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a b s t r a c t

In this paper, we propose a method to analyze survival data from a clinical trial that utilizes a dynamic
randomization for subject enrollment. The method directly accounts for dynamic subject randomization
process using a marked point process (MPP). Its corresponding martingale process is used to formulate
an equation for estimating the treatment effect size and for hypothesis testing. We perform simulation
analyses to evaluate the outcomes of the proposed method as well as the conventional log rank method
and re-randomized testing procedure.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction applying a probability distribution for the test statistics, which has
Randomized controlled trials have been a gold standard to
demonstrate safety and efficacy of an experimental regimen
compared with a standard regimen. They become major body of
evidence for regulatory approval for marketing authorization. The
randomization of subjects for clinical trials is devised to achieve
two important objectives: a) to ensure that samples from treatment
groups are comparable with respect to prognostic factors [8]; and
b) to ensure the distributional validity of the statistics that are used
for estimating and testing the treatment effect [6] and [1].

In theory, a simple randomization could ensure distributional
balance within prognostic factors between treatment groups.
However, with finite sample, the randomization may not neces-
sarily reach the intended balance within each prognostic factor. In
order to solve this problem, Zelen [26] proposed block randomi-
zation to ensure the balance within a few strata. When the number
of strata levels increases, the block randomization may not achieve
the overall balance between the treatment groups either. Taves [24]
and Pocock and Simon [13] proposed a dynamic randomization
scheme as a practical solution. The method has been commonly
utilized in clinical trials with many well known prognostic factors,
e.g., see Ref. [16].

While dynamic randomization can ensure the balance with
respect to many prognostic factors between the assigned treatment
groups (see Ref. [25]) and thus achieves the above objective a), the
process may alter the unconditional distribution of the treatment
assignment and make the above objective b) questionable when
Inc. This is an open access article u
been a concern in various regulatory settings. The CPMP Points to
Consider on Adjustment for Baseline Covariates see Ref. [4] states a
strong position against dynamic allocation. FDA guidance for in-
dustry (E9) see Ref. [11] recommends analysis to stratify factors
used for dynamic randomization. There have been extensive dis-
cussion over this controversy (see for example [20]). Although
some argue that conventional analyses are still appropriate when
dynamic randomization was used [2], others still think a direct link
between randomization and methods of statistical analysis is
needed to draw reliable conclusions from clinical trial data [5].

Permutation and re-randomization based testing procedures
have been used as last resort to avoid the ambiguity about the
distributional property of the standard statistics following dynamic
randomization, e.g., Flyer [15]; Hasegawa and Tango [28]. However,
a permutation test may not be computationally practical for even
moderate sample size. The re-randomization test may not be
reproducible due to the use of different random number generator
and the choice of replication number. More importantly, neither
test is directly linked to the alternative hypothesis and there is no
estimation procedure of treatment effect that is intrinsically
compatible with the testing procedure. Recently, for the trials with
continuous endpoints, Shao et al. [22] derived a valid t-type test
based on the bootstrapmethod. Their results have been generalized
to clinical trials with binary responses and event counts as primary
endpoints [21] and to a large family of covariate-adaptive designs
including dynamic randomization and tests under a linear model
framework [17]. No valid procedure has been developed currently
for the clinical trials with time to event endpoints and dynamic
randomization.

In general, the treatment assignment mechanism via a dynamic
randomization is measurable, or adaptive, with respect to the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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information available prior to the randomization. Based on
censored survival data, Luo et al. [12] developed the asymptotic
normality for a class of statistics that are adaptive to accumulative
information based on amartingale approximation. In this paper, we
will apply their general theory to study the statistics that results
from dynamically randomized clinical trials. In section 2, the
framework of a clinical trial with dynamic randomization is
described with time to an event endpoints. In section 3, Mantel-
Hanzel log rank test statistics [18] and its corresponding re-
randomized test [15] will be reviewed. Then, a Marked Point pro-
cess (MPP) based statistics will be introduced based on [12] for both
treatment effect estimation and hypothesis testing. In section 4,
simulation analyses will be used to evaluate the performance of the
proposed inference procedure with conventional procedures. In
section 5, a real cancer trial will be used to illustrate the application
of those procedures. Finally, section 6 will conclude with some
discussions.

