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Introduction 

Nomograms are graphic aids to complicated numerical computations. 
Systematically introduced at the end of the last century they continue 
to be useful today, particularly in applied mathematics (see, e.g., the 
comprehensive book by d’ocagne [l]*). The geometric theory of “nets” 
was introduced in the 1920’s.t Although it originated in connection with 
topological questions of differential geometry, it can also be considered 
as part of the theoretical background of nomograms. As late as 1955, 
Blaschke [l] recommended the theory of nets to those who prefer more 

* Numbers in brackets refer to the references at the end of our paper. These 
papers can serve for the purpose of further studies in this field, but familiarity 
with them is not necessary to understand the present paper. 

t Its founders, Blaschke, Bol [l] and Thomsen [l] (see Blaschke and Bol [l] 
and Pickert [2]) have called this theory “Geometrie der Gewebe,” i.e., “Geometry 
of Webs.” Later Blaschke himself-as he writes, because of an invitation he 
received with reference to the title of the work by Blaschke and Bol [l] to a 
meeting of textile specialists-changed its name to “Geometrie der Waben” 
(Blaschke [l]), “geometry of cells,” but this new terminology was not accepted 
by many authors. Maybe this confusion of terminology contributed to the fact 
that in English the term “nets” (see, e.g., Bruck [l]) is preferred to the two prior 
ones. This would be a very good name, but alas, it interferes with the topological 
concept of “nets.” 
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classical and intuitive geometric facts to algebraic abstractions: “If 
modern mathematics has fallen sick with abstractionism, then we may 
claim a great deal of health (or lack of modernism ?) for our branch of 
geometry, since we deal mostly with very intuitive problems.” Never- 
theless, a number of algebraic theories of nets were soon developed (see, 
e.g., AczCl, Pickert, and Rad6 [l], Bruck [l], and Pickert [2]) which 
clarified the abstract algebraic content of this seemingly geometric 
theory and, at the same time, aided in the further development of the 
purely geometric aspects. The close connection here of algebra, geometry, 
and applied mathematics is surely remarkable. In addition, analysis and 
topology will be seen to play a role in the applications of the algebraic 
theory to geometric nets. The different algebraic theories mentioned 
above are equivalent in their essential content, but they vary greatly 
in their constructions. 

In this article, we will develop another, again equivalent, algebraic 
theory of construction somewhat different from the previous ones, 
originating in nomography and closely connected with the theory of 
quasigroups. With the aid of nets we will be able to prove in a new, 
intuitive way quite a few theorems on quasigroups, some of which are 
rather involved. “Intuitive” is not meant here to imply “heuristic”: 
our proofs will be quite exact and the figures will serve only for illustra- 
tion. We will then apply the theorems of our algebraic theory to con- 
crete geometric nets, giving also a new elementary proof of an important 
theorem on a class of topological quasigroups on real numbers. Finally, 
we will solve two general functional equations on quasigroups, that also 
have applications to algebraic and geometric nets, and formulate some 
open questions which we think to be important for the further develop- 
ment of these theories. 

1. Nomograms 

Nomograms serve as representations of functions of several variables 
in the plane in a manner which makes them also apt for numerical 
calculations (for details see, e.g., D’Ocagne [I]). We will consider here 
only the representation of a class of functions of two variables. 

The so-called contour-line representation can be chosen as the point 
of departure which gives the simplest form of nomograms. One draws 
in the XY-plane curves through those points to which the same 
value of the function is assigned. These are the contour lines. For 
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FIG. 1. 

example, Fig. 1 shows this kind of nomogram of the function 
associating x3y to x and y (the numbers with which the curves are marked 
show the common value of the function belonging to the points of the 
respective curves). * With the aid of this figure we can determine for 
any given pair X, y the value of z = x3y, exactly or approximately by 
interpolation between the curves drawn in the figure; similarly, we can 
determine y, given x and z and also X, given y and z. The difficulty here 
lies partly in the great amount of work which is required to draw all 
these curves, and partly in the fact that reading even approximate values 
is more difficult between curves than between straight lines. Therefore, 
replacing curves by straight lines is of great importance. Sometimes 
this can be done simply by interchanging the roles of the variables and 
the function values. So in the case of z = x3y, if we represent the values 
of x and z on the two axes, then the lines representing different constant 
y-values will again be curves (Fig. 2); but if we choose Y and 2 as 
axes, then the lines representing constant x-values will already be 
straight (Fig. 3). Of course, this nomogram containing only straight Zincs 
also allows the calculation of one of the values x, y, and z if the two 
others are given. On the other hand, replacing the linear division of the 
axes by other scales sometimes makes the straightening (“anamorphosis”) 

* Here xy is the ordinary product of real numbers, but later on the same symbol 
will represent in general the result of multiplication in a quasigroup. We will 
use throughout the notations xy and x . y as equivalent. 
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FIG. 2. 

FIG. 3. 

of the nomogram possible. For instance, z = xay can also be written as 
log z = 3 log x + logy and therefore, if we choose logarithmic scales 
on the X- and Y-axes, then the points (x, y) to which the same value of 
z = $y is attached lie on straight lines (Fig. 4); the situation is similar 
if we choose X and Z or Y and Z as axes; 

This problem of anamorphosis (straightening) is one of the fundamental 
ones in nomography. Observe that there is more than one family of 
curves or straight lines on our figures: the coordinate lines (x = const., 
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FIG. 4. 

y = const.; resp., x = const., x = const.; resp., y = const., 2 = const.) 
form also two bundles of parallel straight lines. The general straight 
nontogram is formed of three families of straight lines, one attached to the 
values of x, the other to those of y, and the third to those of z, and they 
are marked with these numbers. The straight lines of any one family 
need not be parallel. For instance, in case of a functional relation repre- 
sented by such nomograms, one can find z corresponding to given x 
and y. We check the point of intersection of the respective x- and 
y-lines (if they are not on the figure, then by interpolating between 

FIG. 5. 
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straight lines drawn in the figure) and the number attached to the 
z-line (whether or not it is drawn in the figure) going through this 
point is the respective z-value (Fig. 5). 

In the case of parallel nomograms these three families of straight lines 
all consist of parallel ones. One can easily arrange that the straight lines 
of two of these bundles be orthogonal to each other, and so we get a 
configuration with which we are already familiar (Fig. 6, cf. Fig. 4). 

I 2 3 4 
\ 

x 

FIG. 6. 

We can even arrange (in the case of Fig. 4, e.g., by stretching it horizon- 
tally in proportion 3 : 1) that the straight lines of the third bundle 
should intersect those of the first and second in an angle equal to 135”. 

We call the transformation of a curvilinear nomogram into a straight 
one anamorphosis, that into a parallel one parallel anamorphosis. We shall 
consider only the latter in this article. 

This means that we want to introduce, instead of x, y, and z, such 
new variables u, v, and w that the functional connection between x, 
y, and a should go over into 

w=u+v 

(the u = const. and v = const. lines of this latter connection are the 
vertical and horizontal lines of Fig. 6, while w = const. is represented 
there by those straight lines intersecting the positive u-axis at an angle 
of 135”). 
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Here 

24 =f(x), w  = g(y), w  = h(2) 

Here, f(x) and g(y), respectively, give the real distances from the Y- 
and X-axes of the straight lines marked by the respective x- and y-values, 
while w  = h(z) yields the real distance from the origin to the inter- 
section of the straight line marked by this z-value with the X- (or 
with the Y-) axis. 

44 = f(x) + g(Y) 

and this has to be equivalent with 

2 = xy 

[here xy is no longer a product but the result of a general functional 
connection (see footnote on p. 385)], i.e., 

(1.1) WY) = f(x) + g(Y)* 

One usually supposes f, g, and h to be continuous and strictly monotonic 
functions. In most practical cases this holds at least locally. 

We mention yet another kind of nomogram, the alignment charts. 
These are the projective geometric (plane) duals of general straight 
nomograms. In the sense of projective duality, points correspond to 
straight lines, points lying on the same straight line to straight lines 
intersecting in one point, and vice versa. Now, the three bundles of 
straight lines of a straight nomogram represented the variables x, y, z and 
the intersection of an x-, y-, and z-line in one point corresponded 
to the functional relation of the respective x-, y-, and z-values. There- 
fore, in the alignment charts, sets of points (curves) correspond to the 
x-, y-, and z-values, and these x-, y-, and z-values belong together if the 
respective x-, y-, and z-points are on one straight line (Fig. 7). The duals 
of parallel nomograms or of nomograms consisting of three bundles of 
straight lines each going through one point, are the alignment charts 
with three straight scales (Fig. 8). ‘It can be shown that all functional 
connections which can be represented by such alignment charts can 
also be represented by alignment charts with three parallel straight 
scales which if desired can be chosen equidistant (Fig. 9). 

All this shows that one can represent by alignment charts with three 
(parallel) straight scales exactly those functional connections z = xy 
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FIG. 7. 1 

FIG. 8. 
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FIG. 9. 

for which there exist such f, g, and h that (1.1) is fulfilled. This em- 
phasizes still more the importance of this class of functions. 

2. Geometric Nets 

We will call three families of (continuous) curves in a domain of the 
plane a geometric net if exactly one curve of each family passes through 
each point of the domain (therefore curves of the same family cannot 
intersect) and two curves of different families intersect in exactly one 
point (Fig. 10). * A g eometric net is regular if this configuration is 
homeomorphic to three bundles of parallel straight lines (i.e., if there 
exists an invertibly continuous l-l map of the first configuration onto 
the second). 

As there can always be found an invertibly continuous l-l map 
carrying over two families of curves of a geometric net into two bundles 
of parallel straight lines which can even be choosen as orthogonal to 

* We should call them geometric plane nets with three families of curves 
(3-nets), but except for a remark we will not treat spatial nets in this paper and 
k-nets with R > 3 at all. 
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each other, we can take these as coordinate lines of a Cartesian system 
and the homeomorphic images of the curves of the third family as 
contour lines of a functional relation z = xy; we have thus arrived back 
at the contour-line representation. The regularity of a geometric net 
means in this sense, that it is homeomorphic with the net (Fig. 11) 

FIG. 10. 

FIG. 11. 
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consisting of the coordinate lines and of the contour lines of the (linear) 
function w  = u + w  (the 135” lines). It can be shown that this means 
the existence of three continuous and strictly monotonic functions 
f, g, and h with the set of all real numbers as common range such that 

(2.1) &Y) = f(x) + h9. 

The net built of the coordinate lines and of the contour lines of z = x3r 
(x > 0, y > 0) is an example of9 regular net [f(x) = 3 log x, 
g(y) = log y, h(z) = log z); the net belonging to z = (x + y)3 + x 
is an example of a net which is not regular. The connection with nomo- 
grams and parallel anamorphosis is evident. 

It is rather characteristic of the geometric theory of nets, as compared 
with nomography, that it seeks mainly for geometric conditions for the 
regularity of nets. These are so-called closure conditions (see, e.g., 
Bol [l], Thomsen [l], and Blaschke and Bol [l]). 

One of these conditions is called the Thomsen condition, in short T, 
represented by Fig. 12 and described in the terminology of contour 
lines as follows: If x1 , x2 , and x3 are three arbitrary x-values and y1 , yz , 
andy, three arbitrary y-values, and if (xi, ya) and (xa, rl) lie on the same 
z-curve (contour line) and so also do the points (x1 , y3) and (x3 , rl), then 

FIG. 12. 
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the points (~a, ya) and (x3 , ya) also lie on the same contour line. Since 
at the points of the same z-curve the values (v) of the function are the 
same, the Thomsen condition can be expressed in the following way*: 

T :  (x~Y2 = "2yl&x1y3 = %h) * %5'3 = x3y2* 

Similarly, the so-called Reidemeister condition- in short R- (Fig. 13) 
can be written: 

R: hy2 = X2y1&X1y4 = x,y~&~3y2 = %Yd * Xtir = x4y3 * 

FIG. 13. 

Fig. 13 might remind us of the perspective representation of a parallele- 
piped. The further closure conditions can be attained by specialization 
ofR. 

