
NORTH- HOLLAND

STRICT AND NONSTRICT INDEPENDENT
AND-PARALLELISM IN LOGIC PROGRAMS:
CORRECTNESS, EFFICIENCY, AND
COMPILE-TIME CONDITIONS

MANUEL V. HERMENEGILDO AND FRANCESCA ROSS1
_

D This paper presents some fundamental properties of independent and-
parallelism and extends its applicability by enlarging the class of goals
eligible for parallel execution. A simple model of (independent) and-paral-
lel execution is proposed and issues of correctness and efficiency are
discussed in the light of this model. Two conditions, “strict” and “non-
strict” independence, are defined and then proved sufficient to ensure
correctness and efficiency of parallel execution: If goals which meet these
conditions are executed in parallel, the solutions obtained are the same as
those produced by standard sequential execution. Also, in the absence of
failure, the parallel proof procedure does not generate any additional work
(with respect to standard SLD resolution), while the actual execution time
is reduced. Finally, in case of failure of any of the goals, no slowdown will
occur. For strict independence, the results are shown to hold indepen-
dently of whether the parallel goals execute in the same environment or in
separate environments. In addition, a formal basis is given for the auto-
matic compile-time generation of independent and-parallelism: Compile-
time conditions to efficiently check goal independence at run time are
proposed and proved sufficient. Also, rules are given for constructing
simpler conditions if information regarding the binding context of the
goals to be executed in parallel is available to the compiler. a

1. INTRODUCTION

There has been significant interest (e.g., see [11,22,26,8,3,5,21,27,37,381 and
their references) in parallel execution models for logic programs which exploit

Address correspondence to Manuel Hermenegildo, Facultad de Informatica, Universidad Politecnica
de Madrid (UPM), 28660-Boadilla del Monte, Madrid, Spain. E-mail herme@fi.upm.es. or Francesca
Rossi, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy, E-mail rossi@di.unipi.it.

Received April 1990; revised August 1993; accepted November 1993.

THE JOURNAL OF LOGIC PROGRAMMING
0 Elsevier Science Inc., 1995
65.5 Avenue of the Americas, New York, NY 10010

0743.1066/95/$9.50
SSDI 0743. IO66(93)OOO07-F

2 M. V. HERMENEGILDO AND F. ROSS1

independent and-parallelism. This type of parallelism appears to have (in common
with or-parallelism; see [34] and its references for several models exploiting such
parallelism) the very desirable characteristics of offering performance improve-
ments through the use of parallelism, while at the same time preserving the
conventional semantics of logic programs. However, while the correctness and
potential for performance improvements of or-parallelism follows directly from the
independence of the different proofs involved, results for (independent) and-paral-
lelism are less obvious and have so far not been formally shown: There has been a
need for a formal definition of goal independence and of the parallel proof
procedure to be used for the execution of such goals. Also, results regarding the
correctness and ejj‘kiency of such procedure have been missing. This paper attempts
to fill such gaps. By correctness, we refer to a combined notion of soundness and
completeness of the parallel execution with respect to the standard sequential
execution, i.e., to the preservation of the answer set. By efficiency, we refer to a
property of the parallel execution model that determines that some performance
advantage with respect to the sequential model is ensured. The importance of
determining the correctness of any execution model is obvious. It is our view that
efficiency results are equally important for a parallel execution model, since the
fundamental objective of such a model is to reduce execution time.

Parallelism is herein understood to refer to the simultaneous execution of a
number of sequences of resolutions by different computing agents. Exploiting
parallelism then ideally means taking a computation, splitting it into “independent”
threads as determined by some notion of dependency (i.e., building a dependency
graph), and assigning these threads to different computing agents (both the
partitioning and the agent assignment can be performed statically and/or dynami-
cally). The need to introduce sequentialization of certain parts as determined by
some criterion of dependency arises in order to preserve the correctness with
respect to the sequential execution and also to ensure some notion of efficiency. In
this paper we will relate the traditional concept of independence used in the
aforementioned work on independent and-parallelism, which we will now call
“strict” goal independence, to this objective, showing in which cases this depen-
dency rule is sufficient to preserve the amount of work done by the sequential
execution. This preservation trivially guarantees speedup if scheduling and commu-
nication overheads are ignored since simultaneous execution of the elements of a
partition of a fixed amount of work is clearly guaranteed to result in a smaller total
execution time than executing it sequentially.

As we will see, and due to the inherent nondeterminism of logic programs,
guaranteeing strict preservation of the amount of sequential work during parallel
execution can be difficult in practice and in any case greatly limits parallelism. In
fact, strict preservation of the amount of work is not really required in practice:
Intuitively it is sufficient to guarantee that in no case the parallel execution results
in a longer execution time than that expected by the programmer with the
sequential execution in mind. We show that this fundamental property, which we
will call the “no slowdown” property, always holds for strictly independent goals,
independently of whether they have solutions or not. Furthermore, we go beyond
the traditional concept of strict independence and propose the more relaxed notion
of “nonstrict” independence, showing that the correctness and efficiency (i.e., no
slowdown) results also hold for this type of independence. Intuitively, this new
concept considers goals independent not just if they do not share variables, but also

INDEPENDENT AND-PARALLELISM 3

if they do not compete for the bindings of any shared variables that might exist.
This allows the parallel execution of a much larger class of goals and significantly
extends the applicability of independent and-parallelism implementation technol-

ogy.
Finally, while goal independence can obviously be checked at run time, this

checking can involve significant overhead. If an objective of the parallel system is
the automatic generation of parallelism (and/or the verification of user annota-
tions for correctness), it is important to be able, at compile time, to either identify
unconditional goal independence or construct correct and sufficient conditions for
efficient detection of such independence at run time. This has to be done under
realistic assumptions about the binding information available to (or obtainable by)
the compiler. This paper proposes efficient algorithms for compile-time generation
of run-time checkable independence conditions for both strict (and, to a lesser
extent) nonstrict independence and proves them sufficient. It also shows how local
and global binding information can be used to minimize such conditions.

These results are of direct practical application to areas such as the automatic
compile-time generation of &-Prolog’s condition graph expressions (CGEs) for
controlling independent/restricted and-parallelism [18, 1 I] and reasoning about
the correctness and efficiency of the bit-vector method of Lin [27] and Kumar, the
SDDA approach of Chang et al. [S], the conditional dependency graphs and EGE
generation rules of Jacobs and Langen [231, the stability rules of AKL and the
underlying extended Andorra model [17], and other approaches based on indepen-
dent and-parallelism, as shown in Section 3.7.

The rest of the paper proceeds as follows: In Section 2, we present a simple
framework for the parallel independent execution of goals and reason about its
correctness and efficiency, providing the intuitions and basic results on which the
notions of independence to be subsequently defined are based. In Section 3, strict
goal independence is defined, and the correctness and efficiency of running in
parallel strictly independent goals is shown. In Sections 3.3 and 3.5, two sets of
efficient conditions for checking strict goal independence are proposed and proved
correct, corresponding to the cases in which the goals to be run in parallel are
considered in isolation or, respectively, as part of a program. Finally, nonstrict
independence is defined in Section 4 as a relaxation of the concept of strict
independence. The corresponding properties are then proved and independence
conditions are also given. The special and important cases of clauses which have
existential variables and negative goals are treated, respectively, in Sections 3.6 and
4.4. Finally, in Section 6 we present our conclusions and suggest how the ideas and
results of this paper can be extended to other more general frameworks (like CLP
[25]), and how they can also be applied at a finer granularity level to achieve more
parallelism.