2. Clinical trials with dynamic randomization

Suppose a clinical trial starts at the calendar time u0¼ 0 and
denote T a fixed but sufficiently late calendar time before which
the trial will be completed. Subjects will be sequentially accrued
into the trial. Denote ui,i� 1 as the calendar time when the i-th
subject arrives randomly. For simplicity, we assume that
0< u1< u2< u3<…, i.e., no two subjects are enrolled at the same
time and there are only two stratification factors. The results in this
paper can be generalized easily to more general situations. Let
(Gi,Hi) be two (discrete) baseline variables of the i-th subject. For
example, Gi 2 {1,2,…,LG} may represent the site at which the
subject is accrued and Hi 2 {1,2,…,LH} may represent the disease
stage of the subject. Let Xi 2 {0,1} be the assigned treatment group,
whose assignment will be specified later. Let Yi be the time the
subject stays in the trial so that uiþ Yi will be the calendar time at
which the subject leaves the trial. Let di denote the outcome vari-
able of the subject i at his or her departure. Thus, the trial data will
be the collection of {(ui,Gi,Hi,Xi,Yi,di),i¼ 1,2,3,…}. We adopt a con-
ventional survival data model and assume that there are inde-
pendent random variables Ti and Ci such that

PðTi >wjXi ¼ xÞ ¼ exp

8<:�
Zw
0

hx;1ðvÞdv
9=;;w>0;

PðCi >wjXi ¼ xÞ ¼ exp

8<:�
Zw
0

h0ðvÞdv
9=;;w>0;

for some hazard functions hx,1, x¼ 0,1, and censoring hazard func-
tion h0. The outcomemeasures Yi and di are derived from Yi¼ Ti ∧ Ci
and di¼ 1(Ti� Ci).

2.1. Dynamic randomization

At any given calendar time t> 0, we record the information
available at t as follow: the number of subjects enrolled up to time t
is

Rt ¼
X
i�1

1ðui � tÞ;

and the numbers of subjects by treatment group x¼ 0,1 are

nXðt; xÞ ¼
X
i�1

1ðui � t;Xi ¼ xÞ:
The numbers of subjects by treatment group and baseline fac-
tors are

nX;G;Hðt; x; g; hÞ ¼
X
i�1

1ðui � t;Gi ¼ g;Hi ¼ h;Xi ¼ xÞ;

g ¼ 1;2;…; LG; h ¼ 1;2;…; LH ; x ¼ 0;1;

and the corresponding marginal counts by site G and stage H are

nX;Gðt; x; gÞ ¼
X
h

nX;G;Hðt; x; g; hÞ;

nX;Hðt; x;hÞ ¼
X
g

nX;G;Hðt; x; g; hÞ;

and

nGðt; gÞ ¼
X
x

nX;Gðt; x; gÞ;

nHðt;hÞ ¼
X
x

nX;Hðt; x; hÞ:

As discussed by Refs. [25]; there are many ways to conduct a
dynamic randomization. In a simple minimization procedure (see
the application example in section 5), we can let

Xt ¼
8<:

1 if nX;G;Hðt�;1; g;hÞ<nX;G;Hðt�;0; g; hÞ;
0 if nX;G;Hðt�;1; g;hÞ>nX;G;Hðt�;0; g; hÞ;
xt if nX;G;Hðt�;1; g; hÞ ¼ nX;G;Hðt�;0; g; hÞ;

for a new subject accrued at the calendar time twith baseline G¼ g
and H¼ h, where the Bernoulli distributed xt~b(1,0.5) is an inde-
pendent random variable. In the appendix, we describe another
more general common approach based on balance scores and will
use it for the simulation examples of Section 4.

3. Statistical inference with dynamic randomization

In this section, we briefly describe the conventional Mantel-
Hanzel log rank test and the commonly used re-randomization
test. Then, we will provide detail for the proposed MPP based
procedure. Wewill use the terminology from Section 2 and assume
that a clinical trial data consists of the collection of
{(ui,Gi,Hi,Xi,Yi,di),i¼ 1,2,3,…}.

3.1. Mantel-Hanzel log rank test

The naive log rank test would ignore the dynamic randomiza-
tion process and use only the information time based data
{(Xi,Yi,di),i¼ 1,2,3,…}.

Let d ¼P
i
di be the number of events and Y(1)< Y(2)<…< Y(d) be

the ordered event times. Denote rx,j the number of subjects at risk
from the treatment group x, prior to information time Y(j), and mx,j
the number of subjects from the treatment group xwho had events
at time Y(j). Denote mj¼m1,jþm0,j. Let

ej ¼
r1;jmj

r1;j þ r0;j
;

vj ¼
r1;jr0;jmj

�
r1;j þ r0;j �mj

��
r1;j þ r0;j � 1

��
r1;j þ r0;j

�2:
The Mantle-Hanzel log rank test can be calculated as

Zmh ¼
Pd

1
�
m1;j � ej

�ffiffiffiffiffiffiffiffiffiffiffiPd
1vj

q ; (1)



X. Luo et al. / Contemporary Clinical Trials Communications 3 (2016) 39e47 41
which approximates the standard normal distribution based on the
rationale that the outcomes of r1,jþ r0,j are independent and m1,j
follows a hyper geometric distributionwith mean ej and variance vj
(see Ref. [3]. It can be noted that, with dynamic randomization, at
any given time Y(j), the r1,jþ r0,j subjects may not be statistically
independent and that can raise questions on the validity of the
above simple normal approximation.