The three so-called Bol conditions come from R by equating x2 and xa, 
resp., ya and y3, resp., xry3 and ~0s (i.e., the two x-, y-, or z-lines 
in the middle fall together, respectively). This is expressed by Figs. 14-16 
and by the following formulas: 

B,: (xlyz = "Jl&"ly4 = x2y3&xy, = x4yJ ==- x2y4 = x4y3, 

B2: tx,y2 = %ylkxly4 = x2y2&x3y2 = x4yl) * x3y4 = x4y29 

B,: (x135 = x&k Xly4 = x2y3 = x3y2 = X4y1) * X3y4 = X4y3; 

* Throughout this paper we use the symbols & for “and,” + for “implies,” 
0 for “if and only if” (“iff”), and c for “element of.” 
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FIG. 14. 

FIG. 15. 
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FIG. 16. 

If for a net both B, and B, are satisjed (each for arbitrary xi , y3), then 
we say that condition B is fuljilled for this net. We will show in Theorem 
2.1 that then B, is also satisfied for all xr , yj . 

Finally, the so-called hexagonal condition-in short H-is a special 
case of all previous closure conditions, deriving from R (and from B, , 
B, , or B3) by the specialization yz = y3 , x2 = x3 , or from T by ad- 
junction of xsy2 = xry3 = xgr (see Fig. 17; the partly curvilinear 
hexagon to be seen on this figure explains the name of the condition): 

H: (“IYZ = X2Yl& 3ctY3 = %J72 = X3Yd * “J3 = %J2 * 

These formulas are called closure conditions because they assert that 
the Figs. 12-17 “close” at the place marked by an arrow (the broken 
z-lines show the cases where the respective closure conditions are not 
fulfilled). The statement that the closure conditions must be satisfied for 
arbitrary xj , yj’s (in the domain) means that we did not suppose any- 
thing about the order of the xi’s and yj’s; it is not at all necessary that 
x1 < x2 < x3 < x4, y1 < y2 < y3 -=c ya should hold. For this reason 
the roles of the z-lines in T, R, B, , and B, can be interchanged, whereas 
in B, and H only those of the two external z-lines. 

As to the strength of the different closure theorems we prove the 
following: 
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FIG. 17. 

THEOREM 2.1. 

4 *1 ti 
T+RaBs-B2+H 

* B, d 

Proof. As B1 and B, are special cases of R, and H a special case of 
each of the Bk’s (k = 1, 2, 3), and as B o (B, & B,), we need only to 
prove 

(I) T =t- R and (11) PI & 4 * *, 

(I) We suppose that T is fulfilled for any six-tuples of x and y values. 
We have to prove that for arbitrary x1 , x2, x, , x4, y1 , yz , y3, and y4 
(Fig. 18) the validity of 

(24 “IYZ = %Yl & XlY4 = *3Y3 & *3Y2 = X4Yl 

implies that of 
(2.3) *3Y4 = %Y3 * 

We introduce the new notations 

(2.4) x1=*2, x2=*1, y1=y4, Y2=y3, Y,=y,; 

then because of (2.2) 

(2.5) X,Y, = X,Y, . 
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Let us define X3 as the z-value corresponding to the y-value Yr on the 
z-curve (countour line) on which the point (XI, Ys) lies (such an 
x-value exists, since by the definition of nets the z-curve with the label 
z = X, Y, and the y-line with y = Yr have a point of intersection); in 
symbols 

(2.6) XlY2 = X2Yl . 

But (2.5) and (2.6) constitute just the first part (the hypotheses) of T 
for XI, X, , X3, YI , Y2 , andYa and as T is by supposition valid for 
all x’s and y’s, therefore (2.5) and (2.6) imply 

(2.7) X,Y, = X,Y* . 

With the further new notation 

W-9 al = x4 , a2 = x3 , a,=Xl=x,, bl=Y3=ye, b,=y, 
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we have from (2.2) 

and we define b, by 
42 = U&l 

(2.9) $43 = qb,; 

then the hypotheses of T are again fulfilled for a, , us , u3 , b, , b, , 6, , 
and so its conclusion 

(2.10) 4, = a&, 

has to hold too. 
Finally, with the notation 

(2.11) Cl = x3 3 c2 = (1.2 = x3 ) c, = a, = x4 ) 
4 = b, , 4 = Yz = ~3, d3 = Yl = y4 , 

we get from (2.1 I), (2.7), (2.4), (2.2), (2.8), and (2.10) and again (2.11) 

(2.12) cldo = X,Y, = X,Y, = x,y, = XJ~ = lgb3 = aa3 = c2dl 

and again from (2. I l), (2.6), (2.8), (2.9), and (2.11) 

(2.13) cld3 = X,Y, = X,Y, = u,b, = qb, = c,d, , 

If we consider the first and last members of the chains of equalities 
(2.12) and (2.13), we have again the hypothesis of T, this time for ci , 
cr , c3 , d, , d, , and d3 , and so the conclusion of T is valid too: 

c2d3 = c,d, 

or, according to (2.11) 
X3Y4 = X4Y3 * 

This is just the equation (2.3) to be proven, the second part of R. Thus, 
assertion (I) has been proved. 

(II) In order to prove this assertion, we suppose that B, and B, are 
true for arbitrary x’s and y’s and prove that B, holds too for arbitrary 
Xl 3 x2, x3, x4 3 Yl, Y2 9Y3 9 and y4 , i.e., 

(2.14) XlY? = *3Y1& XlY4 = %2Y3 = X3Y3 = X4Yl 

imply 

(2.15) X3Y4 = 4Y3 * 
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FIG. 19. 

Let us introduce (Fig. 19) the notations 

(2.16) XI = x1 , x2 = x4 3 y2 =y2* y3 = Y19 y4 = y4 ; 

then 

(2.17) XlY4 = X,Y, 

follows from (2.14) and we define YI and X, by 

(2.18) X,Y, = X,Y, and -J&Y, = x,y, 3 

respectively. Equations (2.17) and (2.18). are just the hypotheses of B, 
for X, , X2 , X4 , YI , Y, , Y3 , and Y4 , thus by supposition Bl’s con- 
clusion holds too: 

(2.19) X,Y, = X,Y, . 
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Again with new notations 

(2.20) 
a1 = x3, a2 = X2 = x4, a4 = X4, 

bl = Yl, b2 = y3 =y1, b, =~3- 

we have by (2.14), (2.16), (2.18), and (2.14) 

a,b, = xgl = xly2 = X,Y, = X,Y, = a,b, 

and 
alb4 = xgy, = x4y1 = ah2. 

We define a3 by 

(2.21) a,b, = a,b, . 

This time the hypotheses of B, are fulfilled for a, , a2 , a3 , a4 , b, , b, , b, 
and so also is its conclusion: 

(2.22) a3b4 = a,b, . 

Finally, with the notations 

(2.23) 
cl=%, c2 = a2 = X, = x4 , c4 = x3 > 

4=Y,=y2, d2=b2=Y3=y1, d3=Y4=y4, d,=b,=y, 

we get from (2.21), (2.20), and (2.18) 

c,dz = a,b, = a,b, = X,Y, = X,Y, = czdl, 

from (2.22), (2.20), and (2.19) 

rld4 = agb, = a4b, = X,Y, = X,Y, = cd, 

and from (2.14) 

czd2 = x4yl = x3yz = c4dl. 

So the hypotheses of B, hold again, this time for ci , c2, c, , dr., d, , 
d, , and d4 and so the conclusion is also valid: 

and by (2.23) this just means that (2.15) is satisfied. Thus (II) is proved 
also, and the proof of Theorem 2.1 is finished. 
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Both proofs can be followed on Figs. 18 and 19, but they can be 
understood also independently of the figures through the above sequences 
of equalities. The introduction of many new notations (2.4), (2.8), 
(2.1 I), (2.161, (2.20), and (2.23) is not indispensable; these illuminated 
only the repeated applications of T, B, , and B, . 

Although, owing to Theorem 2.1, T is the “strongest” and H the 
“weakest” closure condition, still the following is true: 

THEOREM 2.2. For geometric nets each of the conditions T, R, B, 
B, , B, , B, , and H is necessary and suficient for the net to be regular. 

We will see that for so-called algebraic nets these conditions are no 
longer equivalent. We will nevertheless deduce the above Theorem 2.2 
from theorems to be proven on algebraic nets. 

3. Algebraic Nets 

If we reconsider the formulas T, R, B, , B, , B, , and H, we see that 
these “geometric” closure conditions are of purely algebraic nature. 
This suggests the idea of giving algebraic definitions to the notions of 
nets and regular nets too. 

We call a set G together with an operation on it whose result is 
z = xy(= x * y) a quasigroup (cf. Bruck [l], Kertbz [l]) and denote it 
by (G, *) or simply by G if, for any given elements a, b, c, and d of G, 
equations of the form xb = c and ay = d have unique solutions in G, 
X, and y, respectively. We will call ordered pairs (x, y) of elements of G 
“points”. We define I-curoes to be sets of points of the form (c, y) with 
fixed c and variable y, similarly 2-curves are sets of points of the form 
(x, c) and 3-curoes are such sets of points (x, y) for which XJJ = c. c is 
an arbitrary element of G, but in case of the same curve it is always the 
same. 

The K-curves (k = 1 or K = 2 or K = 3) formed with all possible 
elements c in G form together a family of curves. 

We define an algebraic net as the set of l-, 2-, and 3-curves in the 
quasigroup G for all possible c’s in G, i.e., as all three families of curves 
together. These curves satisfy, on the set of pairs of elements of G, all 
conditions stated in Section 1 in the definition of (geometric) nets [each 
“point” (x, y) belongs to exactly one “l-curve,” one “2-curve”, and 
one “3-curve”; two “curves” of the same family have no common 
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“point,” two “curves” of different families have exactly one common 
“point”] except the condition of continuity which has no sense in this 
generality. 

The formulas T, R, B, , B, , B, , and H all make sense in this inter- 
pretation too. (In what follows, by saying that T, R, B, , B, , B, , or H 
hold, we mean that they are valid for all xj and yi in G if the contrary 
is not explicitly stated.) Moreover Theorem 2.1 and its proof also remain 
valid for algebraic nets. 

In order to get nearer to the concept of regular algebraic nets, let us 
consider Eq. (2.1). The continuity and strict monotony off, g, and h 
here have no sense. Instead, we will consider l-l maps. We call two 
quasigroups (G, *) and (H, o) isotopic (cf. Bruck [l], Kertesz [l]), 
if-there exist three 1-I maps f, g, and h of G onto H, such that for all 
elements x, y, and z in G 

(3.1) 

is fulfilled. 

h(xy) = f(x) 0 ‘dY) 

To a l-curve x = c1 of (G, *) there corresponds a l-curve x’ = f(x) = 
cl’ = f(cr) in a quasigroup (H, o) isotopic to (G, *); similarly, 
y’ = g(y) = c2’ corresponds to y = c2 and x’ o y’ = f(x) o g(y) = 
h(xy) = ca’ corresponds to xy = ca . Moreover, the validity of a closure 
condition T, R, B, , B, , B, , or H in a quasigroup implies its validity 
in all isotopic quasigroups. Therefore, we relate an algebraic net not 
just to one quasigroup but to a whole class of isotopic quasigroups (cf. 
also Section 4 for a further motivation). Sometimes we identify these 
two concepts and understand by an algebraic net just this class. 

As we will see, in these classes there are always loops, i.e., quasigroups 
with unit elements e for which 

(3.2) xe = ex = x 

for any element x of G. Among the loops the following are particularly 
important: the power-associative loops in which 

(3.3) xx’x=x’xx 

holds for every x E G; the MI-loops in which 

(3.4) AZ * Y”) = (r * 39% 

the Mz-loops in which 

(3.5) kY * zlr = X(YZ * Y) 
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and the Moufang loops in which 

(3.6) (XY * 4Y = X(Y * ZY) 

are valid for all x, y, z E G, finally, the groups with the associativity 

(3.71 xy*z=x.yz 

for all x, y, z E G, and the Abelian groups for which besides (3.7) also 
the commutativity 

xy =yx 

is satisfied for all x, y E G. The following statements are evident. 