2. A SIMPLE FRAMEWORK FOR INDEPENDENT PARALLEL RESOLUTION

We introduce an execution framework, which is similar to the usual sequential
framework in logic programming (given by SLD resolution [28]), but where some of
the goals can be independently run in parallel. The intuitive idea behind this
parallel execution framework can be described as follows: Partition the given
resolvent so as to obtain some new parallel (sub)resolvents, each one associated

4 M. V. HERMENEGILDO AND F. ROSS1

with one of the independent goals, and a remaining part, execute the parallel
resolvents in independent environments, and then embed the information gathered
from such executions into the remaining part. Although such a framework is
certainly not the most general one possible for describing and-parallel execution of
goals, since only independent executions of the whole proof trees associated with
the given goals are handled, it is nevertheless sufficient for our purposes. Because
of practical reasons, we will also consider, however, a slight variation of this
framework where a similar partitioning into subresolvents is performed, but the
execution of the subresolvents occurs in a shared binding environment. We will
show that in our framework these two situations are, in fact, equivalent. It is
certainly interesting and useful to devise more general execution frameworks which
may allow parallel executions to affect each other and more flexible synchroniza-
tion of goals [35]. In Section 6 we will argue that, in fact, it is possible to transfer
our results to many such frameworks by simply applying the ideas that we will
present at a different level of granularity.

Two main changes to the sequential framework are required in order to obtain
the parallel framework outlined above:

?? The usual sequential SLD-resolution proof procedure at each step selects
only one goal in the current resolvent. Obviously, if we want to run some of
the goals in this resolvent in parallel, we have to allow the selection of more
than one goal.

?? In the sequential framework the result of the execution of one of the goals is
made “visible” to the other goals by the usual notion of composition of
substitutions. As we will show, such a notion is not always sufficient to
express the combination of the results of the independent parallel execution
of two or more goals. Thus we need to treat the case of parallel composition
of substitutions specially.

Let us now describe more precisely the sequential and the parallel frameworks.
The notation we will use throughout the paper follows that of Lloyd [281 and Apt
[1,2]. Moreover, in the following we consider only idempotent substitutions.

Assume that at some point of the execution, G = (gl,. .., g,)0 is the current
resolvent. The sequential SLD-resolution proof procedure with left-to-right selec-
tion rule would:

?? execute g,0 obtaining the answer substitution 0, (the corresponding global
substitution being 08,),

?? execute g, 80,, obtaining 8, (respectively, 80, e,),

?? execute g, 88, e2, obtaining e3 (08, e2 0,>,

and so on until the execution of all the goals in G. Note that “executing g,8” is
formally understood as referring to the resolution of g, and its descendants in G
until they are all resolved and g, appears as the leftmost goal in G. Alternatively
and equivalently, and for convenience when comparing to the parallel framework,
we will think of “executing g, 13” as if executing a resolvent containing only g, with
the substitution 0 applied to it. Then 0, represents the composition of all the most
general unifiers (m.g.u.1 appearing in the resolution of g, 0 and its descendants. In
any case, note that 80, represents the same substitution as would be obtained in
the traditional framework, and that, therefore, both are equivalent.

INDEPENDENT AND-PARALLELISM 5

In this framework the composition of substitutions is formally defined as follows
(see [2]): Consider two substitutions 0 and 7. Then, for any term t, @q(t) = qI(H(t)).

If, in contrast, we want to run some of the goals in parallel, say g, and g, (the
extension to more than two goals is straightforward), one possible execution
scheme for G could be:

?? partition G into the resolvents

G, = (g,)H,

G2 = (g,P,

G,=(g ,,...,gi~,,gr+,‘...‘g,~,,g,~,,...’gn))

?? execute G, and G, in parallel obtaining the answer substitutions 8, and H,,
respectively,

?? apply the “parallel composition” of 0, 8,, and HZ, obtaining f9’,

?? execute G,B’,

where we also assume that the new variables introduced during the renaming steps
in the parallel execution of G, and G, belong to disjoint sets.

With this parallel framework in mind, we can restate our objective more
precisely than in Section 1: We strive to run in parallel as many goals as possible
within the framework presented while maintaining correctness and efficiency with
respect to the sequential execution. In other words, we assume that the answers
obtained by the sequential execution (with a left-to-right selection rule) correspond
to the intended model of the program, and that we would like to preserve such
answers in the parallel execution while improving on the time taken to obtain them
by the sequential execution, i.e., we would like to obtain the answers possibly in a
shorter time, but certainly not in longer time, thus ensuring that the “no slowdown”
property introduced in Section 1 holds. (Throughout the paper we use the concept
of “time” to refer to the number of steps in an execution.)

2.1. Correct Parallel Composition
One issue that must be taken into account is how the abstract notion of “parallel
composition” is defined. In fact, if we use the above described standard (sequen-
tial) composition of substitutions, we may obtain incorrect results, as shown by the
following example. Consider the resolvent

:-p(x), q(x).

and the following definition of p and q:

q(h).

In this case, the sequential execution framework first executes p(x), returning
{x/a} and the new resolvent :- q(x){x/a}, i.e., :- q(a), whose execution fails, thus
making the whole given resolvent fail. On the other hand, the parallel execution
framework executes in parallel p(x) and q(x), returning {x/a) and {x/b), respec-
tively. Note now that the composition of {n/a} and (x/b) is, according to the
definition in [28, 1, 21, the substitution {x/a}. Thus we obtain a different answer. In

6 M. V. HERMENEGILDO AND F. ROSS1

this simple example, it easy to realize that the problem is due to the sharing of the
variable x, which both the p and q goals try to instantiate. However, incorrect
answers can be obtained even when there is no conflicting binding for the shared
variables. Let us consider the following example, where we have the resolvent

:-p(x, y), q(y).

and the following definitions of p and q:

pcz, 2).

q(a).

If we run p(x, y> and q(y) sequentially, we first execute p(x, y), returning
$, = {x/z, y/z), and then we execute q(y$, i.e., q(z), returning 6$ = {z/a). Thus,
in the end we obtain the substitution 13 = 0,, 6’q = {x/a, y/a, z/a). If we now execute
p(x, y) and q(y) in parallel, we obtain I& from the execution of p(x, y) and
0; = {y/a} from the execution of q(y), thus ending with their composition $0; =
{x/z, y/z} or 0; eP = {y/a, x/z} as the final substitution, which is obviously differ-
ent from the 0 obtained from the sequential execution, and thus again we have an
incorrect result.

One way to avoid the possibility of such incorrect results is to adapt the
definition of composition of substitutions to the cases when we have to; compose
the results of some parallel executions. More precisely, the definition of’ “parallel
composition” could be as follows: Consider again two substitutions 0 and q, and
their representations as sets of equations, E(B) and E(r)). Then, given any term t,
their parallel composition is 0 0 q(t) = m&E(B) u E(q))(t).