3.2. Re-randomized test

A re-randomization test is performed as follow: we use the trial
data

fðui;Gi;Hi;Xi; Yi; diÞ; i ¼ 1;2;3;…g;

with the arrival times and subject covariates, and first calculate the
log rank test statistics Z¼ Zmh. Then, for each n ¼ 1,2,…,Nsim, where
Nsim is a large number such as 10,000, we scramble the arrival times
ui,i� 1, use the prior treatment variables {(Gi,Hi),i¼ 1,2,3,…} and
the dynamic randomization scheme described in Section 2 to
generate the new treatment codes ~Xn;t ; t >0. Then, based on the re-
randomized data fð~Xi;Yi; diÞ; i ¼ 1;2;3;…g, we can calculate the
“log rank” statistics Zn. The null hypothesis will be tested based on
the observed Z and the empirical distribution of Zn,1 � n � Nsim. See
Ref. [15] for details.

3.3. MPP based log rank test

For the proposed procedure, we use the same trial data
{(ui,Gi,Hi,Xi,Yi,di),i¼ 1,2,3,…}. We first define a counting measure,
p(.), on the combined space ½0;T � � ½0;T � � R1 � R2 such that for
any event times A3½0;T �, entry times B3½0;T �, covariates C 3 R1,
and outcomes D 3 R2

pðA� B� C � DÞ
¼ P

i�1
1ðui þ Yi2A;ui2B; ðGi;Hi;XiÞ2C; di2DÞ

≡
Z

1A�B�C�Dðs;u; c; dÞpðdsdudcddÞ;

where the covariate space R1 ¼ {1,…,LG}�{1,…,LH} � {0,1}, 0 and 1
refer to the control and the treatment group. We also denote the
outcome space R2 ¼ {0,1}, where 0 and 1 refer to the censored
outcome and event respectively.

The counting measure p(.) includes all information of the trial
data. Most useful statistics can be written as an integral with
respect to this counting measure. To avoid distraction from tech-
nical detail, we will state the main results in this section and leave
most details in the appendix.

For any treatment group x¼ 0,1, we use the analog of the rx,j,
r1,jþ r0,j and

r1;j
r1;jþr0;j

from the M-H log rank test. To make it more
general like the weighted log rank tests [7,23]; and [12], we
consider any (random) weight function kn(t,u,w) / k(u,w) uni-
formly in probability, where kn(t,u,w) is F t� measurable for each t
and with uniformly bounded variation in w. Let

Nxðt;w; knÞ ¼
Zt�w

0

knðt;u;wÞ1ðXu ¼ x; Yu � wÞdRu;

Nðt;w; knÞ ¼ N0ðt;w; knÞ þ N1ðt;w; knÞ;

~xðt;w; kn;uÞ ¼ N1ðt;w; knÞ
Nðt;w; knÞ ;

(2)

where the variable w corresponds to the event time Y(j) and the
extra variable t indicates that only the information up to the
calendar time t is used in the calculation. It is easy to see that they
are all F t measurable. It can be noted that, when kn(t,u,w) is in-
dependent of u, ~x is independent of kn.

Denote

gnðt; s;u; c;uÞ ¼ knðt;u; s� uÞ½1ðXu ¼ 1Þ � ~xðt; s� u; kn;uÞ�;
gðs;u; c;uÞ ¼ kðu; s� uÞ½1ðXu ¼ 1Þ � xðs� uÞ�;

(3)

where xðwÞ ¼ limn~xðt; s� u; kn;uÞ. Then, the statistics

UnðtÞ ¼
X

uiþYi�t

gnðt;ui þ Yi;ui;Gi;Hi;Xi;uÞ1ðdi ¼ 1Þ; (4)

will be an analog of the usual weighted log rank statistics at the
calendar time t. Note that, with the counting measure p(.), we can
write Un(t) as an integral

UnðtÞ ¼
Zt
0

Z
X

gnðt; s;u; c;uÞ1ðd ¼ 1ÞpðdsdudcddÞ:

