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Using a variant of the mountain pass theorem, we prove the existence of solitary
waves with prescribed speed on infinite lattices of particles with nearest neighbor
interaction. The problem is to solve a second-order forward�backward differential-
difference equation. � 1997 Academic Press

1. INTRODUCTION

We consider an infinite lattice of particles with nearest neighbor
interaction:

q� k=V$(qk+1&qk)&V$(qk&qk&1), k # Z. (1)

After the pioneering work of Fermi, Pasta, and Ulam [6] on finite lattices,
Toda, [10] discovered an integrable infinite lattice with exponential
interaction potential.

Recently the calculus of variations was applied to the existence of periodic
motions on lattices under general assumptions on the potential [1, 2, 3, 9].

A solitary wave is a solution of (1) of the form

qk(t)=u(k&ct), k # Z.

Substituting in (1), we obtain the second order forward�backward differential�
difference equation

c2u"(t)=V$(u(t+1)&u(t))&V$(u(t)&u(t&1)). (2)

When

V(u)=ab&1(e&bu+bu&1),

Toda found explicit formula's for the solitary waves. Until now, the only
general existence theorem is due to Friesecke and Wattis [7]. Under some
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assumptions, they prove the existence of solitary waves with prescribed
average potential energy

|
R

V(u(t&1)&u(t)) dt=K. (3)

The speed c of the wave is given by an unknown Lagrange multiplier. The
approach is to minimize the average kinetic energy

1
2 |

R

[u$(t)]2 dt

subject to the constraint (3).
We consider in this paper the existence of solitary waves with prescribed

speed. It seems impossible to solve this problem by constrained minimiza-
tion, so that we use the mountain pass theorem. Since the Palais�Smale
condition is not satisfied by the natural functional

.(u) :=|
R _

c2

2
(u$(t))2&V(u(t+1)&u(t))& dt

on the space

X :=[u # H 1
loc(R) : u$ # L2(R), u(0)=0],

we use a weak convergence argument inspired by chapter 7 of [11] together
with Lieb's lemma [8]. Like in the case of the Kadomtsev�Petviashvili
equation, minimax method and weak convergence are simpler to use than
constrained minimization and concentration�compactness.

Monotonicity of solitary waves follows directly from minimization. In
our setting, we use a refinement of the mountain pass theorem due to
Brezis and Nirenberg [5] in order to prove monotonicity.

Our assumptions are not strictly comparable to the assumptions in [7].
For increasing waves, it is assumed in [7] that V # C2(R), V�0 on ]&$, $[,
V(0)=0 and V(u)�u2 increases strictly on ]0, �[.

Section 2 is devoted to the functional setting, Section 3 to monotone
waves and Section 4 to nonmonotone waves. In section 5 we give some
examples of potentials satisfying our assumptions.

2. FUNCTIONAL SETTING

On

X :=[u # H 1
loc(R) : u$ # L2(R), u(0)=0],
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we define the inner product

(u, v) :=|
R

u$v$

and the corresponding norm

&u& :=_|R

(u$)2&
1�2

.

It is easy to see that X is a Hilbert space. On X, we define also the linear
operator

Au(t) :=u(t+1)&u(t).

Proposition 1. The operator A is continuous from X to L2(R) & L�(R)
and |Au|��&u&, |Au| 2�&u&.

Proof. By Cauchy�Schwarz inequality we have

|Au(t)|=|u(t+1)&u(t)|= } |
t+1

t
u$(s) ds }

�\|
t+1

t
|u$(s)| 2 ds+

1�2

�&u&

and

|
R

|Au(t)| 2 dt�|
R
|

t+1

t
|u$(s)| 2 ds dt=&u&2. K

Proposition 2. If V # C1(R, R), V(0)=V$(0)=0 and V"(0) exists, then

.(u) :=|
R _

c2

2
u$2&V(Au)&

is well defined on X ; . # C1(X, R) and

(.$(u), h)=|
R

[c2u$h$&V$(Au) Ah].
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Proof. By assumption we have, for every R>0,

sup
|u|�R }

V$(u)
u }<�.

It is then easy to prove Proposition 2 using Proposition 1. K

Proposition 3. Under the assumptions of Proposition 2, if u is critical
point of ., then u is a solution of (2).

Proof. If u is a critical point of ., then, for every h # D(R), we have

0=|
R

[c2u$(t) h$(t)&V$(u(t+1)&u(t))(h(t+1)&h(t))] dt

=|
R

[c2u$(t) h$(t)&[V$(u(t)&u(t&1))&V$(u(t+1)&u(t))] h(t)] dt.