In the first of the examples above, this new definition would fail while computing
the composition of {x/a} and {x/b), because there is no m.g.u. for x = a and x = b.
Thus the results of the sequential and the parallel execution would be the same.

In the second example, the composition of {x/z, y/z} and {y/a} would be
computed, according to the new definition, to be mgu((x/z, y/z} u {y/a}) =
{x/a, y/a, t/a). Thus, again the answer substitutions of the sequential and the
parallel execution coincide.

2.2. A Parallel Framework Using Standard Composition
It is interesting to note that if f3 and 7 have no variables in common, then
mg@(B) U E(q))(t) = 77(0(t)), i.e., (0 0 q)(t). In other words, parallel composition
coincides with sequential composition when the goals to be run in parallel do not
share any variable. In fact, if two goals share no variables, then also their answer
substitutions share no variables. This observation is relevant, since the adoption of
a new definition of composition would require a revision of well known results in
logic programming, which rely on the standard definition. Since this is beyond the
scope of this paper, we will instead adopt a different but equivalent approach
herein: We will transform any set of goals to be executed in parallel into one where
no variables are shared, in such a way that soundness (with respect to the given
resolvent) is preserved, generality is not sacrificed, and the usual definition of
composition, with all the well-known results which follow from it, can be used.

The transformation that we consider involves eliminating any shared variables in
goals which are to be executed in parallel by renaming all their occurrences (so

INIILIPENI~ENT AND-PARALLELISM I

that no two occurrences in different goals have the same name) and adding some
unification goals to reestablish the lost links. More precisely:

Definition I (Renaming transformation). A renaming transformation, applied to a
sequence of goals G = g,, . . . , g,,, and a substitution 8, is a rewriting of (; into
the sequence G’ = g’,, . . . , g:,, Ii, defined as follows. Let occ(x, g) be the set of all
occurrences of variable x in goal g. Let x denote any variable shared by two or
more g, H and let g,8 denote the leftmost goal containing that X. Each s: is a
renaming of g,8 such that for every X, all the occurrences of x arc renamed
except those contained in g,, N and the renaming is performed in such a way
that, for every g:, all the occurrences of x in occ(x, g, 0) have the same name
and, given ,g: and ,g;, the occurrences of x in occ(x, g,B) have a name different
from the name of those in 04x, g,8). R is the sequence of goals formed by all
goals of the form x =x’ for every new variable X’ introduced in the renaming
process of X.

Example 1. Consider the collection of goals (v(x, z, x1, s(x, W, z), p(x, y). y(y)) in a
resolvent (we consider 0 already applied to the goals). According to the definition
of the renaming transformation. we will write this new collection of goals as

Note that in the case of only two given goals, every shared variable introduces
one new variable, while in the general case it can introduce as many new variables
as the number of goals in which it occurs, minus 1.

Goals of the form x =x’ above are called back-binding goals, and arc directly
related to the back-unification goals defined in [26] and the closed environment
concept of [8]. Note that the new resolvent is logically equivalent to the given one
since the unification goals simply make some bindings explicit.

Let us consider again the two examples above. In the first one, after the
transformation we would have

:-p(x), 4(x’), x =x’.

p(a).

q(h).

Thus the parallel execution of p(x) and q(x’) produces {x/u} and {x’/h}, whose
composition is (usual definition > (x/a, x’/b}. After that, we are left with the
resolvent :- (x = x’>{x/a, x’/b}, i.e., :- CL = b, which fails, as in the sequential
execution.

For the other example, we have

:- pcx, Y>> 4(Y')> Y = Y'.

p(2, z>.
q(u).

Here the parallel execution of p(x, y) and q(y’) produces {x/z, y/z} and {y’/u},
whose composition is (usual definition) {x/z, y/z, ~‘/a). After that, we execute the
resolvent :- (y =y’>{x/z, y/z, ~‘/a}, i.e., :-(z = a>, which returns {z/a}. Thus, the

8 M. V. HERMENEGILDO AND F. ROSS1

final answer substitution is the composition of (x/z, y/z, ~‘/a} and {z/a}, i.e.,
b/a,y/a, Y’/ a, z a , w K / 1 h’ h coincides with the answer substitution obtained by the
sequential execution (if projected on the same variables).

Thus, for the rest of this paper, we will use the above described renaming
transformation whenever we want to execute in parallel goals which share vari-
ables. Therefore, the parallel execution framework proposed at the beginning of
this section is now transformed as follows:

Given a resolvent G = (gi, . . . , g,>O and the knowledge that giB and gjO are to
be executed in parallel, the following steps are to be performed:

?? Apply the renaming transformation to g,@, gjO,

?? Assuming that the result of the renaming transformation above is gj, gi, R,
construct the following resolvents:

G, = (g:),

G, = (g;>,

G,=R,

?? Execute G, and G, in parallel.

?? Assuming 8, and 13, are the answer substitutions obtained in the previous
step, execute G, 13~ 0,.

?? Assuming 8, is the answer substitution obtained in the previous step,
execute G4 138~19~ 6$.

In the above procedure, it is assumed that the new variables introduced during the
renaming steps in the parallel execution of G, and G, belong to disjoint sets. Also,
note that the parallel framework can be applied recursively within the execution of
G, and G, in order to allow nested parallelism.

It is important to say at this point that, while the framework just proposed can
handle the parallel execution of nonconsecutive goals, in this paper we will always
consider collections of consecutive goals. The reason for this will become obvious
in the following sections. However, it may be informally justified by saying that the
choice of the collection of goals to run in parallel is usually made so as to meet
certain requirements (like correctness and efficiency, as we will see later) and that
it is much easier to check such requirements if the goals are consecutive.

As a final observation, note that in the parallel execution framework, G, and G,
are assumed to execute in different environments and 8, and 8, remain separate.
From a practical point of view this quite accurately reflects the actual situation in
distributed implementations of independent and-parallelism 181. However, in mod-
els designed for shared addressing space machines the goals executing in parallel
generally share a single binding environment (e.g., [21,18,27]). Note, however, that
after the renaming transformation, no variables are ever shared among the
resolvents being executed in parallel. Thus, bindings performed during the execu-
tion of one of these resolvents cannot be “seen” by the other and vice versa.

INDEPENDENT AND-PARALLELISM 9

Therefore, in practice, the latter situation is essentially identical to that of separate
environments and both types of implementation can be seen as equivalent when
implementing the renaming transformation framework described in this section. In
fact, although introducing the shared variable renaming transformation has been
justified from the point of view of allowing the use of the standard composition of
substitutions, the isolation of environments resulting from such renaming transfor-
mation is of practical importance and an additional powerful reason to perform the
transformation, as will be shown later.

2.3. Failure Handling

An important issue which remains to be discussed is how failure is handled in the
parallel framework. Note that in the sequential framework (with depth-first search
rule) a failure means simply returning to the last point where a choice was made
and taking an alternative branch of the proof tree. In the parallel framework, this
still holds within the execution of each of the resolvents being considered. A
special case occurs, however, when no answer can be found for one of the
resolvents being executed in parallel (G, or GZ). The framework assumes that at
such a point all the computation associated with the other resolvent (respectively,
G, or G,) is interrupted and control returns to the last choice point before the
parallel execution of G, and G?. If it is the execution of G, or G, that has no
solutions, then the standard backtracking algorithm is used, with the choice points
of Gz being considered in reverse order and before those of G,, as in the
sequential execution. However, when returning to a choice point in G,, two
alternatives are possible [22]. In the first alternative, referred to as point-backtrack-
ing, the next solution for G, is computed and then, after it is found, C, is
restarted. In the second alternative, referred to as streak-backtracking, execution
of Gz is (relstarted in parallel with the computation of the next solution for G,.
This allows more parallelism, but also has a greater potential for performing
unnecessary work. In the following text we will assume point-backtracking.

