Strongly and Weakly Harmonizable Stochastic Processes of H-Valued Random Variables

Yūichirō Kakihara

Tokyo Denki University, Ishizaka, Hatoyama-machi, Hiki-gun, Saitama-ken, Japan 350-03

Communicated by M. M. Rao

DEDICATED TO PROFESSOR HISAHARU UMEGAKI ON HIS 60TH BIRTHDAY

Let H be a Hilbert space and $(\Omega, \mathcal{F}, \mu)$ be a probability measure space. Consider the Hilbert space $L_2^0(\Omega; H)$ consisting of all H-valued strong random variables on Ω with zero mean which are square integrable with respect to μ. We study $L_2^0(\Omega, H)$-valued processes over the real line \mathbb{R}. Strong and weak harmonizabilities are defined for such processes. It is shown that, as in the scalar valued case, every weakly harmonizable process is approximated pointwisely on \mathbb{R} by a sequence of strongly harmonizable processes. To prove this we obtain a series representation of a continuous process.

1. INTRODUCTION

In this paper we generalize the above result to the case of Hilbert space valued second order stochastic processes over \mathbb{R}. To this end let H be a Hilbert space and $(\Omega, \mathcal{F}, \mu)$ be a probability measure space. $L_2^0(\Omega; H)$ denotes the Hilbert space of all H-valued strong random variables on Ω with zero mean which are square integrable with respect to (w.r.t.) μ. Then we study $L_2^0(\Omega; H)$-valued processes over \mathbb{R}.

Stationary $L_2^0(\Omega; H)$-valued processes have been extensively studied by several authors such as Kallianpur and Mandrekar [4], Mandrekar and Salehi [6], and Rosenberg [11] (see also Salehi [13] and references
therein). These authors regarded the space $L^2_0(\Omega; H)$ as the space $S(L^2_0(\Omega), H)$ of all Hilbert–Schmidt class operators from $L^2_0(\Omega)$ into H where $L^2_0(\Omega) = \{ f \in L^2(\Omega); \int_{\Omega} fd\mu = 0 \}$, and introduced the $T(H)$-valued Gramian structure and left $B(H)$-module structure in it, where $T(H)$ is the set of all trace class operators on H and $B(H)$ is the algebra of all bounded linear operators on H. Spaces with such structures were termed (normal) Hilbert $B(H)$-modules (cf. Kakihara [1, 2] and Ozawa [8]). On the other hand nonstationary processes seem to have been less studied. Lately (weak) harmonizability was introduced in [2] by making use of the study of normal Hilbert $B(H)$-module valued measures which were considered in [1].

In Section 2, we give some preliminary definitions and results which will be used in Section 3. First we give some properties of $L^2_0(\Omega; H)$ as a normal Hilbert $B(H)$-module (cf. [2, 8]). $L^2_0(\Omega; H)$-valued measures on \mathbb{R} and $T(H)$-valued bimeasures on $\mathbb{R} \times \mathbb{R}$ play an important role and we state fundamental properties of them (cf. [1, 2]). In Section 3, we obtain the (Gramian orthogonal) series representation of a continuous process. Strong and weak harmonizabilities are defined and it is shown that every weakly harmonizable process is approximated pointwisely on \mathbb{R} by a sequence of strongly harmonizable processes.

2. PRELIMINARIES

Let $(\Omega, \mathcal{F}, \mu)$ be a probability measure space and H be a Hilbert space with the inner product (\cdot, \cdot) and the norm $\| \cdot \|$. $B(H)$ denotes the Banach space of all bounded linear operators on H with the uniform norm $\| \cdot \|$, and $T(H)$ denotes the set of all trace class operators on H with the trace $\text{Tr}(\cdot)$ and the trace norm $\| \cdot \|_T$. As in the Introduction let $L^2_0(\Omega; H)$ be the set of all H-valued strong random variables $x(\cdot)$ on Ω such that

$$\int_{\Omega} x(\omega) \mu(d\omega) = 0, \quad \int_{\Omega} \| x(\omega) \|^2 \mu(d\omega) < \infty.$$