Its variance estimator can be written as

VnðtÞ ¼
Zt
0

Z
X

g2nðt; s;u; c;uÞ1ðd ¼ 1ÞpðdsdudcddÞ: (5)

Under the assumption of proportional hazards, we assume that
h1,1(w) ¼ rh0,1(w) for some constant r> 0 and all w� 0. Denote
weighted cumulative events

DxðtÞ

¼
Zt
0

Z
X

knðt;u;s�uÞN1�xðt;s�u;knÞ
Nðt;s�u;knÞ 1ðXu¼x;d¼1ÞpðdsdudcddÞ;

forx¼0;1:
(6)

We use the estimating equation (see Appendix 2 for details)

UnðtÞ �
�
r � 1
2

D0ðtÞ þ
1
2

�
1� 1

r

�
D1ðtÞ

�
¼ 0; (7)

to solve for the estimator of the hazard ratio r, which is denoted asbrnðtÞ. The variance of brnðtÞ can be estimated as

varðbrnðtÞÞz 4VnðtÞ"
D0ðtÞ þ D1ðtÞbrnðtÞ2

#2: (8)

Finally, for testing the hypothesis of h0,1(.) ¼ h1,1(.), the statistics

ZnðtÞ ¼ UnðtÞffiffiffiffiffiffiffiffiffiffiffi
VnðtÞ

p ; (9)

converges to N(0,1) as n / ∞ for any large t> 0.
4. Simulations

In this section, we use simulation analyses to evaluate the per-
formance of the procedures described in section 3. First, we
describe the simulation of each data component as follow:

Subject Arrival: We use a Poisson process to model subject
arrival. We generate independent random numbers Ak,k¼ 1,2,3,..,N
from an exponential distribution with rate la> 0. Then, let
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ui ¼
X
k¼1

i

Ak (10)

be the time at which the i-th subject arrives. For each i, we generate
Gi based on a distribution such that P(Gi¼ g) ¼ pg for some positive
constants pg,1� g�LG and

P
g
pg ¼ 1. We also generate Hi based on

another distribution such that P(Hi¼ h) ¼ qh for some positive
constants qh,1� h � LH and

P
h
qh ¼ 1. In the examples below, we

assume the number of subjects N¼ 250, la¼ 8, LG¼ 8 and
pg,1� g � LG as 1/14,1/14,1/14,2/14,2/14,2/14,2/14,3/14, LH¼ 4 and
qh,1� h � LH as 1/6,1/6,2/6,2/6.

Treatment Assignment: After generating all subject arrival and
baseline information (G and H), we use the dynamic randomization
algorithm to generate the treatment group Xi,i� 1. In the examples
below, we assume that r ¼ 0.5 for 2:1 randomization, a¼ b ¼ c ¼ 1,
and q ¼ 0.9 as specified in the Appendix 1.

Failure Times: After generating all subject treatment assign-
ments, we generate the failure times Ti,i� 1. Given Xi, Ti will be
generated based on exponential distribution with the rate exp
{agGiþ ahHiþ bXi}l0 with baseline hazard l0> 0 and treatment ef-
fect b as well as prognostic factors G and H effects (ag and ah). Here,
b< 0 refers to positive treatment effect and non-zero ag and ah refer
to heterogeneous populations. In the examples below, we assume
that the baseline hazard l0¼ 0.15, subgroup effects ag¼ 0.01 and
ah¼ 0.01. Different treatment effect b will be specified later.

Censoring Times: The censoring time Ci will be independently
generated based on uniform distribution over [c1,c2] for some
constants c2> c1> 0. In the examples below, we assume that c1¼7
and c2¼ 8.Taking Yi¼min{Ti,Ci} and di¼ 1(Ti� Ci), we complete the
data simulation for {(Ui,Gi,Hi,Xi,Yi,di),i¼ 1,2,3,…}. For each simula-
tion data, the hazard estimate and its variance will be calculated
based on (7) and (8) and the test statistics of (9) and (1) will be
calculated along with corresponding p-values p1 and p2 respec-
tively. Here, we assume kn¼ 1.