It should be noted that, in the framework proposed, if there is more than one
successful branch in the search tree of G,, G, is recomputed for each such branch.
as in the sequential model [22]. A possible alternative to this failure rule implies
gathering all possible answers for G, and all possible answers for G1 when running
them in parallel, thus computing each such answer only once [26, 161. Failure
behavior (i.e., if one of the two goals has no solutions) would imply interrupting the
parallel computation of the other goal and returning to the first choice point
before the parallel conjunction. Both of these approaches have their merits and
drawbacks. The former allows easier implementation and requires less memory,
since only one binding environment needs to be kept at each point in time. The
latter sometimes allows saving computation. In practice, a nonrecomputing behav-
ior can be implemented in a system which uses recomputation through the use of
“all solutions” predicates. Throughout the paper we will generally assume the
framework as proposed in this section, i.e., using recomputation, because it
represents the worst case regarding generation of additional work and thus the
results obtained bound those applicable to the “nonrecomputing” version of the
framework. However, we will also present more specific results for both models in

some cases where the differences are of special interest.

10 M. V. HERMENEGILDO AND F. ROSS1

2.4. Correctness Issues
As mentioned before, by correctness we refer herein to a combined notion of
soundness and completeness of the parallel execution with respect to the standard
sequential execution, i.e., to the preservation of the answer set. We recall that if
the goals to be run in parallel share variables, then they will be renamed to
eliminate the sharing before their parallel execution. Thus the correctness compar-
ison should be between that of the sequential execution of the goals and that of the
parallel execution of their renamed versions, plus the execution of the back-bind-
ing goals.

If the goals that are executed in parallel are “pure” and they do not fail, then
the parallel execution framework described at the end of the previous section is
obviously sound with respect to the sequential one, due to the equivalence of the
resolvent after the renaming transformation, and to the use of the standard
composition of substitutions. If failure occurs, it is also obvious that soundness is
preserved: Within each resolvent, execution proceeds in the same way as in the
sequential model (if nested parallelism occurs, then the algorithm is applied
recursively and its correctness also follows by induction). In the special case in
which no answer can be found for G,, execution is also identical to that of the
sequential framework, except for discarding G,. This is clearly sound since G,
would not be executed at all in the sequential framework. If no answer can be
found for G,, then, since due to the renaming transformation it has no variables in
common with G,, it is clear that no solution would be found for G2 in the
sequential execution either and independently of G,. In fact, given that the goal in
G, in the sequential execution could only have been more instantiated and since
the goal in G, is pure, the sequential execution would also have failed. Thus, it is
correct to discard G, and backtrack to the previous choice point before G, and
G,. Thus, the execution model proposed is sound for pure goals.

On the other hand, completeness (again with respect to the sequential frame-
work) is not preserved. In fact, the transformation may, in general, turn a finite
behavior into an infinite behavior. Consider, for example,

:-p(x), q(x).

p(a).

q(b) :- q(b).

q(a).

In this case, the sequential execution terminates in finite time with answer
substitution {x/a}. The proposed renaming transformation of the resolvent would
result in

:-p(x), q(d), x =x’.

The parallel execution loops infinitely. Thus, it is clear that only certain classes of
goals can be parallelized while preserving completeness and that some sufficient
conditions will have to be found in order to identify such goals. To this end, it is
important to note that the leftmost goal [i.e., p(x)] binds the shared variable x in
the sequential execution and, therefore, prunes the search space of the rightmost
goal, and that the rewriting prevents this pruning from happening. In addition, the
rightmost goal also binds the shared variable, possibly to a different value.

INDEPENDENT AND-PARALLELISM 11

Furthermore, programs in practice often contain extralogical predicates, and
this causes additional problems, so that not only completeness but even soundness
may be affected. Two extralogical predicates of interest are IW/~ and !(cut).
Consider the example

:-p(x), 4(x, y>.

p(Lz).

q(x, ,v) :- Par(x), !, y = a.

q(x, y) :- y = b.

Again, the proposed renaming transformation of the resolvent would result in

:-p(x), q(x’, y), x =x’

and the parallel execution would succeed with {x/a, y/u}, while the sequential
execution would succeed with (x/a, y/b). Thus, it is clear that only certain classes
of impure goals can be parallelized while preserving soundness, and further
conditions will have to be found in order to identify such goals.

Finally, another class of goals whose parallel execution can create differences in
observed behavior with respect to the sequential execution are those containing
side effects such as, for example, input/output predicates. For simplicity, and since
this subject has been treated at length elsewhere [13, 30, 6) and the solutions are
orthogonal and compatible with those presented herein, we will consider it outside
the scope of this paper. Alternatively, the preservation of side effect behavior in
parallel execution could also be considered as an additional constraint on the class
goals which can be executed in parallel, which would yield different parallelization
conditions from those that will be proposed herein.

2.5. Efficiency Issues

Preserving correctness is not sufficient in general, since we will be interested also
in the issue of eficiency of the parallel execution. As mentioned in the Introduc-
tion, efficiency can be understood at two levels: one is preservation of the amount
of work, which ensures speedup (modulo scheduling and communication over-
heads); the other, more lax, requirement is simply to ensure that the “no slow-
down” property holds, i.e., that parallel execution time is guaranteed to be shorter
than or equal to the sequential execution time. Clearly, if the parallel execution
requires more time than the sequential execution. then the very aim of parallel
computation would be defeated.

Again we recall that if the goals to be run in parallel share variables. then they
will be renamed to eliminate such sharing before their parallel execution. Thus the
efficiency comparison should be between that of the sequential execution of the
goals and that of the parallel execution of their renamed versions, plus the
execution of the back-binding goals. In fact, the execution of the back-binding
goals themselves generally represents a small amount of work and arguably can be
ignored at the granularity level of our comparisons: It can be considered one step
at most since any sequence of back-bindings x, =x’,;.., x, =xk can be encoded in
a single unification t(x,;.., xn> = t(x;;.., xi,>, where t is any functor. However,
other effects related to the renaming transformation and the back-binding goals

12 M. V. HERMENEGILDO AND F. ROSSI

have to be taken into account: Sometimes the parallel execution of any set of
(consecutive) goals which share variables (before the renaming transformation)
could, although being correct, result in an increase of the work involved and/or of
the execution time quite unrelated to the execution of the back-binding goals
themselves.

Consider the example

:-p(x), q(x).

p(a).

q(b) :-proc.

where proc is very costly to execute.
The renamed resolvent is

:-p(x), q(x’), x = x’.