For $x, y \in L^2_0(\Omega; H)$ define

$$(x, y)_2 = \int_{\Omega} (x(\omega), y(\omega)) \mu(d\omega), \quad \| x \|_2 = (x, x)^{1/2}.$$

Then $L^2_0(\Omega; H)$ becomes a Hilbert space with the inner product $(\cdot, \cdot)_2$. Moreover, there is a $T(H)$-valued inner product $[\cdot, \cdot]$, called a Gramian, on $L^2_0(\Omega; H)$ defined as follows: for $x, y \in L^2_0(\Omega; H)$

$$([x, y] \phi, \psi) = \int_{\Omega} \left((x(\omega) \otimes y(\omega)) \phi, \psi \right) \mu(d\omega)$$

where $x(\cdot) \otimes y(\cdot)$ is the rank-one tensor product of $x(\cdot)$ and $y(\cdot)$.

...
HARMONIZABLE PROCESSES 129

for every $\phi, \psi \in H$, where the tensor product \otimes is in the sense of Schatten [14], i.e., $\phi \otimes \psi : H \to H$ is an operator such that $(\phi \otimes \psi) \phi' = (\phi', \psi) \phi$, $\phi' \in H$. Then we have that $[x, y] \in T(H)$ and $\text{Tr}[x, y] = (x, y)$, for $x, y \in L_0^2(\Omega; H)$ (cf. Umegaki and Bharucha-Reid [15]). Hence $L_0^2(\Omega; H)$ is a normal Hilbert $B(H)$-module in the sense of [2, Definitions 2.1 and 2.2], where the terminology Hilbert $B(H)$-module was used in [8]. That is, $L_0^2(\Omega; H)$ is a left $B(H)$-module with the action $(ax)(\cdot) = ax(\cdot)$ for $a \in B(H)$ and $x \in L_0^2(\Omega; H)$, and $[\cdot, \cdot]$ satisfies that for $x, y, z \in L_0^2(\Omega; H)$, and $a \in B(H)$,

\[
\begin{align*}
(1^\circ) \ [x, x] &\geq 0, \text{ and } [x, x] = 0 \text{ iff } x = 0; \\
(2^\circ) \ [x + y, z] = [x, z] + [y, z]; \\
(3^\circ) \ [ax, y] = a[x, y]; \\
(4^\circ) \ [x, y]^* = [y, x].
\end{align*}
\]

The Gramian plays an important role. In the sequel we write $X = L_0^2(\Omega; H)$ for the sake of simplicity. We need the notion of modular bases for X which was introduced in [8].

2.1. DEFINITION. A family $\{x_j\}$ of elements in X is said to be modular orthonormal if

\[
\begin{align*}
(1) \ [x_j, x_k] &\geq 0 \text{ for } j \neq k; \\
(2) \ [x_j, x_j]^2 = [x_j, x_j] \text{ and } \|x_j\|_2 = 1 \text{ for each } j.
\end{align*}
\]

A maximal modular orthonormal family is called a modular basis.

As was proved in [8, Theorem 4.5] we can obtain the Fourier expansion of elements in X w.r.t. any modular basis. More fully, the followings are equivalent for a modular orthonormal family $\{x_j\} \subset X$:

(a) $\{x_j\}$ is a modular basis for X;

(b) for each $x \in X$, $x = \sum_j [x, x_j] x_j$, where the series converges in the norm $\| \cdot \|_2$.