In addition, the re-randomized test under the null hypothesis
that there is no treatment differencewill be performed as described
in section 3 for both (9) and (1), which are denoted by Refs. p1,r and
p2,r respectively. In addition, the hazard ratio between the treat-
ment (1) and control (0) will be estimated as in section 3. In the
examples below, we use Nsim¼ 10,000. The simulation will be
repeated for Nitr¼ 10,000 times and the corresponding calculated
p-values are denoted as pk1; p

k
2; p

k
1;r; p

k
2;r ; k ¼ 1;2;…;Nitr . Let

a ¼ 0.025, the empirical power will be calculated as

B1 ¼ 1
Nitr

X
k¼1

Nitr

1
	
pk1 � a



;

B1;r ¼
1
Nitr

X
k¼1

Nitr

1
	
pk1;r � a



;

B2 ¼ 1
Nitr

X
k¼1

Nitr

1
	
pk2 � a



;

B2;r ¼
1
Nitr

X
k¼1

Nitr

1
	
pk2;r � a



:

(11)

4.1. Simulations under null hypothesis: b ¼ 0

In this section, we assume there is no treatment effect in the
failure time model, i.e., b ¼ 0, and evaluate the performance of four
testing procedures. Fig. 1 shows the histograms of Nitr¼ 10,000 p-
values from each of four tests and they suggest reasonable
resembling of uniform distributions over [0,1]. Based on one-
sample Kolmogorov-Smirnov test, the p-values for testing good-
ness of fit with the uniform distribution are pu1 ¼ 0:5945,
pu1;r ¼ 0:7442, pu2 ¼ 0:6617, pu2;r ¼ 0:7442 respectively. Corre-
spondingly, the empirical powers (the actual one sided type I error
in this case) based on (4) are 0.0258, 0.0279, 0.0289, and 0.0286
respectively. The mean number of events generated from 10,000
data sets is 176. Overall, all four test procedures appear acceptable
in maintaining the designed type I error rate. The MPP based test
keeps the type I error rate slightly better than both Mantle-Hanzel
test and its re-randomized version.

4.2. Simulations under alternative hypothesis: b s 0

Suppose there is positive treatment effect in the failure time
model, i.e., b< 0. Table 1 below shows the empirical power based
on (4) for b ¼ �0.25,�0.5 and �0.65 (b ¼ 0 included as well).

Overall, the power of the four testing procedures appear com-
parable. Corresponding to slightly inflating type I error rate in the
naive Mantle-Hanzel test, the MPP based test shows slightly lower
power in detecting the nonzero treatment effect. In addition, the
hazard ratio estimate based on (7) are close to the true parameters
and their variances based on (8) are reasonable.

It can be noted that, in these simulations, we choose a large
Nitr¼ 10,000 for reliability, which however leads to extensive
computing time. We have tried additional limited simulation in
case of smaller sample size, different censoring time interval, and
differentiated subgroup effect and those analyses do not change the
findings here.

5. Application

In this section, wewill illustrate the above inference procedures
through their application to a breast cancer trial conducted by NCIC
Clinical Trials Group [19].

The trial used the minimization procedure to randomize 305
subjects with stratification factors of prior cytotoxic treatment,
registration to MA. 16, presence of visceral disease, and study site.
As result of the dynamic randomization, 153 were assigned to
DPPE/DOX and 152 to DOX treatment groups and the treatment
groups were well balanced by the stratification factors included in
the randomization. Survival was a secondary endpoint of this trial.
At the end of the study, 67/153 died in the DPPE/DOX group,
compared with 91/152 died in the DOX group. Based on the ordi-
nary Cox regression, the hazard ratio estimate for survival was
0.656 with standard error of 0.161. The hazard ratio estimate based
on (7) with kn¼ 1was 0.657 with the variance estimate of 0.011.We
see two point estimates were close. For the comparison of overall
survival between two groups, the p-values fromMantel-Hanzle log
rank test and its re-randomized test are 0.0085 and 0.0079
respectively. Based on the proposed procedure of section 3.2, the p-
value is 0.0093 and its re-randomized version was 0.0079. All of
them suggest favorable overall survival in the DPPE/DOX treatment
arm.

6. Discussions

When implemented properly, a dynamic randomization can
effectively balance many prognostic factors in controlled clinical
trials [25]. The FDA guidance (E9) recommends analysis to be
adjusting for factors used for the dynamic randomization but no
specific methodology has been proposed. There have been sub-
stantial questions and challenges on the validity of conventional
statistics without adjusting for the randomization process (see Refs.
[20]), which can be part of the reasons for CPMP guidance to



Fig. 1. P-values histograms under null hypothesis. Upper panel: MPP based procedure and its randomized version; lower panel: log rank based procedure and its randomized version.
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discourage the use of such procedure. One of the FDA advisory
meetings discussed the study AGLU02704 (LOTS) that used a dy-
namic randomization scheme to assign patients with Pompe dis-
ease to the experimental “2000L” and Placebo groups and to
compare the rate change of 6-min walk distance (see Ref. [14]. The
sponsor assessed the significance of the difference without
considering dynamic randomization nature and obtained a p-value
0.035. However, the FDA statistician obtained a p-value 0.06 based
on a re-randomization test. The intensity of the discussion around
this topic highlights potentially serious impact of this controversy.