Both the sequential and the parallel executions fail. However, their efficiency is
quite different. The sequential execution of p(x),q(x) executes p(x), returning
{x/a), and then fails in trying to match q(x>(x/a}, i.e., q(a), to any rule head. It
thus never goes into the execution of proc. In contrast, the parallel execution
executes in parallel p(x) and q(x’), returning {x/a} and {x’/b} (but only after
executing proc too), and then fails in the execution of the goal x =~‘{x/a}{x’/b},
i.e., a = b. Thus the sequential execution is much more efficient and, if the
execution time of proc is large, the parallel execution could take much longer than
the sequential one.

The cause of the difference in efficiency in this example, and also in general, is
that the execution of p(x) affects the execution of q(x) in the sequential frame-
work, thus restricting the search space of q(x). As mentioned before, in our
parallel framework, parallel executions will not affect each other and thus the
search space of q(x) is bigger. It could be argued that if a parallel goal is allowed
to affect another by running both in the same environment (i.e., sharing the
bindings being performed), this problem is eliminated. However, apart from the
otherwise solvable complications regarding the definition of parallel composition of
substitutions, this results in other problems, Consider the example

:-p(x), q(x).

p(u) :-fail.

p(X).

q(b).

where no rewriting of the resolvent is performed. The sequential execution will
succeed in three steps, q(b) being executed only once. On the other hand, the
binding of x to a done by p before failing may make q(b) fail, creating either a
wrong result or, at least, a complex backtracking in which q(b) has to be restarted
after p backtracks over the binding of x to a. On the other hand, if the resolvent is
renamed as in the proposed model, thus implementing the separation of environ-
ments, parallel execution will perform the same number of steps as the sequential
execution.

INDEPENDENT AND-PARALLELISM 13

In previous examples, the restriction of the search space of q(x) is due to the
instantiation of a shared variable (i.e., x) by p(x). However, this is not the only way
a search space can be restricted. In fact, aliasing of previously unaliased shared
variables can achieve the same effect. Consider the example

:-p(x, y), q(xMy).

p(z. 2).

q(a).

r(b):-proc.

where again proc is very costly to execute. The sequential execution first executes
p(x, y>, returning {x/z, y/z}, then q(z), returning {z/a), and then fails in trying to
match r(a). In contrast, the parallel execution executes p(x, y), q(d), and r(y’) in
parallel. Thus r(y’> can match with r(b) and this leads to the execution of proc.

It is worth noticing that in the two examples above, where the renaming
transformation was performed, the back-binding goals fail. Intuitively, this means
that the sequential executions of the goals affected each other in some way, but,
since the link between them, which is captured by the back-binding goals, is lost
during their parallel executions, failure can only be detected at back-binding time.
Thus, in order to ensure efficiency, we need to avoid such cases, and this at least
means ensuring that back-binding goals never fail.

However, simply ensuring that the back-binding goals do not fail is not suffi-
cient. Consider the program

:-p(x), q(x).

p(a)

q(h) :- proc, fail.

q(a).

where again proc is very costly to execute. In this case the sequential execution
first executes p(x), returning {x/a), and then executes q(a) successfully. The
parallel execution, instead, executes p(n) and q(d), returning {x = a} for both, but
executes all of proc before failing, and thus goes to the second rule whose head
unifies with q(d). The cause in this case is again that the leftmost goal provides a
binding that prunes the search space of the rightmost goal and the renaming
transformation eliminates such pruning.

One idea in order to avoid the inefficiencies created in all the cases above (and
also the correctness problems pointed out in the previous section) is to parallelize
only if the goal to the left simply does not affect, in any way, the goal to the right in
the sequential execution. This certainly holds if the rightmost goal in the parallel
case is identical (i.e., executes in the presence of the same substitution on its
variables) to that of the sequential case, perhaps modulo renaming of some
variables. This corresponds to the notion of “call instantiation correctness” given
by Winsborough and Waern [38]. In that case, the “shape” of the execution tree
corresponding to the goal to the right will be preserved with respect to the
sequential execution (although perhaps its nodes are slightly different due to, for

14 M. V. HERMENEGILDO AND F. ROSS1

example, the renaming of variables). The following results simply express this more
formally. Let us denote by t, = t, the fact that t, and t2 are identical modulo
variable renaming.

Theorem I (Preservation of sequential execution). Consider two goals g, and g, and
their renamed versions g; and g; for 0, according to the renaming transformation.
Let 0, be an answer substitution of g, 8. Assume also that for any e,, g, 88, = g, 0.
Then we have that the search trees of g, 6 and g, 68, have the same shape as those
of g; and g;, respectively.

PROOF. By definition of the renaming transformation we have that all new vari-
ables introduced by the renaming are in g;. Thus, g, 8 = g;. Therefore, it is clear
that the search tree of g, 0 has the same shape as that of g;. On the other hand, if
g, 0 = g, 00,, by the properties of SLD resolution, it is obvious that the search tree
of g, 00, will have also the same shape as that of g, 0. Since g, 8 = g; also holds
and following the same reasoning, the shape of the corresponding trees is also
identical. ??

Note that, as a corollary of the above theorem, we can say that if the above
conditions are satisfied, the time (number of steps) involved in the sequential
execution of (g,,g,)8 is the same as that involved in the sequential execution of
g;,g;.

The following result also holds if the conditions of Theorem 1 hold:

Theorem 2 (Success of back-bindings). Consider two goals g, and g,, their renamed
versions g; and g; for 8, according to the renaming transformation, and the set R of
back-bindings resulting from the renaming transformation. Let 0, be any answer
substitution from the execution of g, 0. Then, if for any 8,) g, 00, = g, 6, then, when
g;, g;, R is executed, all the goals in R will succeed.

PROOF. The goals in R are of the form xi =xi, where the xi are distinct shared
variables between g, 8 and g, 8. Let us reason about the instantiation state of the
x, after the execution of g; and g;. First, it is clear that the execution of g; cannot
affect the xi since those variables do not occur in gi. Regarding g;, we have that
g; = g, 8. By hypothesis, for any 0,, g, 0f3, = g, 0 and, thus, g, 08, = g; (since g; is
itself a variant of g,8). For this to be true, 8, could rename the xl, but it would
have to leave them as distinct variables. Thus, we have that after the execution of
g; and gk, the xi will be free and distinct variables and, therefore, independently
of the instantiations of the xi, all the back-binding goals will be simple variable
bindings and trivially succeed. ??

Another idea in order to avoid the possible inefficiencies of parallel execution
illustrated in this section is based on the observation that if a goal is pure and a
step in its computation does not modify the state of a given variable, then an
equivalent step would also be performed in another binding context which is
otherwise identical, but in which that variable is further instantiated (note that this
may not be the case for impure goals, in particular if they include calls to
predicates in the class of var/l). As an example, consider the resolvent

:-p(x), q(x, y>.

INDEPENDENT AND-PARALLELISM K

with current substitution 0 = {y/h} and the program

p(a).

q(x. h).

q(x, c).

It is clear that it is safe to execute both goals in the resolvent in parallel since the
binding produced by p cannot affect the execution of the pure goal q (which does
not “touch” XI. Note that this also holds for the following definition of (4:

q(x, h).

q(a, c).

More formally:

Definition 2 (Set ofuariables). Given any goal g, let us call roars the set of all the
variables occurring in g. We also extend the definition to apply to terms.
substitutions, etc.