Note that $X = L_0^2(\Omega; H) = L_0^2(\Omega) \otimes H$, the tensor product of $L_0^2(\Omega)$ and H, where $L_0^2(\Omega) = \{ f \in L^2(\Omega); \int_\Omega f d\mu = 0 \}$. For an elementary tensor $f \otimes \phi$ the following identification is made:

\[(f \otimes \phi)(\cdot) = f(\cdot) \phi.\]

Hence, we simply denote by $f \phi$ instead of $f \otimes \phi$. If $\{f_j\}_{j \in I}$ and $\{\phi_\lambda\}_{\lambda \in \Lambda}$ are orthonormal bases for $L_0^2(\Omega)$ and H, respectively, then the family $\{f_j \phi_\lambda\}_{j \in I, \lambda \in \Lambda}$ forms an orthonormal basis for $L_0^2(\Omega) \otimes H = X$. Let us denote by $\langle \cdot, \cdot \rangle$ the inner product in $L_0^2(\Omega)$. A modular basis for X is obtained as follows:
2.2. **Lemma.** Let \(\{f_j\} \) be an orthonormal basis for \(L^2_0(\Omega) \) and \(\phi \in H \) be of norm one. Then the family \(\{f_j \phi\} \) forms a modular basis for \(X \).

Proof. Observe that

\[
[f_j \phi, f_k \phi] = \int_\Omega f_j(\omega) \phi \otimes f_k(\omega) \phi \, \mu(d\omega)
\]

\[
= \int_\Omega f_j(\omega) f_k(\omega) (\phi \otimes \bar{\phi}) \, \mu(d\omega) = \langle f_j, f_k \rangle \phi \otimes \bar{\phi}.
\]

Hence we have that \([f_j \phi, f_k \phi] = 0 \) for \(j \neq k \), \([f_j \phi, f_j \phi] = [f_j \phi, f_j \phi] = 1 \), and \(\| f_j \phi \|_2 = \| f_j \| \cdot \| \phi \| = 1 \). Consequently \(\{f_j \phi\} \) is modular orthonormal. To see that this is a modular basis we show that the condition (\(\beta \)) above holds. Take any \(x \in X \) and let \(\{\phi_{\lambda}\} \) be an orthonormal basis for \(H \). Since \(\{f_j \phi_{\lambda}\}_{j, \lambda} \) forms an orthonormal basis for \(X \), we have that

\[
x = \sum_{j, \lambda} \langle x, f_j \phi_{\lambda} \rangle f_j \phi_{\lambda},
\]

where the series converges in the norm \(\| \cdot \|_2 \). Since the nonzero terms in the above sum are at most countable, we can choose an at most countable subset \(\{\phi_{\lambda}^N\}_{N=1}^\infty \subset \{\phi_{\lambda}\} \) \((1 \leq N < \infty)\) such that

\[
x = \sum_{n=1}^N \sum_j \langle x, f_j \phi_{\lambda}^n \rangle f_j \phi_{\lambda} = \sum_j \sum_{n=1}^N \langle x, f_j \phi_{\lambda}^n \rangle f_j \phi_{\lambda}.
\]

Writing \(\phi_n = \phi_{\lambda}^n \) and putting \(g_n = \sum_j \langle x, f_j \phi_n \rangle f_j \in L^2_0(\Omega) \), we see that \(x = \sum_{n=1}^N g_n \phi_n \). For each \(j \) it holds that

\[
[x, f_j \phi] f_j \phi = \left[\sum_{n=1}^N g_n \phi_n, f_j \phi \right] f_j \phi = \sum_{n=1}^N \langle g_n, f_j \phi \rangle \phi_n \otimes \bar{\phi} = \sum_{n=1}^N \langle g_n, f_j \phi \rangle f_j \phi_n.
\]

Then we have that

\[
x = \sum_j \sum_{n=1}^N \langle x, f_j \phi_n \rangle f_j \phi_n = \sum_j \sum_{n=1}^N \left(\sum_{m=1}^N \langle g_m \phi_m, f_j \phi_n \rangle \right) f_j \phi_n
\]

\[
= \sum_j \sum_{m,n} \langle g_m, f_j \phi_n \rangle \phi_m \otimes \bar{\phi}_n = \sum_j \sum_{n=1}^N \langle g_n, f_j \phi_n \rangle f_j \phi_n
\]

\[
= \sum [x, f_j \phi] f_j \phi,
\]
from which the desired equality (β) is obtained. Therefore $\{f_j \phi\}$ is a modular basis for X.