In this paper, we introduce a statistics that aligns with the
stratification factors as well as the randomization process for clin-
ical trials with time to event endpoints. It provides an estimate of
the treatment effect that accounts for the randomization factors
and the process, which can be used to test whether the effect is
zero. In addition, the procedure is in a closed form of the observed
data and thus easy to compute. We provide theoretical justification
of its asymptotic distribution. We use simulation analyses to show
its adequacy under moderate sample size. However, it can be noted
that we do not intend to compare for the efficiency between the
Table 1
Empirical power and point estimate.

Power exp{b}

1.0 0.779 0.607 0.522

B1 0.0258 0.1851 0.7003 0.904
B1,r 0.0279 0.1898 0.7048 0.904
B2 0.0289 0.2423 0.7623 0.93
B2,r 0.0286 0.24 0.76 0.93
HR 1.0002 0.7793 0.604 0.52
HR Variance 0.027 0.018 0.013 0.01
proposed procedure and common procedure such as the log rank
test, since it is not expected that our proposed procedure would be
nominally improved. We believe, as demonstrated by many simu-
lation studies, that the log rank test is generally sufficient in con-
trolling type I error and maintaining power, although regulatory
agency has been raising concern that the log rank test does not
reflect the dynamic randomization process and that its validity is
unknown. Our proposed testing procedure accommodates the dy-
namic randomization process and can be used as a replacement for
the log rank test when dynamic randomization becomes a concern.
Given the additional variation being accounted for in the proposed
testing procedure, it is expected that the nominal power may be
slightly lower than the log rank test.

It can be noted that there is considerable similarity between the
modeling framework used here and the covariate-adjusted
response-adaptive design (CARA) studied by Hu and Rosenberger
[9]; Zhang et al. [27]; and Hu, Zhang and He [10]. The CARA
framework focuses on a target allocation with endpoints without
delay. The model discussed in this paper deals with survival
endpoint and dynamic randomization with high dimensional and
potentially sparse stratification factors, which may not fit well in
the CARA framework. In principle, CARA framework can be seen as
a specific discrete case of the adaptive design framework described
by Luo et al. [12]. Finally, it is interesting to note that, while there
have been concerns on whether conventional procedures such as
standard log rank test would be still valid with complicated dy-
namic randomization, similar theoretical justification may be
modified via conditional argument to provide similar asymptotic
result. However, such conditional argument may not work under
more general adaptive designwhen the treatment assignment may
depend on interim trial outcome such as CARA model.
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Appendix 1. Dynamic randomization based on balance score

One common approach is to use balance scores defined as
follow: Suppose the target randomization ratio for the treatment to
the control is 1:r for some constant r> 0. The balance scores for the
experimental arm assignment are
mXðt;1Þ ¼
1

1þ Rt�

�
max

�
rð1þ nXðt�;1ÞÞ;nXðt�;0Þ

�
�minfrð1þ nXðt�;1ÞÞ;nXðt�;0Þgg;

mX;Gðt;1; gÞ ¼
1

1þ nGðt�; gÞ
�
max

�
r
�
1þ nX;Gðt�;1; gÞ�;nX;Gðt�;0; gÞ

�
�min



r
�
1þ nX;Gðt�;1; gÞ�;nX;Gðt�;0; gÞ��;

mX;Hðt;1; hÞ ¼
1

1þ nHðt�;hÞ
�
max

�
r
�
1þ nX;Hðt�;1; hÞ�;nX;Hðt�;0; hÞ

�
�min



r
�
1þ nX;Hðt�;1;hÞ�;nX;Hðt�;0;hÞ��
and the balance scores for the control arm assignment as
mXðt;0Þ ¼
1

1þ Rt�

�
max

�
rnXðt�;1Þ; ð1þ nXðt�;0ÞÞ

�
�minfrnXðt�;1Þ; ð1þ nXðt�;0ÞÞgg;

mX;Gðt;0; gÞ ¼
1

1þ nGðt�; gÞ
�
max

�
rnX;Gðt�;1; gÞ; �1þ nX;Gðt�;0; gÞ��

�min


rnX;Gðt�;1; gÞ; �1þ nX;Gðt�;0; gÞ���;

mX;Hðt;0; hÞ ¼
1

1þ nHðt�;hÞ
�
max

�
rnX;Hðt�;1; hÞ; �1þ nX;Hðt�;0; hÞ��

�min


rnX;Hðt�;1;hÞ; �1þ nX;Hðt�;0; hÞ���
For any weights a,b and c, let the total balancing score be

fðt; x; g; hÞ ¼ amXðt; xÞ þ bmX;Gðt; x; gÞ þ cmX;Hðt; x; hÞ; x ¼ 0;1;