Theorem 3 (Preservation of sequential execution in the case of pure goals). Consider
two goals g, and g, and their renamed Llersions g; and gi for 0, according to the
renaming transformation. Assume that gz is a pure goal. Let W he the set of
c~an’ables defined as W= {x E r,ars(g,O)l 30, answer of g,O, 3y E LSars(g,O), s.t.
Ix, y)O, + Ix, yH. A ssume also that for uny partial answer p of g, 0, W is identical
(mod&o r!ariable renaming) to Wp (W = WI). Then we har>e that the seurch trees
of g, 0 and g, 00, haue the same shape as those of g’, and g>, respectively.

PROOF. By definition of the renaming transformation, we have that all new
variables introduced by the renaming are in gi. Thus, g, 0 = g’,. Therefore, it is
clear that the search tree of g, 0 has the same shape as that of g’,. On the other
hand, if g2 is a pure goal and there exists a set of variables I’S r~ars(g,O) such
that, for any p, I/ = VF, for any 0’ such that domain n tlars(g, 0) c V, the
shape of the trees of g, 0 and g, 00’ will be the same. In particular, this is satisfied
by any answer O1 of g,O since, by definition, domuin(O,)nr,ars(gze)c WL V’.
Furthermore, the renaming n such that g,OT =gi also satisfies the conditions.
Thus, the shape of the trees of g20, g200,, and ,gi will be the same. D

The following result also holds if the conditions of Theorem 3 hold:

Theorem 4 (Success of back-bindings in the case of pure goals). Consider two goals g ,
ami g2, their renamed cersions g; and gi for 0, according to the renaming
transformation, and the set R of back-bindings resulting from the renuming transfor-
mution. Assume that gz is a pure goal. Let W be the set of r~ariables defined as
W = Ix E tlars(g,O)I 30, answer of g, 0, 3y E t:ar.s(g,O), s.t.{x, y)O, f ix, y}). As-
sume also that for any partial answer p of g, 0, W = Wp. Then. if g’,, g>. R is
executed, all the goals in R will succeed.

PROOF. The goals in R are of the form xi =x1, where the x, are distinct shared
variables between g,O and g,O and xi are variables in gi. First, it is clear that the
execution of g; cannot affect the x, since those variables do not occur in &. Also
regarding g’,, by definition of renaming transformation, we have that g; = g, 0. By

16 M. V. HERMENEGILDO AND F. ROSS1

hypothesis, for set W of xi affected by &, for any answer 0, of g;, WO, = W, and,
therefore, xi =x; will succeed. For the rest of the xi variables which remain
unbound and distinct after the execution of g;, it is also clear that xi =xi will also
succeed. 17

It is easy to show by induction that the results above also hold for any number of
goals.

2.6. Parallel EfJiciency

The results of Theorems 1 and 3 allow us to compare the sequential execution of
(g,,g,)O and the sequential execution of g;, g; and see that they have the same
shape and thus the same number of steps for corresponding paths of the search if
the conditions of the theorems hold. However, clearly what we are really interested
in comparing is the sequential execution of (g,, g,)B with the parallel execution of
g; , g;. In doing so, the following result is instrumental:

Theorem 5 (Equivalence of succeeding branches). Consider two goals g, and g, and
their renamed versions g; and g; for 13, according to the renaming transformation.
Assume these goals meet the conditions of Theorem 1 or Theorem 3. Then any
nonfailing branch of the sequential execution tree of (gl, g,)8 and the concatena-
tion of the corresponding branches in the parallel execution of g; , g; have the same
number of steps.

PROOF. By Theorems 1 and 3, any branch of the sequential execution tree of
(g,,g,)O and the concatenation of the corresponding branches of the sequential
execution of g’,, g; have the same number of steps. Since g;, g; have no variables
in common, their executions cannot affect each other (note that we have ruled out
side effects), except for their interaction through the failure rule, which is ruled out
by hypothesis. Thus, two corresponding, nonfailing branches of the sequential and
parallel execution trees of g;, g;, when concatenated, also have the same number
of steps. ??

Theorems 1 and 3 also guarantee the equivalence of the sequential execution of
(gr, g,)8 and (g;, gi> for failing branches. However, while the failure rule of
Section 2.3 does guarantee that if failure occurs in the sequential execution, it will
also occur in the parallel execution, it does not prevent failure from happening at
possibly different stages of unfolding of the parallel and sequential trees. As we
will show, in these cases, both more and less steps can be performed than in the
sequential execution, but the “no slowdown” property will still be preserved.

In the following, we will assume, for simplicity, an unbounded number of
processors. If the number of processors is limited, then, provided a “left biased”
scheduling strategy is used (i.e., one which guarantees that at least the leftmost
goal in syntactic order is selected for execution), the results will still be bounded
from above by those for the sequential execution and from below by those for the
parallel execution with an unbounded number of processors. We will also assume
an ideal situation where no overhead due to parallelism is incurred. Thus, the
results obtained will only be applicable to a practical implementation to the extent
that such parallelism overheads are sufficiently low in that implementation. How-
ever, achieving quite low overhead appears to be attainable in practice in most

INDEPENDENT AND-PARALLELISM 17

cases as demonstrated by systems such as &-Prolog/RAP-WAM [21,18], and
APEX [27].

Let us assume that the tree associated with g,6 and g; (respectively, g2f38, and
g;> has m, (respectively, mz> solutions and that kf (respectively, k;) steps are
executed between the (i - l)th and the ith solution (including intermediate back-
trackings, i.e., the steps leading to intervening failures). The last of these costs

(k,
m, tl , kTl+‘> represent the time needed to detect that there are no more

solutions for the goal. We also define k, = Cy:T’k; (respectively, k, = Cy:; ‘k;).
Let us also call W, (respectively, W,) the work involved in the sequential (respec-
tively, parallel) execution and T, (respectively, $1 the time of such execution. As
mentioned before, there are at least two interesting conceptual models for how the
gathering of alternatives is handled in parallel depending on whether recomputa-
tion is performed or not. We will derive expressions for Wp and TLj for both
models. W,,” and 7;: will represent work and time in the model with no recomputa-
tion, i.e., where we assume that all the m, and m2 branches are computed
independently and then joined [26, 161. Wpr and T,: will represent work and time for
the alternative approach of recomputing each of the m2 solutions of g; for each of
the m, solutions of g’, (as in the sequential model and in [21]). We will consider a
number of cases.

Case I: Both goals haue one or more answers. Let us first assume that the two
goals have at least one answer. Then we have that

I
W,= k(k;+k,)+k;“l”=k,+m,kz,

1=1
T, = WY,

W,,” = k, + k?,

T,:‘=max(k,,k,),
m,+l

14$r=(k;+k;)+ c kJ+ ?(k;+k,)+k;“+’
j=2 1=2

= ?(k;+k2)+k;“l+‘=W,,
I=1

m*+ 1
~~=max(k~,k~)+ c ki+ 5 (k;,k2)+krl+

j=2 i=l

ml

I x(k;+k,)+k;“l+‘=T,.
I=1

It is straightforward to see that T; 5 T, in any case, given that max(k,, k,) I k , +
k, 5 k, + m, k,, since we have assumed m, # 0. As for the comparison of W, and
Wp”, it depends on the value of m,. However, in the worst case (i.e., when m, = 11,
we have that Wp” = W, and, thus, in general, Wpn I W,. We have also shown that
W,; = W5 and that T; s T,. Thus, if both goals have at least one solution, the time
and work are always less or equal, both for the nonrecomputation (as shown by
[26]) and for the recomputation cases.