A subset Y of X is called a submodule if it is a left $B(H)$-module and is closed w.r.t. $\| \cdot \|_2$. That is, Y is a closed subspace of X and $ax \in Y$ for every $a \in B(H)$ and $x \in Y$. In this case Y is itself a normal Hilbert $B(H)$-module. Denote by $\mathfrak{S}(Y)$ the submodule generated by a subset Y of X. $\mathfrak{S}(Y)$ is the closure of $\{ax + by; a, b \in B(H), x, y \in Y\}$.

2.3. Remark. (1) In view of [8, Theorem 4.2] for every submodule Y of X there is a unique closed subspace K of $L_0^2(\Omega)$ such that $Y = K \otimes H$.

(2) Let Y be a closed subspace of X and $\{f_j \phi_j; (j, \lambda) \in \mathfrak{S}\}$ be an orthonormal basis of it where $\{f_j\}$ and $\{\phi_j\}$ are orthonormal families in $L_0^2(\Omega)$ and H, respectively. Then the submodule $\mathfrak{S}(Y)$ generated by Y is obtained as follows: Put $J = \{j; (j, \lambda) \in \mathfrak{S}\}$ and let K be the closed subspace of $L_0^2(\Omega)$ spanned by $\{f_j\}_{j \in J}$. Then we have that $\mathfrak{S}(Y) = K \otimes H$.

Let \mathfrak{R} be the real line and \mathfrak{B} be its Borel σ-algebra. $\mathfrak{B} \times \mathfrak{B}$ denotes the algebra generated by the family $R(\mathfrak{B} \times \mathfrak{B}) = \{A \times B; A, B \in \mathfrak{B}\}$ of all rectangles. We consider X-valued measures on \mathfrak{B} and $T(H)$-valued bimeasures on $\mathfrak{B} \times \mathfrak{B}$. $ca(\mathfrak{B}; X)$ denotes the set of all X-valued bounded and countably additive (CA) measures on \mathfrak{B}. The variation of $\xi \in ca(\mathfrak{B}; X)$ is the function $|\xi|(\cdot)$ whose value on a set $A \in \mathfrak{B}$ is given by

$$|\xi|(A) = \sup \sum_{k=1}^{n} \|\xi(A_k)\|_2,$$

where the supremum is taken for all finite partitions $\{A_1, ..., A_n\} \subset \mathfrak{B}$ of A. The operator semivariation of ξ is the function $\|\xi\|_0(\cdot)$ whose value on a set $A \in \mathfrak{B}$ is given by

$$\|\xi\|_0(A) = \sup \left\| \sum_{k=1}^{n} a_k \xi(A_k) \right\|_2,$$

(2.1)

where the supremum is taken for all finite partitions $\{A_1, ..., A_n\} \subset \mathfrak{B}$ of A and for all finite subsets $\{a_1, ..., a_n\} \subset B(H)$ with $\|a_k\| \leq 1$, $1 \leq k \leq n$. The semivariation $\|\xi\|(A)$ ($A \in \mathfrak{B}$) is defined in (2.1) by replacing a_k with $\lambda_k \in \mathfrak{C}$ (the complex number field) such that $|\lambda_k| \leq 1$, $1 \leq k \leq n$. Clearly we have for each $A \in \mathfrak{B}$

$$\|\xi(A)\|_2 \leq \|\xi\|(A) \leq \|\xi\|_0(A) \leq |\xi|(A).$$

A measure $\xi \in ca(\mathfrak{B}; X)$ is said to be of bounded operator semivariation (of
Denote by $bca(R; X)$ the set of all elements in $ca(R; X)$ of BOS. For $\zeta \in ca(R; X)$ and $x \in X$ define $\zeta \circ x$ by

$$(\zeta \circ x)(A) = [\zeta(A), x], \quad A \in \mathcal{B}. \quad (2.2)$$

Then we see that $\zeta \circ x$ is a $T(H)$-valued bounded and CA (in the trace norm) measure on \mathcal{B}, in symbols $\zeta \circ x \in ca(R; T(H))$. Moreover the following equality holds (cf. [1, Proposition 5.2]): for $A \in \mathcal{B}$

$$\|\zeta\|_{0}(A) = \sup \{ |(\zeta \circ x)(A); x \in X, \|x\|_{2} \leq 1 \}, \quad (2.3)$$

where $|(\zeta \circ x)(\cdot)|$ is the variation of the $T(H)$-valued measure $\zeta \circ x$.

