Small Zeros of Quadratic Forms Modulo \(p \)

TODD COCHRANE

Department of Mathematics, Kansas State University, Cardwell Hall, Manhattan, Kansas 66506

Communicated by P. T. Bateman

Received March 14, 1988

Let \(Q(x) = Q(x_1, x_2, \ldots, x_n) \) be a quadratic form with integer coefficients and \(p \) be an odd prime. Suppose that \(n \) is even and \(\text{det} Q \not\equiv 0 \pmod{p} \). Set \(\Delta = \left(\frac{-1}{p} \right) \text{det} Q \), and let \(Q^*(x) \) be the form associated with the inverse of the matrix representing \(Q(x) \), \(\pmod{p} \). If \(\Delta = 1 \), it is known that there exists a nonzero \(x \) with \(\max |x_i| < p^{1/2} \) and \(Q(x) \equiv 0 \pmod{p} \). If \(\Delta = -1 \) we show here that there exists a nonzero \(x \) with \(\max |x_i| < p^{1/2} \) and either \(Q(x) \equiv 0 \pmod{p} \) or \(Q^*(x) \equiv 0 \pmod{p} \). We also show that for any form \(Q(x) \), if \(n > 4 \log_2 p + 3 \), then the congruence \(Q(x) \equiv 0 \pmod{p} \) has a solution with \(0 < \max |x_i| < p^{1/2} \).

1. INTRODUCTION

Let \(Q(x) = Q(x_1, x_2, \ldots, x_n) \) be a quadratic form with integer coefficients and \(p \) be an odd prime. Set \(\|x\| = \max |x_i| \). Heath-Brown [3] has shown that for \(n \geq 4 \), the congruence

\[
Q(x) \equiv 0 \pmod{p}
\]

has a nonzero solution \(x \) with \(\|x\| \ll p^{1/2} \log p \). The smallest nonzero solution one can hope for (for a general \(Q \)) is one with \(\|x\| \ll p^{1/2} \), but it is unknown whether such a solution always exists.

When \(n \) is even one can use Minkowski's theorem from the geometry of numbers to obtain a nonzero solution of (1) of order \(p^{1/2} \), in certain cases. Set

\[
\Delta = \Delta_Q = \left(\frac{-1}{p} \right)^{n/2} \frac{\text{det} Q}{p}
\]

(Legendre symbol),

if \(p \nmid \text{det} Q \), and \(\Delta = 0 \) if \(p \mid \text{det} Q \). If \(\Delta = 0 \) or 1, then one obtains in this manner a solution of (1) with \(0 < \|x\| < p^{1/2} \); see [3, Theorem 2] for the case \(n = 4 \), and [2, Lemma 3, Theorem 2].
If \(n \geq 4 \) is even and \(\Delta = -1 \) we are able to prove that either \(Q(x) \) or \(Q^*(x) \), the conjugate form associated with the inverse (mod \(p \)) of the matrix representing \(Q(x) \), has a zero \(x \) (mod \(p \)) with \(0 < \|x\| \leq p^{1/2} \).

Theorem 1. If \(Q(x) \) is a quadratic form in an even number of variables \(n \geq 4 \) and \(\Delta_Q = -1 \), then there exists an \(x \in \mathbb{Z}^n \) such that \(0 < \|x\| \leq p^{1/2} \) and either \(Q(x) \equiv 0 \) (mod \(p \)) or \(Q^*(x) \equiv 0 \) (mod \(p \)).

(The constant we obtain in the \(\ll \) inequality of the theorem depends on \(n \), but one may be able to refine our proof to get a constant independent of \(n \).)

This theorem is best possible, for if we consider the form \(Q(x) = x_1^2 + x_2^2 + \cdots + x_n^2 = Q^*(x) \), it is clear that any nonzero solution of (1) satisfies \(\|x\| \geq (1/\sqrt{n})p^{1/2} \). The proof of Theorem 1 follows the line of argument used in Heath-Brown's paper [3].

One particular consequence of Theorem 1 is that any self-conjugate quadratic form (mod \(p \)) in an even number of variables \(n \geq 4 \) has a nontrivial zero \(x \) with \(\|x\| \leq p^{1/2} \). Another special case where zeros of order \(p^{1/2} \) are obtained is given in:

Theorem 2. Suppose \(Q(x_1, x_2, x_3, x_4) \) can be expressed in the form

\[
Q(x_1, x_2, x_3, x_4) \equiv Q_1(x_1, x_2) + Q_2(x_3, x_4) \pmod{p},
\]

for some quadratic forms \(Q_1 \) and \(Q_2 \). Then there exists a nonzero \(4 \)-tuple of integers \(x \) such that \(\|x\| < p^{1/2} \) and \(Q(x) \equiv 0 \) (mod \(p \)).