Case 2: At least one goal finitely fails. Let us now consider the case in which at
least one of the goals finitely fails, i.e., it has no answers, and this can be

18 M. V. HERMENEGILDO AND F. ROSS1

determined in finite time. We need to distinguish between the case when g, fails
and that when g, fails, since this makes a clear difference in the sequential
execution. In the first case, the sequential execution with the left-to-right selection
rule entirely (and unnecessarily) executes g, and then g, until its failure. In
contrast, the parallel execution runs g, and g, in parallel until the failure of g,,
given the communication of failure among processors stipulated in the parallel
framework [22], possibly executing a smaller part of g,. Thus, we have

Ws=T,=k,+m,kz,

Wi= W,“=k,+min(k,,k,),

T;=T;=k,.

In the second case-when g, fails-the sequential execution following the
left-to-right selection rule starts backtracking immediately after the failure of g,,
without executing g, at all. In contrast, the parallel execution runs both goals until
the failure of g,, thus (unnecessarily) executing part or all of g,. More precisely,
we have

W, = T, = k,,

Wd=Wdf=kl+min(k,,k,),

T;=T;=k,.

Thus, in any of the two cases above we have Tp 5 T, (of course the most
fortunate situation for the parallel execution is when g, fails). Thus, the time is
always less or equal, while the work may be more (up to twice as much). Therefore,
the “no slowdown” property is preserved. However, it appears important to detect
failing goals ahead of time in order to avoid wasted (speculative) work. This result
shows that, in general, it will always be more desirable to run two goals in parallel
when it is known that the leftmost one has at least one solution.

Case 3: Injinitely failing goals. In case of infinite failure of the sequential
execution, it is possible for the parallel execution to finitely fail. Thus the finite
failure set of the parallel execution model could be larger than that of the
sequential model. This could be rephrased by saying that the selection rule [28]
used in parallel execution is “fairer” than the sequential one. As an example, let us
consider the goal

:-p(x), q(y).

and the program

p(x) :-p(x).

In this case, the sequential execution would infinitely fail in the execution of p(x),
while the parallel execution would finitely fail due to the finite failure of q(y).
Clearly, Wp < W, and Tp < T, hold for both modes.

2.7. EfJicient Parallel Execution

Theorem 6 (EfJicient parallel execution). Consider two goals g, and g,, their renamed
versions g; and g; for a substitution 0, and the set R of back-binding goals
generated during the renaming transformation. Let us also call T, the time for the

-
INDEPENDENT AND-PARALLELISM 1’)

sequential execution of (g,, g,)8 and T,] the parallel execution time for g’, and g>.
Assume also that either the conditions of Theorem 1 or those of Theorem 3 hold.
Then we hate that Tp I T,.

PROOF. The proof follows directly from Theorems 1 and 2 or 3 and 4, Theorem 5,
and the discussion in the previous sections comparing the parallel and sequential
execution time. 0

This result defines two classes of goals for which the “no slowdown” property
can be ensured. Thus, we may conclude that a general pragmatic solution to solve
the efficiency problems described in this section is to run in our parallel framework
only those sets of goals that are in such classes. An immediate consequence of the
conditions on the goals in such classes is that we can safely run in parallel goals
that have no variables in common. Alternatively, two goals can also be run in
parallel in the case in which only the second goal is allowed to instantiate any
shared variables, or in the case in which, if the first goal instantiates any shared
variables, then the second one is pure and does not “touch” such variables. The
first situation, which corresponds to the traditional concept of independence
referred to in the Introduction [8, 11, 211, will be called strict independence, while
the second one corresponds to the concept of “(generalized) nonstrict indepen-
dence,” which was introduced in [20] as a formalization and generalization of the
ideas of [ll, 36, 381. In the following sections, we will discuss more formally the
classes of strictly and nonstrictly independent goals and the properties of their
parallel execution, and we will give some sufficient conditions, to be generated at
compile time, whose success at run time will guarantee that a collection of goals
belongs to one of such classes.

3. STRICT GOAL INDEPENDENCE

In this section we present the usual concept of independence of a set of goals, as
introduced by [8,11,21] which, as mentioned before, and following [19], we will
from now on refer to as “strict independence.” We prove that if such a set is
strictly independent, then the parallel execution of the goals in the set is both
correct and efficient. Finally, we show how to obtain a sufficient condition for the
strict independence of a given set of goals. This is done first by considering the
goals in isolation and then as part of a program. These results are of particular
importance because they can be used for the generation at compile time of
sufficient conditions for strict independence which can be checked at run time with
low overhead. Thus, they represent a theoretical foundation for automatic paral-
lelization tools.

3. I. Strict Goal Independence: Dejinition and Some Properties

Definition 3 (Strict goal independence). Two goals g, and g, are said to be strictly
independent for a given substitution H iff vars(g, 0 > n vars(g, 0 1 = 0. A collec-
tion of goals is said to be strictly independent for a given 0 iff they are pairwise
strictly independent for 8. Also, a collection of goals is said to be strictly
independent for a set of substitutions 0 iff they are strictly independent for any

20 M. V. HERMENEGILDO AND F. ROSS1

0 E 0. Finally, a collection of goals is said to be simply strictly independent if
they are strictly independent for the set of all possible substitutions.

Note that the above definition considers the goals after applying the substitution
8 to them. This means that g, and g, may have no variables in common, but at the
same time they may not be strictly independent for a given 0. This same definition
of strict independence can also be applied to terms without any change.

Exumple 2. Let us consider the two goals p(x) and q(y). Although they do not
have any variable in common, they may not be strictly independent for some
substitution. For example, given 0 = {x/y}, we have p(x)8 =p(y) and q(y)8 = q(y),
so p(x) and q(y) are not strictly independent for this substitution, because p(x)8
and q(y)O share the variable y. However, given 8 = {x/w, y/v), we have p(x)8 =
p(w) and q(y)6 = q(u), so p(x) and q(y) are strictly independent for the given 8
because p(w) and q(u) do not share any variable. Finally, the goals p(a) and q(b),
where a and b are constants, are simply strictly independent (i.e., for any 0).

Note that if a term (or a goal) is ground, then it is strictly independent from any
other term (or goal): its set of variables is empty, so the intersection of this set with
any other set of variables will be empty. Also, note that strict independence is
symmetric, but not transitive: Let us consider, for example, the goals p(x), q(y),
and T(Z) and the substitution 8 = {x/f<w>, y/a, z/g(w)). It is easy to see that p(x)
and q(y) are independent with respect to 8, as well as q(y) and r(z). However,
p(x)e =p(f(wN and r(z)8 = r(g(wN, so these two goals are not strictly indepen-
dent with respect to 8, because they share the variable w.

3.2. Strict Goal Independence is Suficient for a Correct and
EfJicient Parallelization

Since strictly independent goals do not share variables, the renaming transforma-
tion of the parallel execution framework has no effect and can be simply ignored.
Thus, the goals and their renamed versions coincide. That is, following the same
notation as in Section 2.2, g, f3 = g; and g, 0 = g;.