We can assign the treatment for a new subject accrued at the
calendar time t with baseline G¼ g and H¼ h by

Xt ¼ xt1ðfðt;1; g;hÞ � fðt;0; g; hÞ<0Þ þ ð1� xtÞ1ðfðt;1; g;hÞ
� fðt;0; g;hÞ

� 0Þ;

where the Bernoulli distributed xt~b(1,q) is an independent random
variable. This dynamic randomization scheme will be used in the
simulation examples of section 4.

Appendix 2. Technical details

Denote F t as the information flow available up to time t, we
have the compensator q(dsdudcdd) ¼ qs(dudcdd)ds for the random
measure qs(.) for each s> 0 such that
8>>>><1ðYu � s�u;Gu ¼ g;Hu ¼h;Xu ¼ xÞhx;1ðs�uÞdRu;
if s�u;c¼ðg;h;xÞ;d¼1;
qsðdudcddÞ¼>>>>: 1ðYu � s�u;Gu ¼ g;Hu ¼h;Xu ¼ xÞh0ðs�uÞdRu;
if s�u;c¼ðg;h;xÞ;d¼0;

0; if o:w:

As noted in Luo et al. [12]; the compensator q(dsdudcdd) is
mainly used for theoretical development. The actual computable
statistics involves with an integral with respect to the counting
measure p(dsdudcdd), e.g.,
Zt
0

Z
X

gðt; s;u; c;uÞpðdsdudcddÞ ¼
X

uiþYi�t

gðt;ui

þ Yi;ui;Gi;Hi;Xi;uÞ

for any function g(t,s,u,c;u).
Note that

UnðtÞ

¼
Zt
0

Z
X

gnðt; s;u; c;uÞ1ðd ¼ 1ÞpðdsdudcddÞ

¼
Zt
0

Z
X

gnðt; s;u; c;uÞ1ðd ¼ 1Þ½pðdsdudcddÞ � qðdsdudcddÞ�

þ
Zt
0

Z
X

gnðt; s;u; c;uÞ1ðd ¼ 1ÞqðdsdudcddÞ
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and the second term can be written as
Zt
0

Z
x

gnðt; s;u; c;uÞ1ðd ¼ 1ÞqðdsdudcddÞ

¼P
x

Zt
0

Zs
0

gnðt; s;u; c;uÞ1ðYu � s� u;Xu ¼ xÞhx;1ðs� uÞdRuds

¼P
x

Zt
0

Zt�w

0

knðt;u;wÞ½1ðXu ¼ 1Þ � ~xðt;w; kn;uÞ�1ðYu � w;Xu ¼ xÞhx;1ðwÞdRudw

¼
Zt
0

h1;1ðwÞ
Zt�w

0

knðt;u;wÞ1ðYu � w;Xu ¼ 1ÞdRudw

�
Zt
0

~xðt;w; kn;uÞ
X
x

hx;1ðwÞ
Zt�w

0

knðt;u;wÞ1ðYu � w;Xu ¼ xÞdRudw

¼
Zt
0

"
h1;1ðwÞN1ðt;w; knÞ � ~xðt;w; kn;uÞ

X
x

hx;1ðwÞNxðt;w; knÞ
#
dw

¼
Zt
0

N0ðt;w; knÞN1ðt;w; knÞ
Nðt;w; knÞ

�
h1;1ðwÞ � h0;1ðwÞ�dw:
Thus, we have

UnðtÞ ¼
Zt
0

Z
X

gnðt; s;u; c;uÞ1ðd ¼ 1ÞdMs

þ
Zt
0

N0ðt;w; knÞN1ðt;w; knÞ
Nðt;w; knÞ

�
h1;1ðwÞ � h0;1ðwÞ�dw;