The proof of Theorem 2 is immediate. If \(\Delta_Q = -1 \), then either \(\Delta_{Q_1} = 1 \) or \(\Delta_{Q_2} = 1 \) and so the small solution can be obtained by setting \(x_3 = x_4 = 0 \) or \(x_1 = x_2 = 0 \). As a Corollary we obtain

Theorem 3. Suppose that \(n > 4 \log_2 p + 3 \). Then for any quadratic form \(Q(x) \) in \(n \) variables over \(\mathbb{Z} \) there exists a nonzero solution of (1) with \(\|x\| < p^{1/2} \).

We note that a slightly weaker form of Theorem 3 follows immediately from Theorem 1 of Schinzel, Schlickewei, and Schmidt [4]. They prove that (1) has a nonzero solution with \(\|x\| < p^{1/2} + 1/2(n - 1) \) for \(n \geq 3 \) (in fact, their result holds for composite moduli as well). If \(n \) satisfies the condition of Theorem 3 their bound simplifies to \(\|x\| < \sqrt{2}p^{1/2} \). Thus, our improvement is only in the constant in front of \(p^{1/2} \), but this theorem together with Theorem 2 and Theorem 2 of [3] leads us to ask whether we can always obtain a nonzero solution of (1) with \(\|x\| < p^{1/2} \).
2. Lemmas

To prove Theorem 1 we shall use finite Fourier series over \mathbb{F}_p, the finite field in p elements. Henceforth we shall assume that n is even, p is an odd prime, and that $Q(x)$ is a nonsingular quadratic form in $\mathbb{F}_p[x_1, x_2, \ldots, x_n]$. Let $e_p(\alpha) = e^{2\pi i \alpha/p}$, $x \cdot y = \sum_{i=1}^{n} x_i y_i$, and $\sum_x = \sum_{x \in \mathbb{F}_p^n}$. Let $V = V_Q$ denote the set of zeros of $Q(x)$ in \mathbb{F}_p^n and let $Q^*(x)$ and $\Delta = \Delta_Q$ be as defined above. For $y \in \mathbb{F}_p^n$, set

$$\phi(V, y) = \begin{cases} \sum_{x \in V} e_p(x \cdot y), & \text{for } y \neq 0 \\ |V| - p^{n-1}, & \text{for } y = 0. \end{cases}$$

Lemma 1. Suppose that n is even. Then for $y \in \mathbb{F}_p^n$,

$$\phi(V, y) = \begin{cases} p^{n/2-1}(p-1) \Delta & \text{if } Q^*(y) = 0 \\ -p^{n/2-1} \Delta & \text{if } Q^*(y) \neq 0. \end{cases}$$

The proof of Lemma 1 is given in Carlitz [1], and is implicit in Heath-Brown's paper [3] for the case $n = 4$.

Let $\alpha(x)$ be a real valued function defined on \mathbb{F}_p^n with finite Fourier expansion $\alpha(x) = \sum_y a(y) e_p(x \cdot y)$, where $a(y) = p^{-n} \sum_x \alpha(x) e_p(-x \cdot y)$. Then by Lemma 1,

$$\sum_{x \in V} \alpha(x) = a(0) |V| + \sum_{y \neq 0} a(y) \phi(V, y)$$

$$= p^{-1} \sum_x \alpha(x) + \sum_y a(y) \phi(V, y)$$

$$= p^{-1} \sum_x \alpha(x) + \Delta(p-1) p^{n/2-1} \sum_{Q^*(y) = 0} a(y)$$

$$- \Delta p^{n/2-1} \sum_{Q^*(y) \neq 0} a(y),$$

and so we obtain

Lemma 2. For any $\alpha(x)$ as given above

$$\sum_{x \in V} \alpha(x) = p^{-1} \sum_x \alpha(x) - \Delta p^{n/2} \alpha(0) + \Delta p^{n/2} \sum_{Q^*(y) = 0} a(y).$$

Let $R = R(M_1, \ldots, M_n)$ be the box of points in \mathbb{F}_p^n given by

$$B = \{ x \in \mathbb{F}_p^n : |x_i| \leq M_i, 1 \leq i \leq n \},$$

where M_1, \ldots, M_n are positive integers less than $p/2$. (We have identified
Let F_p with the set of integer representatives \(\{ x \in \mathbb{Z} : |x| < p/2 \} \). Let χ_B be the characteristic function of B with Fourier expansion $\chi_B(x) = \sum_y a_B(y) e_p(x \cdot y)$. Then for $y \in F^n_p$,

$$a_B(y) = p^{-n} \prod_{i=1}^n \frac{\sin \pi m_i y_i/p}{\sin \pi y_i/p},$$

where $m_i = 2M_i + 1$, and a term in the product is defined to be m_i if $y_i = 0$.