Lemma 3.1. Every Abelian group is a group, every group is a Moufang 
loop, and all MI-loops, all M,-loops and all Moufang loops are power- 
associative. 

The first two statements need no proofs. For the proof of the last 
three statements it is enough to put z = e, y = x into (3.4), (3.9, or 
(3.6) in order to get (3.3) with the help of (3.2). 

We further prove the following: 

Lemma 3.2. All Moufang-loops are MI-loops and also M,-loops. 
Conversely, if a loop is at the same time an MI-loop and an M,-loop, 
then it is also a Moufang loop. 

Proof. We have two statements to prove: 

(I) If for all x, Y, z E G (3.6) holds and for all x E G (3.2), then also 
(3.4) and (3.5) hold for all x, y, z E G, and 

(II) If (3.2), (3.4), and (3.5) hold for all elements of G, then also (3.6) 
does. 

(I) By putting into (3.6) x = e, we get because of (3.2) 

yz *y = y  *zy 

and thus (3.6) goes over into (3.5) immediately. So we have already 
derived (3.5) from (3.6) and (3.2). 

On the other hand, let us define the left inverse y-l of y by 

(3.8) y-‘y = e 
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and put into (3.6) x = y-l, sy = w. Then we get because of (3.2) 

(3.9) w = y-1 'yw 

for ally, w E G. If we now make the replacements y = z-l, xy = xz-l = r 
in (3.5) [which we have already derived from (3.6) and (3.2)], and 
make use of (3.8) and (3.2) we get 

(3.10) YZ * 2-l = Y 

for all Y, z E G. If we multiply (3.9) from the right by (yw)-I, then 
(3.10) with Y = y-l, z = yw yields 

w(yw)-1 = y-l. 

If we multiply the latter equation by w-l on the left and use (3.9) we 
get the important relation 

(3.11) (yw)-’ = w-‘y-1. 

Now we put into (3.5) x-r, y-l, and z-l for x, y, and z: 

(x-ly-l . z-l)y-l = x-l(y-lz-l .y-l) 

from which we get by repeated use of (3.11) first 

((yx)-‘z-‘)y-1 = x-‘((zy)-‘y-1) 

then 
(2 * yx)-‘y-1 = x-‘(y * zy)-1 

and, finally, 

(Yb * Y-w = NY * ZYW 

which by the uniqueness of the left inverses, i.e., of the solutions of 
equations of the form (3.8) in loops, just yields (3.4). Thus the statement 
(I) is proved. 

(II) We put into (3.4) z = y-l, yx = w; then (3.8) and (3.2) imply 

(3.12) y * y-lw = w 

for all y, w E G. On the other hand, by (3.5) with x = y-l and again 
because of (3.8) and (3.2) 

2Y = Y-YYZ .Y) 
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and by multiplying both sides of this equation by y and taking (3.12) 
with yz * y = w  into consideration, we get again 

So (3.5) goes over into (3.6) by which (II) and hence Lemma 3.2 is 
proved. 

After these preliminary remarks we can define several grades of 
regularity of algebraic nets, differing in their strength from stronger 
to successively weaker ones. 

An algebraic net is a-regular, if the corresponding class of isotopic 
quasigroups contains an Abelian group, g-regular if the class contains a 
group, and m-regular, ml-regular, or m,-regular if the class contains a 
Moufang loop, a M,-loop, or a M,-loop, respectively. 

In these cases at the same time all loops of the class are Abelian groups, 
groups, Moufang loops, MI-loops, or MS-loops, respectively (cf. Bruck [l], 
KertCsz [I], and see Corollary 5 below). In a similar way we define an 
algebraic net to be p-regular, if all loops of the corresponding class are 
power-associative (3.3). We will abbreviate the statement that a net is 
h-regular (h = a, ‘g, m, m, , m, , p) by h. 

The above definitions and Lemmas 3.1 and 3.2 
the following: 

immediately imply 

Corollary 1. 
g ml 4 

a=-g*m P 

This is very similar to Theorem 2.1. There is a significant reason: 
the different grades of regularity are equivalent to different -closure 
conditions. In particular, we make the following statements of equiva- 
lence between properties of algebraic nets and those of the corresponding 
classes of isotopic quasigroups: 

THEOREM 3.1. a o T. 

THEOREM 3.2. g o R. 

THEOREM 3.3. m, o B,. 

THEOREM 3.4. m2 o B,. 

THEOREM 3.5. p o H. 
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The definition of B together with Theorems 3.2 and 3.3 and with 
Lemma 3.2 imply also 

Corollary 2. m o B. 
The proofs of Theorems 3.1-3.5 can be followed in Figs. 21-25, 

which serve, however, only as illustrations (as they replace G by the real 
axis or by a subinterval of it). 

In these proofs the so-called LP(loop-principal)-isotopes of quasi- 
groups will be fundamental aids. We define an M-isotope (G, o) of 

KG -1 by 

(3.13) sv 0 ut = st 

where u and v are, for the time being, fixed elements of G. As for 
given U, v any two arbitrary elements X, y of G can be represented in a 
unique way in the form 

x = SD, y = ut, 

so (3.13) defines x o y unambiguously for all x, y E G and (G, o) is 
really an isotope of (G, e): here f(s) = SD, g(t) = ut, and h(z) = z. Those 
isotopes where h(z) = z are called principal isotopes. On the other hand 
(G, o) is a loop and e = uv is its unit element. In fact, if we put s = u, 
resp. t = v, into (3.13) then we get 

e 0 ut = ut, sv 0 e = sv, 

respectively, and so the identities corresponding to (3.2) are valid. 
Reciprocally, a# principal isotopes of (G, -), which are loops are given 
by (3.13). In fact, if (G, o) is a principal isotope of (G, e): 

(3.14) St = f(s) 0 g(t) 

and if (G, o) is a loop with the unit element e, then -f and g being l-l 
maps of G onto itself - there exist elements u and v in G such that 

f(u) = e, g(v) = e. 

From (3.14) by substitution of t = v, resp., s = u we get 

f(s) = sv and g(t) = ut, 

respectively, so that (3.14) goes over into (3.13) as we have asserted. 
This motivates the name loop-principal(P)-isotope, but we will not 
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need these properties until later. In this connection, however, we 
mention that all isotopes (H, *) of a quasigroup (G, a) 

(3.15) 4XY) = f(x) * g(Y) 

are isomorphic 

(3.16) 4x 0 Y) = 44 * h(Y) 

to a principal isotope, namely to that defined by 

(3.17) w  = h-‘f(u) 0 h-‘g(v), x 0 y = f-Q(x) * g-%(y) 

(f-l, g-l, and h-l are the inverse maps of f, g, and h, respectively, 
mapping H onto G in a l-l &y). In fact, (3.15) and (3.17) imply (3.16): 

h(x 0 y) = h( f-%(x) * g-%(y)) = ff-‘h(x) * gg-‘h(y) = h(x) * h(y). 

Thus familiarity with the loop-principal-isotopes puts the key to all 
loop isotopes in our hands, and this is the deeper cause of the importance 
of the LP-isotopes in our following proofs. 

Figure 20 illustrates the result x o y of the operation o. Here U, s 

FIG. 20. 

are on the horizontal, o, t on the vertical axis, while the contour lines 
on the figure have the marks x, y and x o y. In what follows, x or y 
can also denote z-values, but xj and yi will always denote x-values 
and y-values, respectively. 
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Proof of Theorem 3.1. 

(I) T 3 a. 

T implies the commutativity of all LP-isotopes of (G, *). In fact, let 
xi = u, yi = 2, be given. (G, *) being a quasigroup, for arbitrary given x, 
y E G, there exist elements xa , .r3 , y, , and JJ~ (Fig. 21), such that 

(3.18) x = uy2 = X*2’ and .” = U<V, = x3v ; 

XI x2 x3 
u 

FIG. 21. 

I.e., 

"wz = w1&*w3 = X3% 

hold. But these are the hypotheses of T, so also its conclusion is valid 

(3.19) %?Y3 = Jc3Yz* 

Now by (3.18) and (3.13) 

x 0 y = x$7 0 uy3 = x93 and y 0 x = xgv 0 uy2 = x3yz ) 

so that (3.19) really states that all LP-isotopes (G, o) of (G, *) are com- 
mutative: 

(3.20) xoy=yox. 

On the other hand, if all LP-isotopes of (G, *) are commutative, then 
they are aN associative too (while from the commutativity of a single 
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LP-isotope its associativity does not follow). In fact (cf. Pickert [Z]), 
if also the‘operation *, defined with the aid of w  instead of u (w = yi 
remains unchanged) 

SW * wt = St, 

is commutative 

(3.21) x*z=z*x, 

then for arbitrary x, y E G and given u, c, there are s, t, such that 

x = SW, y = ut ; 

i.e., 

(3.22) XOy=svOut=st=m*wt=x*(fOwout)=x*(qop). 

Here w  can be chosen arbitrarily; thus also q = WV. More precisely, for 
every q one can define such an operation * that (3.22) remains valid for 
all x, y E G. Now for arbitrary p, q, r E G-after having chosen * so 
that (3.22) holds-we have 

(P 0 Q) 0 y = (Q 0 P) s y = (9 c P) * (4 0 y) = (4 0 4 * (4 0 P) 

= (4 c y) c P = P 0 (4 c r>, 

[by application of (3.20), (3.22), (3.21), (3.22), and (3.20)], so that every 
LP-isotope (G, o) of (G, .) is not only commutative, but also associative. 
But the commutative and associative quasigroups are the Abelian groups 
and as all loop isotopes are isomorphic to an LP-isotope, therefore T 
implies that all loops isotopic to (G, *) are Abelian groups too and SO we 
have proved the statement (I), [ even more, as in (I) only the Abelian 
group properties of one LP-isotope were stated]. 

Conversely, 
(II) a S- T. 

In fact, for that member of the class of isotopic quasigroups associated 
with the net, which by a is an Abelian group, the condition T is satisfied 
as 

(q?J* = "2)?1& XlY3 = "3Yl) * "IY3(XIY&' = ~3Y&Yd-' 

* y&l = x3x;' * xlys = x3y3 
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(for an Abelian group xy * z = x * yz = xyz, xy = yx, (xy)-l = 

Y-lx-l = x-y, etc.) and, as we have already remarked, if T holds for 
a quasigroup, then it holds for all its isotopes too, and so for all quasi- 
groups of the class related to the net. Thus we have proved assertion (II) 
and finished the proof of Theorem 3.1. 

From the above proof we can even derive the following: 

Corollary 3. If T is sati$ed for one y1 E G andfor all x1, x2 , x3 , 
yz , y3 E G, then it holds as well for all x1 , x2 , x3 , y1 , yz , y3 E G. 

Proof of Theorem 3.2. 

(1) R e- g* 

Let us fix x1 = tl and y1 = er (Fig. 22). Then, by the quasigroup 
properties, for arbitrary x, y, and z there are x2, x, , xq , ys , yS , and y4 
such that 

(3.23) y = uyg = x*v 

(this determines x2 and yz), 

(3.24) x = x.$7, z = uy3 

xi X2 X3 X4 
u 

FIG. 22. 
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(these determine xs and ys) and 

(3.25) %Ys = UY4, '3Y2 = x4v 

(these determine xp andy,). But (3.23) and (3.25) contain the hypotheses 
of R so that its conclusion holds too: 

(3.26) XsY4 = X4Y3 - 

By applying consecutively (3.24), (3.23), (3.13), (3.25), (3.24), and 
(3.13) we get 

(x 0 y) 0 z = (x3v 0 uy,) 0 z = x3y2 0 2 = X4” 0 uy3 = x4y3 ) 

x 0 (y 0 z) = x 0 (x2v 0 uy,) = x 0 xgy3 = x3v 0 uy4 = x3y4 , 

so that (3.26) really yields the associativity of the operation o. As 
(G, o) is a quasigroup and associative quasigroups are groups, we have 
proved (I). If we now temporarily abandon the fixing of ZJ and o, we get 
that all U-isotopes of (G, *) are groups and, since any isomorphic 
image of a group is a group, so R implies that all loops isotopic to (G, *) 
are grdups. 