(12)

where dMs¼ p(dsdudcdd) � q(dsdudcdd).
Zt
0

N0ðt;w; knÞN1ðt;w; knÞ
Nðt;w; knÞ

�
h1;1ðwÞ � h0;1ðwÞ�dw

¼ ðr � 1Þ
Zt
0

N0ðt;w; knÞN1ðt;w; knÞ
Nðt;w; knÞ h0;1ðwÞdw

¼ ðr � 1Þ
Zt
0

N1ðt;w; knÞ
Nðt;w; knÞ

Zt�w

0

knðt;u;wÞ1ðYu � w;Xu ¼ 0Þh0;1ðwÞdRud

¼ ðr � 1Þ
Zt
0

Zs
0

knðt;u; s� uÞN1ðt; s� u; knÞ
Nðt; s� u; knÞ 1ðYu � s� u;Xu ¼ 0Þh0;1ð

¼ ðr � 1Þ
Zt
0

Z
X

knðt;u; s� uÞN1ðt; s� u; knÞ
Nðt; s� u; knÞ 1ðXu ¼ 0; d ¼ 1Þqðdsdud
Estimation of Treatment Effect

We can introduce a procedure to estimate the treatment
effect under proportional hazards with a special weight func-
tion. We assume that h1,1(w) ¼ rh0,1(w) for some constant r > 0
and all w� 0. We can simplify the term at the end of the last
paragraph as
w

s� uÞdRuds

cddÞ
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Similarly, noting that h0,1(w) ¼ h1,1(w)/r
Zt
0

N0ðt;wÞN1ðt;wÞ
Nðt;wÞ

�
h1;1ðwÞ � h0;1ðwÞ�dw

¼
�
1� 1

r

�Zt
0

Z
X

knðt;u; s� uÞN0ðt; s� u; knÞ
Nðt; s� u; knÞ 1ðXu ¼ 1; d ¼ 1ÞqðdsdudcddÞ
Denote

DxðtÞ

¼
Zt
0

Z
X

knðt;u;s�uÞN1�xðt;s�u;knÞ
Nðt;s�u;knÞ 1ðXu ¼ x;d¼1ÞpðdsdudcddÞ;

for x¼0;1:

We have

UnðtÞ �
�
r � 1
2

D0ðtÞ þ
1
2

�
1� 1

r

�
D1ðtÞ

�

z

Zt
0

Z
X

gnðt; s;u; c;uÞ1ðd ¼ 1ÞdMs;

and can use the estimating equation

Eðr; tÞ ¼ 0;

where

Eðr; tÞ ¼ UnðtÞ �
�
r � 1
2

D0ðtÞ þ
1
2

�
1� 1

r

�
D1ðtÞ

�
;

to solve for the estimator of the hazard ratio r, which is denoted as

brnðtÞ. It can be noted that the weights
�
1
2;

1
2

�
can be replaced by any

(l,1 � l), while we keep it simple by taking l ¼ 1
2.Note that

dE
dr ¼ �1

2

�
D0ðtÞ þ D1ðtÞ

r2

�
. Applying the argument of M-estimation

and delta method, we have

Zt
0

Z
X

gnðt; s;u; c;uÞ1ðd ¼ 1ÞdMs

¼ Eðr; tÞ � EðbrnðtÞ; tÞ
z
1
2

 
D0ðtÞ þ

D1ðtÞbrnðtÞ2
!
ðbrnðtÞ � rÞ

The variance of brnðtÞ can be estimated as
varðbrnðtÞÞz 4VnðtÞ"
D0ðtÞ þ D1ðtÞbrnðtÞ2

#2

where

VnðtÞ ¼
Zt
0

Z
X

g2nðt; s;u; c;uÞ1ðd ¼ 1ÞpðdsdudcddÞ:
Comparison of Group Effects

In this section, we introduce a testing procedure to compare the
survival time between two treatment groups. Note that the second
term of (12) becomes 0 under the hypothesis of h0,1(.) ¼ h1,1(.) and
thus

UnðtÞ ¼
Zt
0

Z
X

gnðt; s;u; c;uÞ1ðd ¼ 1ÞdMs

which, from Theorem 3.4 in Luo et al. [12]; can be approximated by

QðtÞ ¼
Zt
0

Z
X

gðs;u; c;uÞ1ðd ¼ 1ÞdMs

where dMs¼ p(dsdudcdd) � q(dsdudcdd) and g is defined in (3.3).
Thus, it converges to a Gaussian process with zero mean and
quadratic variation process

<Q > ðtÞ ¼
Zt
0

Z
X

gðs;u; c;uÞ21ðd ¼ 1ÞqðdsdudcddÞ:

In application,<Q > (t) can be approximated uniformly by Ref.
Vn(t). Thus, the testing statistics takes the form of

ZnðtÞ ¼ UnðtÞffiffiffiffiffiffiffiffiffiffiffi
VnðtÞ

p ;

converges to N(0,1) as n / ∞ for any large t> 0.
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