Set $\alpha(x) = \chi_B * \chi_B(x) \equiv \sum_u \chi_B(u) \chi_B(x - u)$. Then the Fourier coefficients of $\alpha(x)$ are given by $a(y) = p^n a_B^2(y)$.

If $\Delta_Q = -1$, then by Lemma 2 we have

\[
\sum_{x \in \mathcal{V}} \chi_B * \chi_B(x) = p^{-1} |B|^2 + p^{n/2 - 1} |B| - p^{(3/2)n} \sum_{Q^*(y) = 0} a_B^2(y)
\]

\[
< p^{-1} |B|^2 + p^{n/2 - 1} |B|. \tag{2}
\]

On the other hand,

\[
\sum_{x \in \mathcal{V}} \chi_B * \chi_B(x) \geq \sum_{x \in \mathcal{V} \cap B} 2^{-n} |B| = 2^{-n} |B| |B \cap \mathcal{V}|.
\]

Thus, we obtain

Lemma 3. If $\Delta_Q = -1$, then

$$|B \cap \mathcal{V}| < 2^n (p^{-1} |B| + p^{n/2 - 1}).$$

(When $n = 4$, this is essentially Lemma 5 of [3], with an explicit constant given instead of a big oh.)

3. Proof of Theorem 1

Let $M < p/2$ be a positive integer, B be the box $B(M, M, ..., M)$, $m = 2M + 1$ and $\alpha(x) = \chi_B * \chi_B(x)$. Suppose that $\Delta_Q = -1$, and let D be a parameter such that Q^* has no zero y with $0 < \|y\| < D$. Then, letting π run through the injections of $\{1, 2, ..., j\}$ into $\{1, 2, ..., n\}$, and letting Σ^* be an abbreviation for $\Sigma_{y^*(y) = 0, y \neq 0}$, we have

\[
\sum^* a_B^2(y) = \sum^* a_B^2(y) = \sum_{|y| > D} \sum_{j=1}^n \sum_{|y^*(y)| \geq D} a_B^2(y)
\]

\[
= \sum_{j=1}^n \sum_{\pi} \sum_{k_1=1}^{\infty} \cdots \sum_{k_l=1}^{\infty} \sum_{D \leq |y| < D, \text{ otherwise}} a_B^2(y).
\]
Applying Lemma 3 to Q^* and using the fact that

$$a^2_{\theta}(y) \leq \prod_{i=1}^{n} \min \left(\frac{m^2}{p^2}, \frac{1}{4y_i^2} \right),$$

we obtain

$$\sum_{y} a^2_{\theta}(y) \leq \sum_{j=1}^{n} \binom{n}{j} \sum_{k_1=1}^{\infty} \cdots \sum_{k_j=1}^{\infty} \left\{ \left(\frac{m}{p} \right)^{2(n-j)} \left(\frac{1}{4} \right) \prod_{i=1}^{j} \left(2^{k_i-1}D \right)^{-2} \cdot 2^n 2^{k_1} \cdots + k_j(D+1)^n p^{-1} + p^{n/2-1} \right\}$$

$$= C_1 + C_2$$

say, where

$$C_1 = 2^{2n}(D+1)^n p^{-1} \sum_{j=1}^{n} \binom{n}{j} \left(\frac{m}{p} \right)^{2(n-j)} D^{-2j} \sum_{k_1=1}^{\infty} \cdots \sum_{k_j=1}^{\infty} \frac{1}{2^{k_1}} \cdots \frac{1}{2^{k_j}}$$

and

$$C_2 = 2^n p^{n/2-1} \sum_{j=1}^{n} \binom{n}{j} \left(\frac{m}{p} \right)^{2(n-j)} D^{-2j} \sum_{k_1=1}^{\infty} \cdots \sum_{k_j=1}^{\infty} \frac{1}{4^{k_1}} \cdots \frac{1}{4^{k_j}}$$