From the statement just proved part (I) of Theorem 3.1 follows, 
for by combining the above assertion with Theorem 2.1 we get 
T =E- R S- g. But then T has to be fulfilled also for that member of the 
class of isotopic quasigroups, which is a group (a loop): 

(XlY2 = %Yl & XlY3 = WI> * %Ys = xsY2 - 

Let us choose x1 = y1 = e (unit element), then 

(YZ = X2&k = x3) * xd3 = x3Y2 

or, equivalently, 
'$3 = 'Sx2 

for all x2 , x3 , so that this group is Abelian and a is valid (moreover, 
we have derived again that all loop isotopes are commutative). 

(II) y 5 R. 

In fact, for that member of the class of isotopic quasigroups associated 
with the net, which by g is a group, the. condition R is satisfied, as 

txlY2 = xdl&xlY4 = x2Y3&x3Y2 = jc4Yl) 

* x3Y2(xlY2)-'xlY4 = x4%(x~l)-'x~3 * '3Y4 = X4Y3 
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(since xy * az = x * yz = xyz, (xy)-l = y-lx-l, etc., in groups). And, 
if R holds for a quasigroup, then it holds for all its isotopes too, so 
also for all quasigroups of the class associated with the net. Thus we have 
proved assertion (II) and finished the proof of Theorem 3.2. 

From the above proof we can also derive the following: 

Corollary 4. If R is satisfied for one x1, one yl, and all x2, x3, x4, 
yz , y3 , and y4 in G, then it holds as well for all x1 , x2 , x3 , x4 , y1 , yz , 

y3 , and y4 . 

Proof of Theorems 3.3 and 3.4. 

(1) 4 5 ml. 

Let x2 = U, Yr = V, (Fig. 23) then for arbitrarily given x, y, and z 
there are xi , x4 , y1 , YZ , y3 , y4 , X2 , X4 , and Y3 such that 

(3.27) x = UY,, z = x,v 

I 

FIG. 23. 
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(these determine Ya , x4) 

(3.28) y = fly1 = Xzyl = X,Y, = xp 

(this determines y1 , Xa); further, taking (3.27), (3.28), and (3.13) into 
account 

(3.29) z 0 y = xqv 0 uy1 = x4y1 = x2y2 = uy2 

(this determines y.J and 

(3.30) y 0 (2 0 y) = x,v 0 uyg = x2y, = X,Y, = x,v 

(this determines X4); also in complementing (3.28) we set 

(3.31) y = xfll = X,Y, = x1y2 

(this determines x1) and with reference to (3.13), (3.27), and (3.28) 

(3.32) y 0 x = x,v 0 UY, = X,Y, = x1y4 = x.&. = uy.g 

(this finally determines y4 and ya). By (3.31), (3.32), and (3.29) the hypo- 
theses of B, are fulfilled: 

XlYZ = %Yl& XlY4 = X2Ys & x2Y2 = XSYl v 

so its conclusion has to be valid too: 

%Y4 = X4Y3 * 

But then, taking also (3.27), (3.32), and (3.13) into account 

z 0 (y 0 x) = xp 0 uy3 = x&? = xay4 = uy4 

and with (3.28) and (3.13) 

(3.33) y 0 (2 0 (y 0 x)) = x,v 0 uy4 = x,y, . 

On the other hand, (3.31), (3.32), and (3.30) show that 

XJ2 = X,Y, & x1y4 = X2Y3 & x0, = X,Y, 

i.e., the hypotheses of B, are satisfied this time for x1 , X2 , X, , YI , 
y2 , Ya , and ya , so that its conclusion holds too: 

x2y4 = X,Y, . 
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But then (3.30), (3.27), (3.13), and (3.33) imply 

415 

(y 0 (2 0 y)) 0 x = xp 0 UY, = X,Y, = x2y, = y 0 (2 0 (y 0 x)), 

so that the loop (G, o) has the property (3.4), i.e., it is an Mr-loop. 
This proves (I). 

B, can be transformed into B, by interchanging the roles of the x’s 
and the y’s (geometrically- see Figs. 14 and 15-this means the inter- 
changing of the horizontal and vertical axes). A similar change trans- 
forms 

xoy=svout=st 

into 
y 0 x = t’v 0 us‘ = t’s’ 

(cf. with Fig. 24, where again the horizontal and vertical axes were 

L 
u S t ’ 

FIG. 24. 

interchanged when going over from E o y to y o x), so that it also trans- 
forms the property 

Y 0 (2 0 (Y 0 4) = (Y 0 (2 0 YN 0 x 

which we have just proved and which corresponds in (G, o) to (3.4) 
belonging to m, , into 
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which corresponds in (G, o) to (3.5) belonging to m2. So (I) also has 

B, =- m2, 

as a consequence and owing to the definition of B and to Lemma 3.2 

as stated in Theorem 3.4 and in Corollary 2, respectively. 
If U, er run through G, then we see that (3.4), (3.5), or (3.6), respec- 

tively, are fulfilled in all P-isotopes of (G, *) and as these identities 
carry over to isomorphic loops, therefore B, , B, , or B imply that all 
loops isotopic to (G, *) are MI-loops, M,-loops, or Moufang loops, respec- 
tively. 

For the same reason as above it is enough to prove the first one of, the 
converse statements 

ml * Bl , m2=-B2, m s- B. 

(II) m, =- B, . 

To prove this, we recall that in part (II) of the proof of Lemma 3.2 
we have derived 

(3.12) y * y-1” = w  

from (3.4). On the other hand zy = e (i.e., z = y-l) and yx = e in 
(3.4) gives 

yz = e 

(the left inverse is at the same time also a right inverse), so that we have 
y = z-l wh ic transforms (3.12) into h 

(3.34) z-l . zw = w 

[cf. (3.9)]. Th us in that quasigroup of the net, which is an M,-loop, 
(3.34) holds too. But then also B, is satisfied in this quasigroup: 

(3.35) XlY2 = %Y19 

(3.36) %Y4 = “2Y3-9 

and 

(3.37) %Y2 = X4Yl 
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together imply 

(3.38) ws = XaYs ’ 

In fact, by multiplying (3.35) from the left by x~l, (3.34) gives 

y2 = x;’ * X2Yl 

and from (3.37), by taking (3.4) into account, we get 

X4Yl = XZYZ = x2(x;’ * X,Yl) = (x2 * i’X2)Yl * 

Now equations of the form 

have unique solutions x, and so 

x4 = x2 * x;lx2 , 

so that (3.4), (3.36), and (3.34) imply 

x4y3 = (x2 * x;'x2)y3 = x&y' * x,y,) = x2(x;' + x,yq) = x2yq 

and this is (3.38) which shows that B, really holds in this quasigroup. 
But then B, holds also in all isotopic quasigroups of the class associated 
with the net. This proves (II) and also 

as mentioned above, so that we have finished the proof of Theorems 
3.3 and 3.4 and of corollary 2. 

By comparing the statements (II) in the proofs of the Theorems 3.1-3.4 
with the statements in italics at the ends of the parts (I) of the same 
proofs, we see that one quasigroup of the class associated with the net 
being an Abelian group or group or Moufang loop or Mr-loop or M,-loop 
already establishes that T, R, B, B, , and B, are satisfied, respectively, 
and this implies that all loops of the class of isotopic quasigroups 
associated with the nets are, respectively, Abelian groups, groups, 
Moufang loops, Mi-loops, or Ma-loops too. Thus (cf. Bruck [I] and 
KertCsz [l]) we have the following: 
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Corollary 5. Every loop isotopic to an Abelian group OY to a group OY 

to a Moufang loop OY MI- OY M,-loop, respectively, is also itself an Abelian 
group; resp., a group; resp., a Moufang loop; an MI- OY M,-loop. 

It might be interesting to observe that while the identities (3.4) and 
(3.5) corresponded to the closure conditions B, and B, , there is no 
simple identity known which is equivalent to B, . 

Proof of Theorem 3.5. 

For arbitrary x, 

(3.39) 

(1) H =2- P. 

Xl = u, y1 = v, 

we can choose x2 , xa , ys , ys so that 

(3.40) x = uy, = X# 

(this determines xs , ys) and then [cf. (3.13)] 

(3.41) x 0 x = x2v 0 uy2 = x2y* = uy3 = x,v 

(which determines xa , ya ). By (3.39), (3.40), (3.41) the hypotheses of H 
are fulfilled (cf. Fig. 25): 

(3.42) XLYZ = %Yl & XlY3 = FLY2 = jEsY1 9 

so that its conclusion holds too: 

(3.43) x2Y3 = x3Y2 * 

From (3.40) and (3.41) we get with reference to (3.13) 

(3.44) (x 0 x) 0 x = xgv 0 uy2 = xsy2 

and 

(3.45) x 0 (x 0 x) = xp 0 uy’ys = xy, ) 

therefore (3.43) gives 

(3.46) (x0x)0x =x0(x0x). 
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A 

u3 
x0(x0x) 

4 ~xoxlox 

“4 X 
x0x 

y 

XI X2 x3 
u 

FIG. 25. 

So that--u and TJ being arbitrary-all LP-isotopes are power-associative 
and as (3.46) remains true for isomorphic loops, all loops isotopic to 
(G, *) will be power-associative, which proves (I). 

(II) p s- H. 

It is enough to suppose, that (3.46) holds for all LP-isotopes (G, o) 
and show that then H is valid for all quasigroups of the class. We prove 
this assertion with the same formulas (3.39)-(3.46) with which we 
have proved (I). But now for given xi , xg , x, , y1 , yz , and y3 , which 
fulfill the hypotheses of H, (3.39) serves to present those u and v with 
which we construct (3.13), i.e., with which we select an LP-isotope 
of the given quasigroup; (3.40) defines x [uy, = xz,o holds by (3.39) and 
by (3.42), i.e., by a hypothesis of N], and (3.41) follows from (3.13) and 
(3.42). Finally, reading (3.44) and (3.45) from the right to the left, 
they are consequences of (3.13), (3.40), and (3.41), and so (3.46) implies 
(3.43), so that the conclusion of H is valid too. This finishes the proof 
of (II) and at the same time that of Theorem 3.5. 
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If we define the “powers” of an element x of a loop in a natural way by 

x0 = e, xl = x, x2 = xx, x3 = xX2, . . . . 

in general by 

Xnfl = X~n (n = 0, 1, 2, . ..) 

for nonnegative integral exponents and by 

.p = (q-n (n < 0) 

for negative integer exponents, where x-l is the left inverse of x 

;-lx = e 

then the power-associativity 

(3.3) xx * x = x * xx 

can be written as 

(3.47) x2x1 = x3 

and the fact, proved in part (II) of Theorem 3.3 for Mr-loops, that the 
left inverse is also a right inverse 

xx-l = e 

can be written as 

(3.48) x1x-l = x0. 

Both (3.47) and (3.48) are special cases of the strong power-associativity 

(3.49) yn&.n = .pw for all integers m, n. 

We will prove in Theorem 3.7 that also (3.49) follows for all loops 
isotopic to a quasigroup fulfilling H. But first we will prove the inter- 
esting special case that the property 

(3.50) x-lx = e * xx-l = e 

follows not only from (3.4) or (3.6) but also from H. If in all loops of 
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the class associated with a net the property (3.50) is valid, then we will 
say that the net has the property i. So we prove the following 

THEOREM 3.6. i o H. 

Proof. 

(I) H 3 i. 

For arbitrary x2 = u, yz = v (Fig. 26) we can choose x1 , yr , x8 , 
and y3 such that 

(3.51) x = X~V = uy, 

” y2 
\ \x 

4 
x0x-I 

x-1 

5 

x3 12 xc 
u 

FIG. 26. 

(this determines x1 , yr) and 

(3.52) uv = X& = x3y1 

(this determines xa , ya). Equations (3.51) and (3.52) show that the hypo 
theses of H are fulfilled, so its conclusion has to hold too: 

(3.53) uys = x.$7. 