$M = M(R \times R; T(H))$ denotes the set of all $T(H)$-valued bimeasures on $\mathcal{B} \times \mathcal{B}$ satisfying the following conditions:

1. M is finitely additive on $\mathcal{B} \times \mathcal{B}$;
2. M is a $T(H)$-valued positive definite kernel on $R(\mathcal{B} \times \mathcal{B})$ in the sense that $\sum_{j,k} a_{j}M(A_{j}, A_{k})a_{k}^{*} \geq 0$ for all finite subsets $\{A_{1}, \ldots, A_{n}\} \subseteq \mathcal{B}$ and $\{a_{1}, \ldots, a_{n}\} \subseteq B(H)$, where we denote the value of M at $A \times B \in R(\mathcal{B} \times \mathcal{B})$ by $M(A, B)$ rather than $M(A \times B)$;
3. $M(A, \cdot), M(\cdot, A) \in ca(R; T(H))$ for each $A \in \mathcal{B}$.

The variation of $M \in M$ is the function $|M|(\cdot, \cdot)$ whose value on a set $A \times B \in \mathcal{B} \times \mathcal{B}$ is given by

$$|M|(A, B) = \sup \sum_{j=1}^{m} \sum_{k=1}^{n} \|M(A_{j}, B_{k})\|_{\tau},$$

where the supremum is taken for all finite measurable partitions $\{A_{1}, \ldots, A_{m}\}$ of A and $\{B_{1}, \ldots, B_{n}\}$ of B. The operator semivariation of M is the function $\|M\|_{0}(\cdot, \cdot)$ whose value on a set $A \times B \in R(\mathcal{B} \times \mathcal{B})$ is given by

$$\|M\|_{0}(A, B) = \sup \left\| \sum_{j=1}^{m} \sum_{k=1}^{n} a_{j}M(A_{j}, B_{k})b_{k}^{*} \right\|_{\tau},$$

where the supremum is taken for all finite measurable partitions $\{A_{1}, \ldots, A_{m}\}$ of A and $\{B_{1}, \ldots, B_{n}\}$ of B, and for all finite subsets $\{a_{1}, \ldots, a_{m}\}, \{b_{1}, \ldots, b_{n}\} \subseteq B(H)$ with $\|a_{j}\|, \|b_{k}\| \leq 1, 1 \leq j \leq m, 1 \leq k \leq n$. M_{e} and M_{b} denote the sets of all elements in M of bounded variation ($|M|(R, R) < \infty$) and of BOS ($\|M\|_{0}(R, R) < \infty$), respectively. Clearly we have $M_{e} \subseteq M_{b}$.

For $\zeta \in ca(R; X)$ define M_{ζ} by

$$M_{\zeta}(A, B) = [\zeta(A), \zeta(B)], \quad A, B \in \mathcal{B}.$$
Then we see that $M_\xi \in M$. Moreover, the following holds (cf. [1, Lemma 3.6]): for $A, B \in \mathfrak{B}$

$$\|M_\xi\|_0(A, B) \leq \|\xi\|_0(A) \cdot \|\xi\|_0(B);$$

$$\|M_\xi\|_0(A, A) = \|\xi\|_0(A)^2;$$

$$|M_\xi|(A, B) \leq |\xi|(A) \cdot |\xi|(B).$$

(2.4)