Hence u is a weak solution of (2). Since V$ and u are continuous,
u # C2(R). K

3. MONOTONE SOLITARY WAVES

We need the following version of the mountain pass theorem.

Theorem 4. Let X be a Banach space, . # C1(X, R), e # X and r>0 be
such that &e&>r and

b := inf
&u&=r

.(u)>.(0)�.(e).

Let P : X � X be a continuous mapping such that

\u # X, .(Pu)�.(u), P(0)=0 and P(e)=e. (4)

Then for every =>0 and $>0 there exists u # X such that

(a) d&2=�.(u)�d+2=,

(b) dist(u, P(X ))�2$,

(c) &.$(u)&�8=�$,
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where

d := inf
# # 1

max
t # [0, 1]

.(#(t))
(5)

1 :=[# # C([0, 1], X ) : #(0)=0, #(1)=e].

Proof. Suppose the thesis is false. By the quantitative deformation
lemma, (Lemma 2.3 in [11]), there exists a deformation ' # C([0, 1]_X, X)
such that

(i) '(t, u)=u if t=0 or if u � .&1([d&2=, d+2=) & P(X )2$ ,

(ii) '(1, .d+= & P(X ))/.d&=.

Assume that c&.(0)>2= and let # # 1 be such that

max
t # [0, 1]

.(#(t))�d+=.

Define ;(t) :='(1, P#(t)). It is easy to verity that ; # 1 and maxt # [0, 1] .(;(t))
�d&=. This contradicts the definition of d. K

Remark. Assumption (4) is due to Brezis and Nirenberg ([5] see also
[4]). Under this assumption, if . satisfies the Palais�Smale condition,
there exists a critical point u # P(X ) such that .(u)=d.

We assume that

(V1) V(u)=c2
0(u2�2)+W(u), c0�0, W # C1(R, R) W(0)=0,

W$(u)=o( |u| ), u � 0, and

(V +
2 ) there exists u>0 such that W(u)>0 and :>2 such that, for

u�0,

0�:W(u)�uW$(u)

or

(V &
2 ) there exists u<0 such that W(u)>0 and :>2 such that, for

u�0,

0�:W(u)�uW$(u).

Since we are interested in monotone waves, we assume that W(u)=0 for
u�0 (resp. u�0) if (V +

2 ) (resp. (V &
2 )) is satisfied. We fix c>c0 and we

define on X

.(u) :=|
R _

c2

2
u$2&V(Au)& .

270 SMETS AND WILLEM



File: 580J 312106 . By:DS . Date:22:08:97 . Time:07:34 LOP8M. V8.0. Page 01:01
Codes: 1980 Signs: 807 . Length: 45 pic 0 pts, 190 mm

We define also P : X � X by

Pu(t) :=|
t

0
|u* (s)| ds.

Lemma 5. Under assumptions (V1) and (V +
2 ) there exists e # P(X) and

r>0 such that &e&>r and

b := inf
&u&=r

.(u)>.(0)�.(e).

Proof. After integrating, we obtain from (V +
2 ) the existence of a0�0

such that

|u|�1 O W(u)�a0 |u| :.

If &u&�1 then, by Proposition 1, |Au|��1 and

.(u)�|
R _

c2

2
u$2&

c2
0

2
|Au| 2&a0 |Au|:&

�
c2&c2

0

2
&u&2&a0 |Au | :

: .

Since A : X � L: is continuous, there exists r>0 such that inf&u&=r .(u)>0
=.(0). We obtain also from (V1) and (V +

2 ) the existence of a1>0 such
that, for u�0

a1(u:&u2)�W(u).

Choosing v # P(X)"[0], we have

.(*v)�*2 c2

2
&v&2+*2a1 |Av| 2

2&*:a1 |Av| :
: .

Since :>2, there exists e :=*v # P(X ) such that &e&>r and .(e)�0. K

Lemma 6. Under the assumptions of Lemma 5, there exists a sequence
(un)/X such that

.(un) � d, .$(un) � 0, dist(un , P(X )) � 0,

where d>0 its defined by (5).
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Proof. In order to apply Theorem 4, it suffices to verify that, for every
u # X, .(Pu)�.(u). It is clear that &Pu&=&u& and

Au(t)=|
t+1

t
u$(s) ds�|

t+1

t
|u$(s)| ds=APu(t).