As we have seen before the proof of Theorem 3.1, 

(3.54) uv = & 
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is a unit element of the LP-isotope (G, 2) defined by (3.13). We define 
x-l which is to be inverse element of x in (G, 3) [and not in (G, a), 
which need not even be a loop] by 

(3.55) x-1 = xsv = lly.J , 

which we can do after having established (3.53). For this x-l we really 
have 

and 

r-1 0 x = xsv a uyl = xsyl = uv = e 

x 0 x-l = xlv 0 uyys = xl-y3 = uv = e 

by (3.51), (3.59, (3.13), (3.52), and (3.54). The equation y o x = e 
having a unique solution y, this is just the x-l defined by (3.55) and we 
have x o x-l = e for this x-l, so that-as U, w  are arbitrary-the 
property (3.50) is valid for every LP-isotope of (G, *). As this 
property carries over to isomorphic loops, so it remains valid in all loops 
of the class associated with the net, which proves (I). 

(II) i - H. 

H already follows from the fact that the left inverse of every element 
of each LP-isotope is equal to the right inverse. In fact for given xi, x2, 
x3 3 Yl 9 Y2 3 and ya for which the hypotheses 

(3.56) “lY2 = XZYl& XlY3 = “2Y2 = XSYl 

of H are fulfilled, let 

(3.57) 

and define 

u = x2, v =y2, x = XIV = uy1 

(3.58) Y = xgv, 2 = uya . 

Then (3.54), (3.57), and (3.56) imply 

e = uv = xty3 = xsyl 

and because of (3.58), (3.57), and (3.13) 

y  0 x = xgv 0 uyl = xsyl = e, 

x 0 z = x,0 0 uy3 = xly3 = e, 
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so that y is the left inverse, z the right inverse of x in (G, 0). i states that 
2 = y, i.e., by (3.58) and (3.57) 

so that the conclusion of H holds too, which finishes the proof of (II) 
and at the same time that of Theorem 3.6. 

From Theorems 3.5 and 3.6 it follows that 

Corollary 6. p 0 i. 
Now we go over to the strong power-associativity 

(3.59) p 0 x” = p+n for all integers m, It 

relating to the powers defined by 

“p+1 = x 0 p (n = 0, 1, 2, . ..). x0= e = x-l 0 x, 
(3.60) 

xn = (x-l)-* (n = -1, -2, . ..). 

If for all elements of every loop of the class associated with a net, (3.59) 
holds under the definition (3.60), then we say, that the net hasproperty s. 

THEOREM 3.7. s e H. 
Since owing to Theorems 3.5 and 3.6 H follows from p or i, which 

are special cases of s, we need not prove s Z- H. We prove H z- s in 
four steps: 

Step (A). From H it follows for all elements of every LP-isotope 
(G, o) of (G, *) that 

(3.61) JEm 0 xn z= xr”+n for all m > 0, n > 0. 

We prove this by a somewhat unusual induction with respect to m 
and n: (3.61) holds for m = 0, n arbitrary and for n = 0, m arbitrary 
because of the definition (3.60) and of the loop property analogous to 
(3.2) in (G, 0): 

flo xn = e 0 xn = xn = fl+n, .xrn 0 .$J = xm 0 e = x*+0; 

(3.61) is also valid for m = 1, 7t arbitrary because of (3.60): 

xl 0 x” = x 0 .p z.z xn+1. 
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We prove that the validity of (3.61) for m = M - 1, n arbitrary, for 
m = M, n arbitrary, and for m = M + 1, n = N - 1 implies also its 
validity for 

m=M+l, n = N. 

From this, (3.61) really follows for all nonnegative m, n (Fig. 27). 
It is true as we have just seen for m = 0, n arbitrary and for m = 1, 

m 

FIG. 27. 

n arbitrary; it holds for m = 2, n = 0, thus (M = 1, N = I) it holds 
for m = 2, n = 1 too, then for m = 2, n = 2 (A4 = 1, N = 2), etc., 
and if it is true for all m < M and all n, then-being valid also for 
m = M + 1, n = O-it remains true form = M + 1, n = 1 (N = l), 
from this for m = M + 1, n = 2 (N = 2), etc., and from the validity 
form= M+ 1 andforalln<N- 1 itsvalidityform= M+ 1, 
n = N follows too, and so on. 

In our case we work out this reasoning by induction as follows: 
24, er, x”--l, x”, x”+l, xN-1, XN, and xN-tl are given; by the hypotheses of 
induction 

+-1 o @’ = xM+N-l = *M o xN-l, 

(3.62) 
xM-l 0 XN+l = XM+N = xM o yV = XM+l o XN-l 
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and 

(3.63) XM o xN+l = xM+N+l 

Xl 3 *2 > *3 9 Yl 9 Yz 5 and y3 can be determined so that (Fig. 28) 

(3.64) xM-’ = xlv, XM = x,v, xM+l = x3v 

x M-lo xN+l XM-loXN+~ XMCI xNf’ XMCI xNf’ 

u3 u3 
. . 

4 4 

XMf I o xN-l XMf I o xN-l 

\ \ \ \ 

XI XI x2 x2 x3 x3 

FIG. 28. FIG. 28. 

(which determine x1 , x2 , and x3) 

(3.65) xN-1 = uy1, XN = uy2 ) xN+l 
= UY3 

(which determine yl, yz , y3). Then (3.13) and (3.62) imply 

x1y2 = xlv 0 uy2 = xM-1 0 XN = XM 0 xN-1 = x*v 0 uy, = XJ1 , 

x1y3 = XlV 0 uy3 = xM-1 o xf”+l = XM o XN = x2v o uy2 = xg2 

= xM+l 0 x-1 = x,v 0 uy1 = x3y1 , 

so that the hypotheses of H are fulfilled and also its conclusion has to 
be valid: 

x93 = x3Y2 - 

Thus (3.64), (3.65), (3.13), and (3.63) imply 

x‘+f+1 0 XN = x30 0 uy, = x3y* = x2y3 = x2v 0 uy3 = x M o xN+l = xM+N+l 
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and this was the assertion to be proved. Therefore, (3.61) is valid for 
m = M + 1, n = N. Since by varying u and v we can form all LP-iso- 
topes, we have proved step (A). 

Step (B). From H it follows for all elements of every LP-isotope that 

xm 0 xn = p+n for all m < 0, n < 0. 

Because of (3.60) this follows immediately from step (A) if we replace 
x by x-l. 

Step (C). From H it follows for all elements of every LP-isotope that 

xm 0 xn = xm+* for all m < 0, n > 0. 

In order to establish this, we will need a new form of condition H 
(cf. Fig. 29, which shows that it states the closure of the hexagonal 
figure at its “medial 3-curve”): 

Lemma 3.3. H is equivalent to the validity of 

H’ : (XJ2 = xfll& X& = x,y, & xy, = x3y1) G- x1y3 = x0* 

for all x1 , x2 7 x3 v  Yl 9 Y2 9 Y3 

(-Rf lox/v 

X-R+l,XN-l 

I XI x2 x3 

FIG. 29. 
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Proof of Lemma 3.3. 

(I) H =z- H’ 

Let the hypotheses of H’ be valid: 

+wz = SYl, %Y2 =%Y1* 

(3.66) %Y3 = x3y2 

and define jja so that 

(3.67) x93 = %Y2* 

But this states that for xi , x2, ~3 , y1 , y2, j$ the hypotheses of H are 
valid: 

w2 =%Y1&"9a =qYz =%y1, 

then its conclusion holds too: 

If we compare this with (3.66) we get & = ya , so that (3.67) goes over 
into 

XlY3 = %Y2 

which is the conclusion of H’ proving (I). 

(II) The proof of H’ G- H can be established similarly, which 
finishes the proof of Lemma 3.3. 

Continuation of the proof of Theorem 9: proof of Step (C). We have 
to prove that 

(3.68) x-’ 0 xn = x-‘+n (Y > 0, n 2 0) 

holds for all elements of every U-isotope. This we will prove again by an 
induction with respect to I and 11: (3.68) is true for T = - I, n arbitrary, 
and Y = 0, 71 arbitrary by Step (A), further it is true for tl = 0, I arbi- 
trary because of x0 = e. We prove that 

(3.69) X-R+l ox" = X-R+n+l 

(3.70) X-R c Xn = x-R+n I (?z = 0, 1, 2, . ..) 
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and 

(3.71) 

imply 

(3.72) 

This (Fig. 30) will prove (3.68) for all positive (nonnegative) I, n. 

SW_. 

‘\\ . 
\ \ 

t--s- 
. \ 

\ 
‘\ 

2 

.  

‘\\ 

‘\ 

, -s-2 

.  

‘\\ 
\  

> e-w- 

,I 

-A 

-1 

-A 

-R-l -I? -Rf I -I 0 

FIG. 30. 

7 

Vf I 

V 

I-I 

-In=-r 

In order to carry out our project we choose x1 , x, , .Q , y1 , yz, and 
yS with given U, a, LX-~-~, xFR, xeR+l, ~~-1, xN, and xN+l so that (Fig. 29) 

x--R-l = xlv, X-R = x v 2 9 x-R+1 = X2”, 

x+-l = uyl ) XN = uy'yz ) xN+l = Ily2, 

then (3.13) and (3.71), (3.70), and (3.69) imply 

"LY2 = xlv o uy2 = x-R-1 o XN = X-R+N-1 = X-R 0 xN-1 = x2v o uyl = xdl, 

x2y2 = x2v o uy2 = X-R o xN+l = X-R+N+l = x-R+1 0 XN = x2v 0 uy2 = x2y2, 

xy, = x2v o uy2 = X-R o XN = X-R+N = x-R+1 0 xN--1 = xgv 0 uyl = x2yl, 
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so that the hypotheses of H’ are fulfilled and its conclusion also holds: 

and so 
XlYS = %Y2 

x-R-1 0 xN+l = x,v 0 uy2 = x y 1 3 = Xd2 = x2v 0 uy, = x-R 0 XN = X-R+N 

This is (3.72), which was to be proven. 
[Our reasoning remains valid for I = -1, because (3.69) and (3.70) 

are trivial for R = 0, while for R = 0, N = 1 we get (3.71) from 
(3.60); but then the above considerations yield (3.72) so that (3.71) 
remains true for N = 2 and again because of (3.72) also for N = 3, etc.]. 
This proves Step (C). 

Step (D). From H it follows for all elements of every LP-isotope that 

xm 0 xn z p+n for all m > 0, n < 0. 

This statement follows from step (C) by changing x into x-l since 
by Theorem 3.6 H implies i, i.e., the validity of (3.50) for allLP-isotopes 
and so (x-l)-’ = X. 

Now we have proved (3.59) f or all LP-isotopes and for all integers 
m, n and, since obviously this property carries over to isomorphic loops, 
(3.59) remains true for all loops of the class associated with the net, 
which finishes the proof of Theorem 3.7. (For Theorems 3.1-3.7 cf. 
Pickert [2] and AczCI, Pickert and Rad6 [I], for theorems 3.5-3.7 
also Pickert [l] and Rad6 [I].) From Theorems 3.5 and 3.7 we can 
derive a stronger statement than corollary 6: 

Corollary 7. p 0 s. 
That s implies p is obvious. Much the more surprising is that the 

validity of the weaker condition (3.3) for all loops of the class implies for 
the same loops the much more general condition (3.59). Of course the 
validity of (3.3) in a single loop does not imply that of (3.59) in the 
same loop. 