Next we consider integration of $B(H)$-valued functions w.r.t. X-valued measures and $T(H)$-valued bimeasures. When $\xi \in ca(R; X)$ is orthogonally scattered, i.e., $[\xi(A), \xi(B)] = 0$ for every disjoint pair $A, B \in \mathfrak{B}$, a beautiful theory was obtained by Mandrekar and Salehi [6]. When ξ is of BOS, the following consideration was made in [1]. A $B(H)$-valued simple function on R is a function of the form

$$\sum_{j=1}^{n} 1_{A_j} a_j, \quad a_j \in B(H), \ A_j \in \mathfrak{B}, \ 1 \leq j \leq n,$$

where 1_A denotes the characteristic function of $A \in \mathfrak{B}$. Denote by $L^0(R; B(H))$ the set of all $B(H)$-valued simple functions on R. The integral of $\phi = \sum 1_{A_j} a_j \in L^0(R; B(H))$ w.r.t. ξ over $A \in \mathfrak{B}$ is defined by

$$\int_A \phi d\xi = \sum_{j} a_j \xi(A \cap A_j).$$

For another $\Psi = \sum 1_{B_k} b_k \in L^0(R; B(H))$ the integral of (ϕ, Ψ) w.r.t. $M_\xi \in M_b$ (by (2.4)) over $A \times B \in \mathfrak{B} \times \mathfrak{B}$ is defined by

$$\int_{A \times B} \phi dM_\xi \Psi^* = \sum_{j,k} a_j M_\xi(A \cap A_j, B \cap B_k) b_k^*.$$

A set $A \in \mathfrak{B}$ is said to be ξ-null if $\|\xi\|_0(A) = 0$. The term ξ-almost everywhere (\(\xi\text{-a.e.}\)) refers to the complement of a ξ-null set. For $\phi \in L^0(R; B(H))$ define the ξ-essential sup norm by

$$\|\phi\|_{\infty} = \inf \{ \alpha > 0; \{s \in R; \|\phi(s)\| > \alpha \} \text{ is } \xi\text{-null}\}.$$

(2.6)

Then we see that for $\phi, \Psi \in L^0(R; B(H))$ and $A, B \in \mathfrak{B}$

$$\left\|\int_A \phi d\xi\right\|_2 \leq \|\phi\|_{\infty} \cdot \|\xi\|_0(A);$$

$$\left\|\int_{A \times B} \phi dM_\xi \Psi^*\right\|_1 \leq \|\phi\|_{\infty} \cdot \|\Psi\|_{\infty} \cdot \|M_\xi\|_0(A, B).$$

(2.7)

(2.8)
Denote by \(L^\infty(\mathbb{R}, \xi; B(H)) \) the set of all \(B(H) \)-valued functions on \(\mathbb{R} \) which are the \(\xi \)-a.e. uniform limits of sequences in \(L^0(\mathbb{R}; B(H)) \). That is, \(\Phi \in L^\infty(\mathbb{R}, \xi; B(H)) \) if and only if there is a sequence \(\{ \Phi_n \} \subseteq L^0(\mathbb{R}; B(H)) \) such that \(\| \Phi_n - \Phi \|_{\infty} \to 0 \) \((n \to \infty)\). With the norm \(\| \cdot \|_{\infty} \) defined in (2.6) \(L^\infty(\mathbb{R}, \xi; B(H)) \) becomes a Banach space. For \(\Phi, \Psi \in L^\infty(\mathbb{R}, \xi; B(H)) \) choose sequences \(\{ \Phi_n \}, \{ \Psi_n \} \subseteq L^0(\mathbb{R}; B(H)) \) such that \(\| \Phi_n - \Phi \|_{\infty}, \| \Psi_n - \Psi \|_{\infty} \to 0 \) \((n \to \infty)\). Then we define the integrals of \(\Phi \) w.r.t. \(\xi \) and of \((\Phi, \Psi) \) w.r.t. \(M_\xi \), respectively, by

\[
\int \Phi d\xi = \lim_{n \to \infty} \int \Phi_n d\xi;
\]

\[
\iint_{A \times B} \Phi dM_\xi \Psi^* = \lim_{n,m \to \infty} \iint_{A \times B} \Phi_n dM_\xi \Psi_m^*
\]

for \(A, B \in \mathfrak{B} \). These integrals are well-defined because of the inequalities (2.7) and (2.8). For more information we refer to [1, 3].

