~ YilYi2 "" Yak " 

Consider now the regular set 

R = xqxi2 "'" xi~c{O, 1}*cy~ "'" yjqR R . 

The intersection of R and L(G) has the form 

L(G) n R = xh ."  x~cL2cy~ ... y~  . 

One can easily prove that if L is a language and a a symbol, then Ind(L) = 
Ind(aL) = Ind(La). Thus Ind(L(G) t~ R) = Ind(L2) and we have Ind(L(G))/> 
Ind(Le). On the other hand, from the construction of G it follows immediately 
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that Ind(L(G)) ~< Ind(G) ~< Ind(G~) = Ind(Le). Thus  Ind(L(G)) = Ind(L2) 
and this completes the proof of the Lemma.  

THEOREM 5. Let  n ~ I U {~}. I t  is undecidable for  an arbitrary grammar G 

whether or not Ind(G) ---- n. 

THEOREM 6. Let  n ~ I u {oo}. I t  is undecidable for  an arbitrary grammar G 

whether or not Ind(L(a) )  = n. 

For  n > 1, the theorems follow from the Lemma 4 by taking G 1 to be the 
grammar S 1 - + $ 1 0  , S 1--+$11 , S 1 - - * e  and G 2 to be a grammar with 
Ind(G2) = Ind(L(G2) ) = n. As a byproduct  we get the theorems for n = 1. 

COROLLARY 7. There is no effective way to determine I n d ( L ( G ) ) f o r  an 

arbitrary grammar G. 

THEOREM 8. I t  is undecidable for  an arbitrary grammar G whether or not 

Ind(G) = Ind(L(G)). 

Proof. Let  us take as G 1 the grammar with the rules S 1 -~  $1S1,  $1 ~ 0, 

81 ~ 1, $1 - ~  E and as G2 a grammar such that Ind(G2) = Ind(L(G2)) = oo. 
Now Ind(G) = Ind(L(G)) for the grammar G from the Lemma 4 if and only 
if P(x,  y )  holds. Hence the Theorem. 

By using the same construction as in the proof of foregoing theorem, we get 

COROLLARY 9. There is no effective way to construct for  an arbitrary 

grammar G, a grammar G'  such that L (G)  = L(G ' )  and Ind(G' )  = Ind(L(G)). 

5. MODIFICATION 

The  index of a grammar G represents the maximal number  of nonterminals 
which may occur simultaneously in derivation steps in the derivations of 
elements in L(G).  However, there is no restriction as to how the nonterminals 
are spread out in words. In  this section, we shall t ry to put  some restriction 
on the distance between two nonterminals in a derivation step. 

By Ind ' (G)  we will mean the smallest integer k (if such a k does exist; 
otherwise we put  Ind ' (G)  = or) such that  for every x e L ( G )  there is a 
derivation a = w o , w 1 ,..., wk = x in G such that  each wi = u~a~vz , where 
u~v~ is a terminal word and [ % I ~< k. Let  Ind'(L) = min{Ind'(G);  L(G)  = L}  

for a language L. 
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Clearly, for every n ~ I w { o o }  there is a grammar  G n such that  

Ind ' (Gn) ~- n. Using the technique of the proof of Theorem 5, one can show 
that  if n ~ I U {oo}, then it is undecidable for an arbitrary grammar G whether 
Ind ' (G)  = n. Since Ind(L) ~< Ind ' (L)  for every language L, Ind'(Lo) = oo. 
However, for every language L either Ind ' (L)  = oo or Ind ' (L)  = 1, and, 
therefore, the criterion Ind '  does not induce an infinite hierarchy of context- 
free languages. In  order to show that  Ind ' (L)  < oo implies Ind ' (L)  = 1 
one can proceed as follows. Let  G be a grammar such that  Ind ' (G)  = k < ov 
and G = (V,  2J, P, @. Let  us form a new grammar  G'  = (V ' ,  Z, P ' ,  a )  by 
taking as new nonterminals the symbols [~], where a ~ V*, I ~ [ ~ h and the 
first and the last symbol of c~ are nonterminals.  If, in G, o~ ~ ufiv, t fi ] <~ k, 
uv ~ Z*,  fl starts and ends with nonterminal  symbols, then we put  to P '  the 
production [ a ] - ~  u[fi]v and all productions of P'  are formed in that way. 
Clearly, L(G')  = L(G), Ind ' (G ' )  - -  1. Therefore,  Ind ' (L)  < oo if and o~ly 
if L is a linear language. F rom that  and from Greibach (1966) it follows that  
it is undecidable for an arbitrary grammar G whether Ind'(L(G)) = ov (or 

Ind ' (L(G))  = 1). 

Added inproof: Salomaa's problem was solved also by N. D. Jones in Information 
and Control 16, 201-202. 
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