4. Other Definitions of Algebraic Nets 

There are also other possible definitions of algebraic nets. For example, 
in AczCl, Pickert, and Rad6 [l] we have associated only a single quasi- 
group with the net instead of the whole class of isotopic quasigroups. 
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On the other hand, it is possible to relate only loops with a net (a class 
of all isotopic loops or just one single loop with each; see, e.g., Pickert [2] 
and Bruck [I]; the theorems in Section 3 and the definitions of the 
different kinds of regularity also refer just to the loops of the class). 
This is equivalent to the following: Instead of associating (G, *) with a 
net, we associate with it the LP-isotope (G, o) defined by (3.13). The 
intuitive meaning of this in Fig. 20 is that we translate the vertical 
axis by u and the horizontal one by v so that the origin is transferred 
into the point e = uv, i.e., into the unit element (Fig. 31). This relates 

FIG. 31. 

to another abstract treatment of nets, to which we actually referred at the 
beginning of Section 3 and which is a direct generalization of the defini- 
tion of geometric nets without the continuity hypothesis. We define a 
3-net to be a nonvoid set H-the elements of which are called points - 
together with three classes of its subsets; we call these subsets curves, 
in particular the three classes are the l-curves, 2-curves, and 3-curves, 
if the following conditions are fulfilled. Every point of H is contained 
in exactly one i-curve (i = 1, 2, 3) and an i-curve has exactly one 
common point with a j-curve if i # j. (Instead of elements and “subsets” 
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one can begin by introducing two kinds of elements, “points” and 
“curves,” and then instead of “containing” one has to introduce a new 
relation of “incidence” between “points” and “curves.“) 

These conditions imply the existence of I-1 maps of the set of 
i-curves onto that of j-curves (i, j = 1, 2, 3). Therefore, each of the 
three sets can be mapped in a l-l way onto the same set G. In this 
set G we can define an operation by calling z = xy the element z E G 
associated with the 3-curve containing the common point of the l-curve 
associated with x E G and of the 2-curve associated with y E G. G is a 
quasigroup with respect to this operation. The above choice of the set G 
and thus also of the operation in it is not unique, but all quasigroups 
so determined are isotopic. An&this actually leads us back to the repre- 
sentation in Section 3. (This is essentially the process followed in Bruck 

PI*> 
But we can even directly associate a loop with the net, also defining 

the operation in it in a more “geometrical” way. We can prescribe which 
element of G is to be the unit element of the loop and which point is to 
be the unit point (i.e., the common point of the l- and 2-curves belonging 
to the unit element). If the prescribed point of H was contained originally 
in the l-curve belonging to u and in the 2-curve belonging to w, then we 
distinguish these two curves. By a further l-l mapping of the set of 
1-, 2-, and 3-curves (i.e., by isotopy) we can arrange that these distin- 
guished I- and 2-curves and the 3-curve containing the prescribed point 
be associated with the same element of G. For this purpose it is sufficient 
to make the set of 3-curves correspond in such a manner to G that the 
3-curve containing the prescribed point be associated with the element 
of G prescribed to be the unit and then to make the l- and 2-curves 
correspond in such a manner to the elements of G that to every i-curve 
(i= 1,2)th t 1 a e ement of G be associated which was related to a S-curve 
containing the common point of that i-curve and of the distinguished 
j-curve (j # i, i.e., j = 2 if i = 1 and j = 1 if i = 2). All this is 
represented in Fig. 3 1 and the above description just expresses abstractly 
the earlier mentioned “translation” of the horizontal and vertical axes. 
If we define now the result x o y of the operation o as the element of G 
associated in this new relationship with the 3-curve containing the com- 
mon point of the l-curve belonging to x and of the 2-curve belonging 
to y, then this operation can be geometrically represented by the fol- 
lowing “addition of segments”: 

We identify the points of the distinguished l-curve-in what follows, 
we call it the “axis”- with the elements of G newly associated with the 
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2- or 3-curves containing them. We take the x- and y-element on the 
axis and x oy will be the common point of the axis and of the 3-curve 
passing through the intersection of the 2-curve belonging to y and thus 
actually containing y with the l-curve containing the common point 
of the 3-curve associated with x and of the distinguished 2-curve 
(cf. Fig. 31; if the 3-curves are parallel straight lines there, then 
x o y = x + y and this explains the terminology ,“addition of seg- 
ments”). One sees immediately that e is a unit element of the quasigroup 
(G, o) thus constructed so that (G, o) is a loop. The comparison of 
Figs. 20 and 31 also indicates that (G, o) actually is the LP-isotope 
defined by (3.13) which fact can be proved algebraically without diffi- 
culty (see AczCl, Pickert, and Ra@ [l]). It is instructive to draw into the 
figures illustrating Theorems 3.1-3.6 these “additions of segments” 
which make their relation to (G, o) still more intuitive. 

Essentially, the above construction is given in Bol [l], Thomsen [l], 
and Bruck [l], further in Blaschke and Bol [I] and Pickert [2], but in 
Bol [l] and Thomsen [I] the orders of x and y are reversed, while in 
Blaschke and Bol [l] and Pickert [2] the quasigroup (G, \) figures 
instead of (G, m), where the operation \ is defined by the unique solution 
y=x\zof h t e equation z = xy. These suggest further definitions 
of algebraic nets: those in which (G, *) is replaced by (G, \) or by 
(G, /) where / is defined by the unique solution x = z/y of z = xy 
and those built with the further three quasigroups arise by interchanging 
the factors in these three operations. These quasigroups are called 
“parastrophic” to the original (G, e). [A further possibility would be to 
relate with a net not only the quasigroups isotopic to (G, *), but also all 
those isotopic with all six parastrophic quasigroups.] The transition to 
parastrophic quasigroups corresponds to the interchange of the I-, 2-, 
and 3-curves of the net (six possibilities). 

The closure conditions are hereditary under these changes, only Bi 
goes over into Bj while interchanging the i- and j-curves (i, j = 1, 2, 3). 
As an example we show how H carries over from (G, *) into (G, \) (cf. 
Fig. 32). More exactly our result is expressed by: 

THEOREM 4.1. If H is fulfilled in (G, *) for all xi , yj , then it holds 
in (G, \) too: 

for arbitrary x1 , x2 , x3 , y1 , y2 , and y3 . 
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\ \ 

1 _ 
XI X2 5 XI X2 X3 

x3 x, x, 

FIG. 32. 

In fact, let us suppose that H is fulfilled in (G, *) for all xj , yj and 
let us consider arbitrary x1 , x2 , xS , y1 , y2 , y3 satisfying 

(4-l) Xl\% = %\Yl 

(4.2) Xl\Y3 = xz\Yz=x3\Yl~ 

We have to prove that then 

(4.3) Xz\Y, =%\Y2 

holds too. Let us denote 

%=%\Y2=%\vl~ zz = “l\Y3 = %\Y2 = %\Y*. 

and 

(4.4) z3 =%\Y2- 

Then the definition of the operation \ implies 

y1 = XZ.zl = xazz ) y* = XlZl = xzzz = .y3J 

and 

(4.5) y3 = xyzz . 
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With the notations 

(4.6) x, = x3, x, = x2, x3 = x1. Y, = 21) Yz = 22, Y, = z3 

we thus have 

X,Y, = X,Y, & X,Y, = X,Y, = X,Y, ) 

and these are just the hypotheses of H for Xi , X, , X, , Y, , Y, , and 
Ya . Therefore the conclusion 

X,Y, = X,Y, 

of H holds too. With (4.5) and (4.6) this gives 

“$3 = XlZfL = y3 9 

so with the operation \ 

z3 = x*\,y3. 

If we compare this with (4.4) we get the equation (4.3) which was to 
be proved. 

It is still easier to prove that the other closure conditions also carry 
over to (G, \) since in these the roles of the 3-curves are more symmetric 
and it is easy to show the carrying over of the closure conditions to 
other parastrophics. 

It is an interesting and not yet entirely solved problem as to when 
the adjunction of the parastrophics means an extension of the class, 
or conversely, when a quasigroup (G, a) is isotopic to one of its para- 
strophics, e.g., to (G, \). 

5. Regularity of Geometric Nets. Continuous Loops 
Isomorphic to the Additive Group of Real Numbers 

We return now to the proof of Theorem 2.2 asserting that each 
closure condition alone is necessary and sufficient for the regularity 
of a geometric net, defined by (2.1.). Owing to Theorem 2.1 it is enough 
to prove that even T the “strongest” condition is necessary and even 
H the “weakest” one is sufficient for the regularity. In other words 
T follows from the regularity which in its turn follows from H. 

By Theorem 3.1, T is equivalent to the statement that (G, *) has 
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an isotope which is an Abelian group. On the other hand, the definition 
(2.1) of a regular geometric net can be rephrased by stating that a real 
interval equipped with the operation resulting in xy for x and y is 
isotopic to the real axis furnished with the ordinary addition as opera- 
tion. As the latter is of course an Abelian group, we have already proved 
that T is necessary. 

By Theorem 3.7, H is equivalent to the statement that every loop 
isotope of (G, *) is strongly power associative. As for geometric nets the 
operation (x, y) 4 xy is continuous, therefore the operation o in the 
LP-isotope defined by (3.13) is continuous too. From the strong power 
associativity of such an LP-isotope we will be able to deduce (2.1). More 
exactly we prove the following: 

THEOREM 5.1. All strongly power-associative loops on the finite 
or infinite real interval (a, b) with the continuous operation (x, y) -+ xy 
are isomorphic to the additive group of real numbers (and are thus Abelian 
groups) and there exist also continuous mappings establishing these iso- 
morphisms. (Hereby a loop is strongly power associative, if 

(3.49) pp = pin for all integers m, n 

holds for the powers defined by 

(5.1) xn+1 zz= xp (n=0,1,2,...), x0=,=x-lx, P=(x-I)+ (n= -l,-2...) 

where e is the unit element of the loop.) 

The fundamental idea of the proof is to generalize the powers defined 
by (5.1) for integer exponents to the case of arbitrary exponents and the 
dependence of these powers on the exponents will yield the isomorphism. 
We prove the assertion of Theorem 5.1 after decomposing it into several 
minor statements. 

(A) z = xy strictly increases if x or y increase. In fact for arbitrary 

(5.2) Y<Z 

we have 
ey=y<z=ez 

and if there existed an x such that 

(5.3) xy 3 xz 
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then, because of the continuity of the operation (x, y) -+ xy, there 
would be an x,, between e and x such that 

[if in (5.3) equality holds, then of course x,, = x]. By the quasigroup 
property, however, this implies 

y=z 

in contradiction to (5.2). The strict increasing in x can be proved 
similarly. 

(B) If n runs through the integers and x > e, then xn increases with n, 
while xn decreases with increasing n i’ x < e. Let us take, e.g., x > e, 
then (5.1) and (A) imply 

and 

xnfl = xxn > exe = xn (n = 0, 1, 2, . ..) 

ex = x > e = x-lx, 

so that again by (A) 

x-l < e 

and for n = -m < 0, also because of (5.1) and (A) 

Xn = (x-l)" = X-l(*-l)m-l < e(X-l)m-l = Xn+l 

and similarly for x < e. 
It follows from (B) that xn > x if x > e, n > 1 and xn < x if x < e, 

n>l, while xn<x-l<e if x>e, n<--1 and xn>x-l>e if 
x<e,n<-1 

(C) xn for fixed n > 0 is a strictly increasing and continuous function 
of x. In fact, x2 = xx strictly increases and is continuous, by the supposed 
continuity and by the strict monotony of the operation (x, y) -+ xy 
proved in (A), and if we have already xn continuous and strictly increasing 
in x then so is xn+i = xxn too. 

(D) For fixed n > 0, xn takes every value in the interval (a, b) as x 
rum through (a, b). In fact, let y be an arbitrarily prescribed real number 
in (a, b), e.g., y < e; then by (B) 

Y” <Y 
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while [cf. (5.1)] obviously 

en=e>y. 

Owing to the continuity of xn proved in (C) there exists an x (between 
e and y) such that 

(5.4) x” =y. 

Because of the strict monotony proved in (C) there is exactly one 
value x which satisfies (5.4), this we call the nth root*: 

By resubstituting this into (5.4) we have of course 

(5.5) (Vj>n = y 

(E) If c > e, then $Gi > e. Because if $2 < e would hold, then (B) 
would imply c = ($A?)” < e contrary to the supposition. 

(F) For all x E (a, b) and for all integers m, k 

holds. For k = 0, 1 this statement is evident. If it holds for k then 
(5.1) and (3.49) imply 

This proves (F) for nonnegative k’s. For negative k’s the proof is easy 
too, but this we won’t need here. 