Since, by assumption (V +
2 ), V is nondecreasing, the proof is complete. K

Theorem 7. (a) Under assumptions (V1) and (V +
2 ), for every c>c0 ,

Eq. (2) has a nontrivial nondecreasing solution u # X.

(b) Under assumptions (V1) and (V &
2 ), for every c>c0 , Eq. (2) has a

nontrivial nonincreasing solution u # X.

Proof. (1) We prove the first statement of the theorem. The proof of
the second one is similar.

(2) Let (un) be given by the preceding lemma. For n sufficiently large

d+1+&un&�.(un)&
1
:

(.$(un), un)

=\1
2

&
1
:+ (c2 &un&2&c2

0 |Aun | 2
2)

+| [:&1AunW$(Aun)&W(Aun)]

�\1
2

&
1
:+ (c2&c2

0) &un&2.

Thus (un) is bounded in X.

(3) By Proposition 1,

sup |Aun |� , sup |Aun | 2�a2 :=sup &un&.

In particular, (Aun) in bounded in H 1(R). By assumption

1
2W$(u) u&W(u)=o(u2), u � 0,

and

a3 := sup
|u|�a2

[ 1
2W(u) u&W(u)]�u2<�.

Let =>0. There exists $>0 such that

|u|�$ O | 1
2W$(u) u&W(u)|�=u2.
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It follows that

|
R

[ 1
2 W$(Aun) Aun&W(Aun)]�mes[ |Aun |>$] a3 |Aun | 2

�+= |Aun | 2
2

�mes[ |Aun |>$] a3 a2
2+=a2

2 .

If Aun � 0 in measure on R, we obtain

0<d=.(un)& 1
2 (.$(un), un)+o(1)

=|
R

[ 1
2 W$(Aun) Aun&W(Aun)]+o(1)=o(1).

This is a contradiction.

(4) Since Aun�% 0 in measure on R, by Lieb's lemma [8], there exists
a sequence (xn)/R and a subsequence (vn) of (un) such that

Avn( }+xn) ( f{0

in H 1(R). Going if necessary to a subsequence, we can assume that

wn :=vn( }+xn)&vn(xn) ( w

in X. Since

Awn=Avn( }+xn) ( f{0

it follows that w{0. It is clear that

&.$(wn)&=&.$(vn)& � 0.

For every h # D(R), we have

(.$(w), h) = lim
n � �

(.$(wn), h)=0.

Hence .$(w)=0 and, by Proposition 2, w is a nontrivial solution of (2).

(5) It remains only to prove that w # P(X ). Since, by the preceding
lemma,

dist(wn , P(X ))=dist(un , P(X )) � 0,

there exists a sequence (hn) in P(X) such that hn ( w. But P(X ) is closed
and convex, so that w # P(X ). K
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4. NONMONOTONE SOLITARY WAVES

In this section we assume that

(V$1) V(u)=*(u2�2)+W(u), W # C1(R, R) W(0)=0, W$(u)=o( |u| ),
u � 0, and

(V2) sup R W>0 and there exists :>2 such that for all u # R,

:W(u)�uW$(u).

Remark. Assumption (V$1) allows a negative quadratic part at 0.

Theorem 8. Under assumptions (V$1) and (V2), for every c such that
c2>max(0, *), Eq. (2) has a nontrivial solution u # X.

Proof. The proof is Similar to the one of preceding section; just use the
mountain pass lemma instead of its variant. K

5. EXAMPLES

(a) In the case of the Toda lattice

V(u) :=ab&1(e&bu+bu&1), ab>0,

if b>0, for every c>ab, Eq. (2) has a nontrivial nonincreasing solution
and, if b<0, for every c>ab Eq. (2) has a nontrivial nondecreasing solution.

(b) In the case of the potential

V(u) :=c2
0

u2

2
+

u2k+1

2k+1
,

for every c>c0 , Eq. (2) has a nontrivial nondecreasing solution.

(c) In the case of the potential

V(u) :=c2
0

u2

2
+

u2k

2k
,

for every c>c0 , Eq. (2) has a pair of opposit nontrivial solutions, one
nondecreasing and the other nonincreasing.

(d) In the case of the potentials

V(u) :=*
u2

2
+ :

k

i=3

ai |u| i+ :
n

i=k+1

bi |u| i
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with ai�0, bi�0, bn>0, for every c2>max(0, *), Eq. (2) has a nontrivial
not necessarily monotone solution.
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