3. Results

Let \(X = L^2_0(\Omega; H) \), \(\mathbb{R} \), and \(\mathfrak{B} \) be as in Section 2. We consider \(X \)-valued processes over \(\mathbb{R} \).

3.1. Definition. (1) A mapping \(t \to x(t) \) from \(\mathbb{R} \) into \(X \) is called an \(X \)-valued process over \(\mathbb{R} \) or a Hilbert space valued second order stochastic process over \(\mathbb{R} \). We denote it by \(\{x(t)\} \) or \(\tilde{x} \).

(2) The covariance function \(\Gamma \) of an \(X \)-valued process \(\{x(t)\} \) is defined by \(\Gamma(s, t) = [x(s), x(t)] \), \(s, t \in \mathbb{R} \).

(3) An \(X \)-valued process \(\{x(t)\} \) is said to be continuous if the mapping \(t \to x(t) \) is continuous in the norm \(\| \cdot \|_2 \).

(4) An \(X \)-valued process is said to be weakly harmonizable if its covariance function \(\Gamma \) is of the form

\[
\Gamma(s, t) = \iint_{\mathbb{R}^2} e^{i(su - tv)} M(du, dv), \quad s, t \in \mathbb{R}
\]

for some bimeasure \(M \in \mathcal{M}_b \) of \(\mathcal{B} \).

(5) An \(X \)-valued process is said to be strongly harmonizable if its covariance function \(\Gamma \) is of the form (3.1) for some bimeasure \(M \in \mathcal{M}_e \) of bounded variation.

(6) The time domain \(\mathfrak{S}(\tilde{x}) \) of an \(X \)-valued process \(\tilde{x} = \{x(t)\} \) is defined as a submodule \(\mathfrak{S}(\tilde{x}) = \mathfrak{S} \{x(t); t \in \mathbb{R}\} \).
3.2. Remark [2]. An X-valued process \{\{x(t)\}\} is weakly harmonizable if and only if there is some measure $\xi \in \text{bca}(\mathbb{R}; X)$ such that

$$x(t) = \int_{\mathbb{R}} e^{iut}\xi(du), \quad t \in \mathbb{R}$$

since every measure in $\text{ca}(\mathbb{R}; X)$ is necessarily regular. In this case the covariance function Γ is given by (3.1) with $M = M_\xi$. Every X-valued weakly harmonizable process is (uniformly) continuous.

We now give a Gramian orthogonal series representation for an X-valued continuous process over \mathbb{R}.

3.3 Proposition. Let $\hat{x} = \{x(t)\}$ be an X-valued continuous process over \mathbb{R}. Then there exist sequences \{\{x_n\}\}_{n=1}^\infty \subset X$ and \{\{a_n(t)\}\}_{n=1}^\infty$ of $T(H)$-valued continuous (w.r.t. the trace norm) functions on \mathbb{R} such that

$$x(t) = \sum_{n=1}^\infty a_n(t)x_n, \quad t \in \mathbb{R},$$

where the series converges in the norm $\| \cdot \|_2$ for each $t \in \mathbb{R}$, $[x_n, x_m] = 0$ for $n \neq m$ and $\|x_n\|_2 = 1$ for $n \geq 1$.

Proof. Let Y be the closed subspace of X spanned by $\{x(t); t \in \mathbb{R}\}$. Clearly we have that the time domain $\mathcal{S}(\hat{x})$ equals to the submodule $\mathcal{E}(Y)$. Since \mathbb{R} is separable and \hat{x} is continuous, Y is separable. It follows from Remark 2.3(2) that $\mathcal{S}(\hat{x}) = K \otimes H$ for some closed subspace K of $L_2(\Omega)$ and that K is separable. Hence, by Lemma 2.2, there is a countable set $\{x_n\}_{n=1}^\infty \subset \mathcal{S}(\hat{x})$ forming a modular basis for $\mathcal{S}(\hat{x})$. Consequently we have that

$$x(t) = \sum_{n=1}^\infty \langle x(t), x_n \rangle x_n, \quad t \in \mathbb{R}.$$

Putting $a_n(t) = \langle x(t), x_n \rangle$, $n \geq 1$, the desired results follow.