(G) For each c E (a, b), f or every integer m and for all positive integers 
n, k 

(C/@ = (qpk 

* We call attention again (cf. footnote on p. 385) to the fact that here xy is no 
longer an ordinary product and x”, qy are no longer ordinary powers, resp., 
roots, but xy is the result of the operation in the loop and x”, fl are the quantities 
defined by (5.1) and (5.4). On the other hand km, kn kill denote ordinary products 
of integers. 
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holds. First we prove 

U-6) *?&m, 

In fact, if 

&7,=x 

then by the definition of the root 

q;=Xk and c = (xk)” = Xkn, 

taking also (F) into account, i.e., 

which proves (5.6). But then (5.6), (5.5), and (F) imply 

(“z)** = ((&%j”,” = ($I;)* 

and this was the assertion. [We might observe that the proofs of (F) 
and (G) are similar to those of the analogous properties for ordinary 
powers and roots.] 

Now we can begin to define the function F establishing the announced 
isomorphism. 

(H) The dqkition 

(5.7) FX 
( 1 

= (VT)* (n > 0) 

of the function F for rational variables, where c > e is a constant element 
of (a, b), is unique and satisfies 

(5.8) F(;+$) =F(;)F(+). 

F is strictly increasing for rational values of the variable. 
The uniqueness follows from (G) while (5.8) follows from (5.7) and 

from (3.49). Finally, (B) and (E) imply 

F (+) = (&)*+l > (q;)* = F (+) , 

so that F actually increases in the rational domain, 



QUASIGROUPS, NETS, AND NOMOGRAMS 439 

(I) liml,r+m F(m) = b and lim,,+m F(m) = a. The proofs of these 
two statements are so similar that it is enough to prove the first one. 
As F(m) increases by (B) with m, it has a finite or infinite limit and 
since e < F(m) E (a, b) therefore 

b’ = ljnrnF(m) 

is on the right of e too, in the interval (a, b) or at its end point. If however 
b’ were to belong to (a, b) then we would get from the particular case 

F(2m) = F(m)F(m) 

of (5.8) by passing to the limits 

6’ = 6’6’ 

in contradiction with 
b’b’ > b’ 

owing to (B). So 6’ = limm+a F(m) = b and in the same manner 
limna+(+F(m) = a lie at end points of the interval (a, b) and do not 
belong to it, so in addition to (I) we have proved that the interwul (a, b) 
figuring in Theorem 5.1 is open from both sides. 

(J) limndlo F( l/n) = e holds. For the sequence F( l/n) is decreasing 
because of (H) and all its members are greater than e by (E) so 

1 e’ = lim F - 3 e. n-v= 0 n 

If however e’ > e were to hold, then we would get from the particular 
case 

F(:, =F(&k, 

of (5.8) by passing to the limit, because of (B) 

e’ = e’e’ > e’. 

This contradiction proves (J). 
Now we define F also for irrational vulues of the variable. Let Y, and 

R, be lower and upper approximating fractions of p such that 

rTl G rn+1 <P<%+,<&, and R,--rI, =; (n = 1,2,...). 
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Then by (H) the sequence F(Y?&) is nondecreasing, while the sequence 
F(R,) is nonincreasing and 

F(T,,) < F(R,) = F (In + ;, = F(r,)F (k) 

so that F(Y,) has a limit F(r,) -+ c and the limit of F(R,,,) is ce = c by 
the continuity of the operation (x, y) -+ xy and by f( l/n) --+ e (J). We 
define F(p) as this common limit c of F(r,) and of F(R,). Again because 
of (J), this definition is unambiguous. 

(K) The above defined F remains strictly increasing and continuous. In 
fact, for arbitrary real p, < pa , there exist an upper approximating 
fraction R of p, and a lower approximating fraction r of p, such that 
R < T and thus 

F(P,) < F(R) < F(r) < F(P,) 

so that F actually is strict1 
I? 

increasing. But it is also continuous, for if 
p --t q and, e.g., p > q, th n by the definition of F(q) we can 

T 
nd an 

upper approximating fraction R, of q such that 

0 < F(R”) -F(q) < c 

[if q happens to be rational, then we choose R, = q + (l/n) so that 

0 < F(R,) -F(q) = F(q)F (k) -F(q) < c 

holds]; if p < R, then 

0 < F(p) -F(q) < Wn) -F(q) < Q 

and this actually means that F is continuous. 

(L) F satisfies 

(5.9) F(P + Q) = F(P)&) 

for all real p, q and in (a, b) the inverse function F-l of F exists and satisfies 

(5.10) xy = W-‘(x) + F-‘(y)) 

.for all X, y E (a, b). In fact, (5.9) f o 11 ows by passing to the limits in (5.8) 
because of the continuity of F, further F takes every value in (a, b) 
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exactly once by (I) and (K) so that there exists exactly one real p such 
that 

F(p) = x. 

This defines the inverse of F: 

p = F-l(x). 

Finally, (5.9) g oes over into (5.10) with F(p) = x, F(p) = y. 
(L) actually expresses the fact that the loop given by the interval 

(a, b) and by the operation (x, y) + xy is isomorphic to the additive 
group of real numbers, so that Theorem 5.1 is proved. (Theorem 5.1 
follows also from a more involved theorem of Salzmann [I]. The above 
elementary proof was shaped after reasonings in AczCl [l].) 

Finally, for geometric nets, as we have seen at the beginning of Section 
5, H implies that the LP-isotope defined by (3.13) is a strongly power- 
associative loop and so by Theorem 5.1 

i.e., from (3.13) 

x 0 y = F(F-l(x) + F-l(y)) 

xy = XD 0 fly = F(F-‘(xv) + zyuy)) 

which goes over into (2.1) with the functions defined by h(z) = F-‘(z), 
f(x) = F-‘(xv), g(y) = F-l(uy) ( w  ic 0 viously are again continuous h’ h b 
and strictly monotonic): 

This shows that the geometric net satisfying H is regular and finishes 
the proof of Theorem 2.2. 

As obviously every group, and so much the more every Abelian 
group is strongly power-associative, therefore Theorem 5.1 implies the 
following: 

Corollary 8. Every continuous group (and so much the more every 
continuous Abelian group) on an interval (a, b) is isomorphic to the additive 
group of real numbers and among the mappings establishing the isomorphism 
there are also continuous ones. 

The situation is not quite so simple with continuous Moufang loops. 
We have seen at the beginning of Section 3 (Lemma 3.1) that every 
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Moufang loop (even every Mi- or M,-loop) is power-associative, but 
from the power-associativity of a loop its strong power-associativity 
does not follow. (Corollary 7 stated only that the power-associativity 
of all P-isotopes implies their strong power-associativity.) And Theo- 
rem 5.1 does not refer to power-associative but to strongly power-associa- 
tive loops. The Moufang properties themselves, however, imply also 
the strong power-associativity, (cf. Moufang [I] for another proof of a 
part of the following Theorem 5.2). 

We prove even more: 

THEOREM 5.2. Every MI-loop, every M,-loop, and so much the 
more every Moufang-loop is strongly power-associative. 

This follows from our previous theorems and proofs. In fact, in part 
(11) of the proof of Theorem 3.3 we have shown that B, is valid in each 
M,-loop. As B, implies H, (Theorem 2.1), so in the same loop H holds 
too. But by Theorem 3.7, H implies the strong power-associativity in 
all isotopic loops, so also in the original one. This proves the first 
statement of Theorem 5.2. The proof of the second statement is quite 
analogous, whereas the third one follows from either of the previous 
two. 

Theorems 5.1 and 5.2 imply the following: 

Corollary 9. Every continuous MI- (OY M,- or Moufang) loop defined 
on a real interval is isomorphic to the additive group of real numbers (and 
is thus itself an Abelian group) and there exist continuous mappings estab- 
lishing this isomorphism. 

6. Functional Equations on Quasigroups. Applications on Nets. 
Further Problems 

Equations (3.4), (3.5), (3.6), etc., just as the equation 

(3.7) xy *- 2 = x * yz 

of associativity can be considered as functional equations with the 
operation (x, y) 4 xy as the unknown function. The fact that an opera- 
tion satisfies such a functional equation still admits a great diversity 
of possible operations. There are however functional equations, some 
of which are even similar to the previous ones, which determine rather 
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closely the operations figuring in them. Moreover, one equation can 
serve to determine several functions (operations) occurring in it. 

We begin with the example of the following generalization of the 
Eq. (3.7) of associativity: 

(6-l) (x 1 y) 2 z = x 3 (y 4 z), 

where 1, 2, 3, and 4 denote four operations. More exactly we suppose 
that a set G forms quasigroups with respect to all four operations and 
(6.1) is satisfied for all X, y, z E G. We prove that each of these four 
quasigroups is isotopic with the same group (i.e., they all belong to 
the class associated with the same g-regular net) and with the aid of 
this group the explicit form of xi y (i = 1, 2, 3, 4) can be given. 

Let us introduce the right and left translations 

,~Ri = xi a, XLi = aix (i = 1,2,3,4) 

(cf. Kertesz [I]), where a is a constant (fixed element of G). As all 
*equations of the forms 

xia =z or aiy =w 

have unique solutions X, resp., y in the quasigroup (G, i) (i = 1, 2, 3, 4), 

therefore the functions Z?i and Li have inverses R;‘, ~5,’ and also func- 
tions composed of the former ones have inverses. Of course, 

(ILT1)Li = t = (tR,‘)R, (i = 1,2,3,4). 

If we put x = z = a into (6.1) we get 

P-2) YL& = y&b. 

We substitute now x = a, y = uR,‘Lr’, z = vL,lLi’ into (6.1): 

(6.3) uR;’ 2 VL;‘Li’ = (uR;‘LI’ 4 vL;*L;‘)L,; 

then we put again into (6.1) x = uR;‘K’, y = U, z = vL;‘Lil and 
get 

(6.4) uR;’ 2 vL~‘L~’ = uRi’R1’ 3 vL,‘; 

and, finally, we substitute into the same equation x = uR;lR;l, 
y = vL;lRi’, z = a: 

(6.5) (URi’R;’ 1 vL,‘Ri’)Rz = URi’R,’ 3 vL;~. 
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Since the left-hand ‘sides of (6.3) and (6.4) and also the right-hand 
sides of (6.4) and (6.5) are equal, all terms figuring in these equations 
are equal. Let us designate this common value by u o V. If we now intro- 
duce the notations* - 

f(x) = x&R2 , GM = &L, , h(s) = sR2, H(t) = tL, 

and taking also (6.2) into account 

then from (6.3), (6.4), and (6.5) we have 

h-‘(u) 2 G-‘(o) = f&-L@) 4 G-‘(o)) = f-‘(u) 3 H-l(w) 

= h(f-l(u) 1 g-‘(v)) = u 0 21, 

i.e., 

x 1 Y = h-‘(f(x) 0 S(Y))* s 2 z = h(s) o G(z), 
(6.6) 

x 3 t =f(x) 0 H(t), y 4 z = H-l(g(y) o G(z)). 

These latter formulas (6.6) express the fact that the quasigroups (G, 1), 
(G 2), IG, 31, (G 4) are all isotopic with the quasigroup (G, 0). If we 
resubstitute (6.6) into (6.1), we get 

(f(x) 0 g(y)) 0 GC4 = I(4 0 MY) 0 G(4), 

so that the operation o is associutiwe, i.e., (G, o) is a group. On the 
other hand (6.6) always satisfies (6.1) if o is associative. This proves 
the following 

THEOREM 6.1. If (G, l), (G, 2), (G, 3), (G, 4) are all quasigroups 
and 

(6-l) (xl y)2z = x3(y4z) 

holds for all x, y, z E G, then each (G, i) (i = 1, 2, 3, 4) is isotopic to the 
same group (G, 0). In particular there exist jive l-l-maps f, g, G, h, H 
such that (6.6) holds. 