Then, by (2) and the observation that $\sum_{Q^*(y)} a^2_{\theta}(y) \leq a^2_{\theta}(0) + C_1 + C_2$, we deduce that

$$\sum_{x \in \mathcal{V}, x \neq 0} \chi_{B^*} \chi_{B}(x) \geq p^{-1} |B|^2 + (p^{n/2-1} |B| - |B| - p^{-n/2} |B|^2)$$

$$- p^{(3/2)n} C_1 - p^{(3/2)n} C_2. \quad (3)$$

Now, the quantity in the parentheses on the right-hand side of (3) is positive if $|B| < p^{n-1} - p^{n/2}$, and so the right-hand side of (3) is positive if the following three conditions hold,

$$|B| < p^{n-1} - p^{n/2}, \quad (4)$$

$$p^{-1} |B|^2 \geq 2C_1 p^{(3/2)n}, \quad (5)$$
and
\[p^{-1} |B|^2 \geq 2C_2 p^{(3/2)n}. \]
(6)

If these 3 conditions hold it follows that \(Q(x) \) has a zero \(x \) with \(0 < \|x\| \leq 2M < m. \)

Set \(\lambda = p/mD \) and suppose that \(\lambda^2 < 1/2n. \) Then
\[C_1 = 2^{2n}(D + 1)^n m^{2n} p^{-(2n+1)}[(1 + \lambda^2)^n - 1] \]
\[\leq 2^{2n}(D + 1)^n m^{2n} p^{-(2n+1)2n\lambda^2}, \]
and
\[C_2 \leq 2^n m^{2n} p^{-(3/2)n + 1/2n\lambda^2/3}. \]

Thus (6) is satisfied if \(\lambda^2 = 3/(2^{2+n}n). \) For this choice of \(\lambda, \) (5) holds true if \(D = (1/3^{1/2}) p^{1/2} - 2, \) and for this value of \(D, \) \(m = p/D\lambda \ll p^{1/2}. \)
(Inequality (4) holds trivially for \(m \ll p^{1/2} \) and \(p \) sufficiently large.)

4. PROOF OF THEOREM 3

Let \(Q(x) \in \mathbb{Z}[x_1, ..., x_n] \) be a quadratic form and \(p \) be an odd prime. By setting one variable equal to zero in case \(n \) is odd, we may assume that \(n \) is even and write
\[Q(x) = a_{11}x_1^2 + a_{12}x_1x_2 + x_1L_1(x_3, x_5, ..., x_{n-1}) + x_1L_2(x_4, x_6, ..., x_n) \]
\[+ a_{22}x_2^2 + x_2L_3(x_3, x_5, ..., x_{n-1}) + x_2L_4(x_4, x_6, ..., x_n) \]
\[+ Q_1(x_3, x_4, ..., x_n), \]
for some linear forms \(L_1, L_2, L_3, L_4 \) and quadratic form \(Q_1. \)

Let \(x_3, x_5, ..., x_{n-1} \) take on the values 0 and 1 and consider the mapping
\((x_3, x_5, ..., x_{n-1}) \rightarrow (L_1, L_3). \)

If \(2^{n/2-1} > p^2 \) then two different points get mapped to the same ordered pair \(\pmod{p} \), and taking their difference yields a nonzero point \((x_3, x_5, ..., x_{n-1}) \) such that \(x_j = 0, 1, \) or \(-1\) for \(j = 3, 5, ..., n-1 \) and
\[L_1(x_3, ..., x_{n-1}) \equiv L_3(x_3, ..., x_{n-1}) \equiv 0 \pmod{p}. \]

Similarly, there exists a nonzero point \((x_4, x_6, ..., x_n) \) such that \(x_j = 0, 1, \) or \(-1\) for \(j = 4, 6, ..., n \) and
\[L_2(x_4, ..., x_n) \equiv L_4(x_4, ..., x_n) \equiv 0 \pmod{p}. \]

Without loss of generality we may assume that \(x_3 \neq 0 \) and \(x_4 \neq 0. \)
Set
\[x_j = \alpha_j x_3 / \alpha_3, \quad \text{for} \quad j = 5, 7, \ldots, n - 1 \] (7)
\[x_j = \alpha_j x_4 / \alpha_4, \quad \text{for} \quad j = 6, 8, \ldots, n. \]

Then \(L_1, L_2, L_3, L_4 \) are identically zero (mod \(p \)), and the congruence \(Q(x) \equiv 0 \pmod{p} \) becomes
\[a_{11} x_1^2 + a_{12} x_1 x_2 + a_{22} x_2^2 + Q_2(x_3, x_4) \equiv 0 \pmod{p} \] (8)
for some quadratic form \(Q_2 \). By Theorem 2, (8) has a nonzero solution with \(|x_i| < p^{1/2}, \ 1 \leq i \leq 4 \). Then by (7), the original congruence \(Q(x) \equiv 0 \pmod{p} \) has a nonzero solution with \(\|x\| < p^{1/2} \).

REFERENCES