Our main result is the following.

3.4. Theorem. Let $\{x(t)\}$ be an X-valued weakly harmonizable process over \mathbb{R}. Then there exists a sequence $\{x_n(t)\}$, $n \geq 1$, of X-valued strongly harmonizable processes over \mathbb{R} such that $x_n(t) \to x(t)$ ($n \to \infty$) for all $t \in \mathbb{R}$ in the norm $\| \cdot \|_2$. The convergence is uniform on each compact subset of \mathbb{R}.

Proof. Since $\hat{x} = \{x(t)\}$ is continuous (cf. Remark 3.2), it follows from
Proposition 3.3 that there exists a modular basis \(\{ x_n \}_{n=1}^{\infty} \) for the domain \(\mathcal{S}(\mathcal{x}) \) such that

\[
x(t) = \sum_{n=1}^{\infty} \left[x(t), x_n \right] x_n, \quad t \in \mathbb{R}.
\]

On the other hand, again by Remark 3.2, there is some measure \(\xi \in bca(\mathbb{R}; X) \) such that

\[
x(t) = \int_{\mathbb{R}} e^{iu \xi}(du), \quad t \in \mathbb{R}.
\]

Define for each \(n \geq 1 \)

\[
x_n(t) = \sum_{k=1}^{n} \left[x(t), x_k \right] x_k, \quad t \in \mathbb{R};
\]

\[
\xi_n(A) = \sum_{k=1}^{n} \left[\xi(A), x_k \right] x_k, \quad A \in \mathcal{B}.
\]

Then we see that \(\xi_n \in ca(\mathbb{R}; X) \) and that for \(t \in \mathbb{R} \)

\[
x_n(t) = \sum_{k=1}^{n} \left[\int_{\mathbb{R}} e^{iu \xi}(du), x_k \right] x_k
\]

\[
= \int_{\mathbb{R}} e^{iu \xi} \sum_{k=1}^{n} \left[\xi(du), x_k \right] x_k = \int_{\mathbb{R}} e^{iu \xi_n(du)}.
\]

To show that, for each \(n \geq 1 \), \(\{ x_n(t) \} \) is strongly harmonizable it is sufficient to prove that \(\xi_n \) is of bounded variation because of the inequality (2.5). Let \(\{ A_1, \ldots, A_m \} \subset \mathcal{B} \) be a finite partition of \(\mathbb{R} \). Then we have

\[
\sum_{j=1}^{m} \left\| \xi_n(A_j) \right\|_2 = \sum_{j=1}^{m} \left\| \sum_{k=1}^{n} \left[\xi(A_j), x_k \right] x_k \right\|_2
\]

\[
\leq \sum_{j=1}^{m} \sum_{k=1}^{n} \left\| \left[\xi(A_j), x_k \right] x_k \right\|_2
\]

\[
\leq \sum_{k=1}^{n} \sum_{j=1}^{m} \| \xi \circ x_k(A_j) \|_\infty \quad \text{(see (2.2))}
\]

\[
\leq \sum_{k=1}^{n} | \xi \circ x_k |(\mathbb{R})
\]

\[
\leq n \cdot \| \xi \|_\alpha(\mathbb{R}) \quad \text{(by (2.3))}.
\]
HARMONIZABLE PROCESSES

Hence $|\xi_n|_p(R) \leq n \cdot \|\xi\|_P(R) < \infty$ for each $n \geq 1$. It is clear that $x_n(t) \to x(t)$ ($n \to \infty$) in the norm $\|\cdot\|_2$ for each $t \in \mathbb{R}$. Uniform convergence on each compact subset of \mathbb{R} follows from the (metric) approximation property of the Hilbert space $\mathcal{H}(\mathbb{R})$.

ACKNOWLEDGMENTS

The author would like to express his hearty thanks to Professor H. Umegaki for his kind advice and comments. He is also grateful to the referee for his careful reading and helpful suggestions.

REFERENCES