* We evidently form the inverses of the functions f, g, . . . in the following way: 
f-'(u) = URi'R;',g-l(v) = VRi'L,' = ULi'Ri' 9 etc. 
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.\s a second example we consider the equation 

(6.7) (x 1 J) 2 (w 3 z) = (x 4 zc) 5 (y 6 2) 

for all s, j’, w, z E G, where (G. i) (i = 1,2,3,4,5,6) are all quasigroups. 
Let us substitute w = a into (6.7) and observe that this carries (6.7) over 
into (6.1) with the notations 

.x I’? = s l?, s2’z = s 2 (n 3 z), 

.Y 3’ 1 = (s 4 n) 5 t, ~4’: =1’6z. 

The (G, i)‘s (i = l’, 2’, 3’, 4’) are also quasigroups, therefore owing to 
Theorem 6.1 

(6.8) 
.Y 1 T = h-‘(f(x) - f(T)), s 2 P = w -. /(Ph 

T 5 i = A-(Y) 7 H(t), ~6z = WgW y G(4), 

where -, is an associative operation: (II 2~) -- w = u (23 2 w) = 
u _-I Z’ ,~’ w. 

Let us resubstitute all this into (6.7); then we get 

(6.9) f(x) ,: <p(y) ,- J(w 3 z) = A-(x 4 w) - g(y) -‘ G(z) 

or with x = v = a 

and so 

(6.10) zl’ 3 .z = ]-+5(w) ; G(z)) 

or after substituting (6.10) back into (6.9) 

(6.1 I) f(.x) ,.\ g(y) ,- L(zn) ’ G(z) = K(.r 4 w) ’ g(y) ? G(z). 

If we put y = g-‘(e) in (6.11) [e is the unit element of (G, ,>)I, we get 

(6.12) .Y 4 w = ii-‘(f(.x) L(w)). 

Putting back (6.12) into (6.1 I) we have 

or 

g(y) 2 L(w) = L(w) <> g(y). 
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So the operation is also commutatke. On the other hand (6.8), (6.10), 
and (6.12) always satisfy (6.7) if z is commutative and associative. These 
formulas state that the quasigroups (G, I), (G, Z), (G, 3), (G, 4), (G, 5), 
and (G, 6) are all isotopic to the Abelian group (G, c), so they all belong 
to the class associated with the same a-regular net. We thus have the 
following 

THEOREM 6.2. Zf (G, I), (G, 2), (G, 3), (G, 4), (G, 5), and (G, 6) 
are all quasigroups and 

(6.7) (x 1 y) 2 (w 3 z) = (x 4 w) 5 (r 6 z) 

for all x, y, w, and z, then every (G, i) is isotopic with the same abelian 
group (G, 0). More exactly there exist eight l-l mappings f, g, G, h, H, 
J, K, and L, so that (6.Q (6.10), and (6.12) are valid. 

Several other equations can be solved in a similar way [cf. e.g., 
Aczel, Belousov, and Hosszti [l] also for (6.1) and (6.7)]. 

From Corollary 8 every continuous group (and so much the more 
every Abelian group) on an interval is isomorphic to the additive group 
of real numbers under a continuous isomorphism. If on the other hand, 
the operations 1, 2, 3, 4, resp., 1,2,3,4,5,6 in Theorems 6.1 and 6.2 are 
continuous, then by their definitions f,g, G, h, H, J, K, L and the opera- 
tion o are continuous too. So Theorems 6.1 and 6.2 imply the following: 

Corollary 10. Zf a real interval I forms quasigroups with respect to 
each continuous operation 1, 2, 3, 4 or 1, 2, 3, 4, 5, 6 and if (6.1), resp., 
(6.7) are satisjied for all x, y, z, w E I, then all the quasigroups (I, i) 
(i = 1, 2, 3, 4) and (I, i) (i = 1, 2, 3, 4, 5, 6), respectively, are isotopic 
to the additive group of real numbers and there exist continuous functions 
establishing these isotopisms. The general continuous real quasigroup 
solutions of (6.1) are 

x 1 y = ~-‘( f(x) + f(y)), s 2 z = F@(s) + G(z)), 

x 3 t = F(f(x) + R(t)), y 4 z = R-yg(y) + G(z)), 

and those of (6.7) are 

x 1 y = w f(x) + g(y)), s 2 p = q&s) J- J(P)), 

w 3 z = J-1(1(w) + C(Z)), 
(6.13) 

x 4 w = K-‘(f(x) + L(w)), I5 t = F(R(r) + ii(t)), 

y 6 z = =‘(f(y) + e(z)), 
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where f, 2, G, 4 R, J, K E are continuous 1 - 1 maps of I onto (- co, co) 
and F is a continuous 1- 1 map of (- CO, CO) onto I. 

We can also use Theorem 6.2 and its corollary to prove part (II) of 
Theorem 3.1: T implies that the class of isotopic quasigroups associated 
with the net contains an Abelian group. In order to show this, we tran- 
scribe 

T: (~1~2 = .wl& ~3 = .~3yd * QV, = .q~2 

with the aid of the notations 

x =y1, Y = "lY2 = %Y17 w = XlY3 = XSYl, 2 = x1 

and of the operations /, 1 and \, 3 defined by 

s=r/t =t1r and t =s\r =r3s 

as equivalents to 
st = 1. 

In fact, then xlyz = xzyi = y can be written as 

x2 = y/y1 = y/x = x 1 y, y* = x1\y = z\y = y3z 

and xiy3 = xayl = w as 

x3 = w/y1 = W/X = x 1 w, yg=x1\w=z\w=w3z, 

so that xoa = xg2 is equivalent to 

(x 1 y)(w 3 z) = (x 1 w)(y 3 z). 

This is an equation of the form (6.7) withx 4 w = x 1 w,y 62 =y3z 
and with Y 5 t = Y  2 t = rt, so that by (6.8) 

(6.14) rt = K(Y) 0 H(t) 

where the operations o is commutative and associative, i.e., (G, o) is 
again an Abelian group. (6.14) says that (G, *) is actually isotopic to an 
Abelian group and so the net is u-regular. If we have a geometric net, 
then (6.13) gives 

rt = F(R(Y) + R(t)) 

which, disregarding the notation, is just (2.1), so that T implies the 
regularity of the geometric net and this is a part of Theorem 2.2. 
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These ideas might help in the solution of some further problems, 
which are presently unsolved. The applications in nomography, for 
instance, not only raise problems of specialization but also problems 
of generalization. In fact, there is a need for nomographic representation 
of functions for which z = xy does not necessarily have unique solutions 
with respect to x and y. If none of the functions defined by z = x,,y 
and z = xyO for all fixed x0, y,, assume any z-value twice (e.g., they are 
strictly monotonic), then the structure is called a cancellation groupoid; 
if even this does not necessarily hold, then we have a groupoid (cf. 
Bruck [l], KertCsz [l]). If z = xy makes a set correspond to x and y 
as function-value, then we have a multigroupoid. On the other hand, in 
the definition of nets the condition that two Curves of different families 
should intersect in exactly one point is sometimes replaced by the weaker 
one that they should intersect in at most olte point. This means that the 
corresponding operation need not even be defined for any two elements of 
G, and then (G, *) is a half-groupoid (cf. Bruck Cl]). If finally not even the 
two domains of definition and the range of the values z = xy of the 
function are the same, then we have to deal with general algebraic 
structures with three fundamental sets G, , G, , and G, , instead of one 
and with an operation associating a value z E G3 to the pair x E G, , 
y E Ga . It seems to be a difficult task, but interesting and important for 
nomography, to work out a net theory for such structures. The first steps 
in this direction were made by Hosszli [l] who succeeded in proving 
theorems about the functional equations (6.1) and (6.7) also in cases, 
where x, y, z, and w  are elements of different sets. 

Another way of treating the above problem is to consider geometric 
nets ZocaZZy (in neighborhood of a point). Rado (see, e.g., [l, 21) has 
worked intensively in this field and also considered (cf. [l ,3]) the spatial 
nets introduced by Blaschke (see, e.g., [l], Blaschke and Bol [l]), from 
this point of view. In the algebraic theory of these nets ternary operations 
figure instead of binary ones and here too different regularity and 
closure conditions, etc., can be formulated. The algebraic theory of 
two-dimensional nets dealt with above and Theorem 6.1 can also be 
useful in the investigation of spatial nets. 

As an example we mention the following open problem: Given four 
bundles of planes in space so that the intersections of each plane in 
three bundles with the planes of the other bundles form regular (geo- 
metric) nets. Does this imply that the nets originating in a similar way 
on the planes of the fourth bundle are regular too? If we suppose the 
functions with the values z = my, resp., t = xyw to be differentiable, 
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then the answer is positive (theorem of Dubordieu-Arf, see, e.g., 
Blaschke [l], Blaschke and Bol [l]), but the question persists, whether 
the answer remains true even if only continuity of these functions is 
supposed, i.e., for general geometric nets. Since regularity follows 
(by the above Theorem 2.2) from the closure condition H, which in 
the sense of Theorem 2.1 is the “weakest,” while the regularity 
itself implies even the “strongest” closure condition T, therefore it 
would be enough to deduce the validity of H for the fourth bundle of 
nets from that of T for the three other bundles. But nobody has yet 
succeeded even in proving this.* 

REFERENCES 

J. AczCl 

1. Sur les operations definies pour nombres reels. Bull. Sot. Math. France 
76 (1949), 59-64. 

J. Aczel, V. D. Belousov, and M. Hosszli 

1. Generalized associativity and bisymmetry on quasigroups. Acta Math. Acud. 
Sci. Hung. 11 (1960), 127-136. 

J. Aczel, G. Pickert, and F. Rado 

1. Nomogramme, Gewebe und Quasigruppen. Muthematicu (Cluj) 2(25) 
(1960), S-24. 

W. Blaschke 

1. “Einfiihrung in die Geometrie der Waben.” Elemente der Math. von hoh. 
Standp. aus. IV. Basel-Stuttgart, 1955. 

W. Blaschke and G. Bol 

1. “Geometrie der Gewebe.” Grundlehren der math. Wiss. XLIX. Berlin, 
1938. 

G. Bol 

1. Gewebe und Gruppen. Topologische Fragen der Differentialgeometrie LXV. 
Math. Ann. 114 (1937), 414-431. 

R. H. Bruck 

1. “A survey of Binary Systems.” Ergebnisse der Math. [N.F.] XX. Springer, 
Berlin, 1958. 

* The author wishes to thank Professor D. J. Foulis for his kind assistance in 
preparing this manuscript. 



450 J. ACZBL 

M. Hosszti 

1. Algebrai rendszereken ertelmezett fiiggvenyegyenletek. II. M. Tud. Akad. 
Mat. Fiz. Oszt. KiizLem&yei 13 (1963), 1-15. 

A. Kerttsz 

1. KvBzicsoportok. Mat. l&ok 15 (1964), 114-162. 

R. Moufang 

1. Zur Struktur von Altemativkorpern. Math. Ann. 110 (1935), 416-430. 

M. D’Ocagne 

1. “Trait6 de nomographie,” 2nd edition. Paris, 1921. 

G. Pickert 

1. Sechseckgewebe und potenzassoziative Loops. Proc. Intern. Congr. Moth., 
Amsterdam, 1954 II, 245-246. 

2. “Projektive Ebenen.” Grundlehren der math. Wiss. LXXX. Berlin- 
Gottingen-Heidelberg, 1955. 

F. Rado 

1. Ecuatii functionale in legatura cu nomografia. Studii $i Cert. Mot. Cluj 
9 (1958), 249-319. 

2. Equations fonctionnelles caracdrisant les nomogrammes avec trois Cchelles 
rectilignes. Muthematicu (Clot) l(24) (1959), 143-166. 

3. Eine Bedingung fur die Regularitiit der Gewebe. Muthemuticu (Cjuj) 2(25) 
(196O), 325-334. 

H. Salzmann 

1. Topologische projektive Ebenen. Math. 2. 67 (1957), 436-466. 

G. Thomsen 

1. Topologische Fragen der Differentialgeometrie XII. Schnittpunktsiitze in 
ebenen Geweben. Abhundl. Math. Seminar Univ. Hamburg7 (1939), 99-106. 