Theorem 7 (Strict independence and correct purullelizution). Consider a substitution O
and two goals g, and g, which are strictly independent for 8. Let 8, be any answer
substitution for g, 8,8, be any answer substitution for g, 88,, and, thus, 6, = 88, t&
be the corresponding answer substitution for the sequential execution of (gl, g,)B.
Also, let 6; be the corresponding answer substitution for g, 6 and t$, = t301 6; be the
corresponding answer substitution for the parallel execution of g, 8 and g, 8. Then
e, = ep.

PROOF. We consider branches of the execution of g, and g, that result in success
(for branches that result in failure, the parallel and the sequential answers are
trivially equivalent since they both fail). AS argued before (Section 2.61, the
corresponding branches in the parallel execution are also guaranteed to succeed
and have the same number of steps. Regarding the resulting substitutions, by
definition of strict independence uurs(g,B) n uars(g,O) = 0, and in general do-

INDEPENDENT AND-PARALLELISM 21

main(t9,) c ~ars(g;O) u NV for any i, where NV includes new variables introduced
by the renaming steps in the execution of g,B, which, by definition of the parallel
framework, are distinct from all other variables. Therefore, ~ars(g~ 0 1 f’ clomain(8,)
= 0, which implies that g, 88, = g, 8. Thus, independently of whether gL is pure or
not, since an identical goal is being executed, then we may conclude that o1 = 0;
and thus that 0, = op. ??

Thus, we have proved that it is correct to execute strictly independent goals in
parallel, i.e., that their parallel execution (in the framework described in Section 2)
returns the same computed answer substitutions as their sequential execution.
Note that this holds both forpure and impure goals. We will now show that parallel
execution of strictly independent goals is also efficient.

Theorem 8 (Strict independence and eficient parallelization). Consider two goals g,
and g, and a substitution 0 for which they are strictly independent. Let us call T,
the time for the sequential execution of (g,, g,)H and T,] the time ,for their parallel
execution, Then TP I T,.

PROOF. It follows immediately from Theorem 6. In fact, if g, and g, are strictly
independent for 8, then R is empty and there are no shared variables, so the
condition of Theorem 1 (and thus that of Theorem 6) is trivially met. G

The results presented so far allow the parallel execution of any set of strictly
independent goals in a resolvent, while, at worst, preserving the efficiency of the
sequential SLD resolution of this same resolvent. At the same time. such results do
not warrant the parallel execution of any set of goals which are not strictly
independent. The implication is that such “dependent” goals should be executed
using the usual left-to-right selection rule in order to maintain efficiency. Thus, the
general rule is that for a given resolvent, any number of goals which are deter-
mined to be strictly independent can be started in parallel, but other goals cannot
be started until the goals to their left on which they are dependent finish executing.
However, we will show in a later section (Section 4) how the condition of strict
independence can be relaxed to allow more goals to be executed in parallel.

In addition to the issue of the size of the search space itself, other efficiency
issues have to be considered in the parallel execution of a set of strictly indepen-
dent goals. One of them concerns how a particular set of strictly independent goals
in the given resolvent is selected to be run in parallel. As shown in [lS], the
maximal independent set problem is NP-complete. In fact. the choice of the
maximal set (i.e., running in parallel all the strictly independent goals that appear
in the resolvent at a given point during the execution) is not even always the best
one. because applying maximal parallelization at a given step may reduce the
parallelism available at a later step (this applies even to Datalog programs [14]).
Another important issue is the cost of determining goal independence at run time.
In the following sections we will show how the impact of these issues can be
minimized by compile-time analysis. In fact, if both goal selection and indepen-
dence checking are done completely at compile time (i.e., only goals which can be
determined to be independent at compile time are run in parallel). then, using the
results shown in this section, the parallel execution time can be guaranteed to be
always shorter than (or in the worst case, equal to) the sequential one. since no
additional time is spent in independence checking.

22 M. V. HERMENEGILDO AND F. ROSS1

3.3. A Correct Local Condition for Strict Goal Independence

As mentioned before, checking the strict independence of a set of goals in the
resolvent at run time is straightforward, since it is sufficient to apply the definition.
However, computing the set of variables for each goal and checking whether their
intersection is empty could originate large amounts of run-time overhead. In
general, given a collection of goals, we would like to be able to generate an
efficient, sufficient condition for their strict independence at compile-time. We will
refer to any such condition, which can in principle be any Boolean function, as an
“independence condition.” We now formalize the notion of such a condition being
“correct.”

Definition 4 (Correct independence condition w.r.t strict independence). An indepen-
dence condition is said to be correct with respect to strict independence for a set
ofgoals gr,..., g, and for a set of substitutions 0 iff for any substitution 8 E 0
it holds that if condition0 is true, then g,, . . . , g, are strictly independent for 0.

One particularly useful way of defining such a condition by using combinations
of predefined predicates is as follows:

Definition 5 (i_condj. An i_cond is a special type of independence condition such
that it is either “true” or a conjunction of one or more of the following tests:

?? ground(x),

?? indep(x, y>,

where x and y can be goals, variables, or terms in general.

To understand the semantics of an i_cond, note the following:

?? ground(x) is true when x is ground and false otherwise.

. indep(x, y) is true when x and y do not share variables and false otherwise,
i.e., indep(x, y) corresponds to a test for goal- and/or term independence as
defined in Section 3.1. Note also that indep(x,x) is true if and only if
ground(x) is.

For syntactic convenience, we extend an i_cond to also contain literals of the
form

which is equivalent to

in&(x1, y1), . . . , indep(x, , Y,,, >

Example 3.

?? ground(x) is false for the substitutions 8, = {x/f(y)], o2 = lx/y], and 8, =
{x/f(g(l, y,3))], but is true for all of 0, = {x/f(a)), 8, = {x/a), and 8, =
Ix/f(g(l, 2,3))).

?? indep(x, y) is false for the substitutions 8, = {x/y], o2 = {x/f(w), y/]l, 2, WI),
and e3 = {x/f(g(l,y,3))], but is true for all of 0, = {x/f(w), y]1,2, ~11,
0, = {x/f(a)), and 0, = {x/f(a), y/a).

?? ground([a,b,c]) is always true, while indep(f(x), g(y)) is true for Q1 = {x/a>,
but not for 8, = {y/x].

IYDEPENDENT AND-PARALLELISM 23

Given the primitives introduced above, a variety of i_conds can be constructed.
We will first treat the case in which goals to be run in parallel are considered in
isolation, rather than as part of a program. This means that we have to give a
condition without making any assumptions regarding the current substitution, i.e.,
we have to assume that any substitution might be applied to the goals:

Definition 6 (Locul correctness of an independence condition w.r.t strict independence).
An independence condition is said to be locally correct with respect to strict
independence for a set of goals g,, . , g,, iff it is a correct independence
condition with respect to strict independence for the set of all substitutions.

Clearly. the definition of independence is actually an i_cond, since it is the
conjunction of all indeptgoal,, goal,) Vi. j, i #j, and is locally correct by definition.
However, as mentioned before. we now propose conditions that involve less
run-time overhead.

Definition 7 (SVG SVZ). Given a collection of goals g,. . . . , g,,, let us define two sets
9% and SVI as follows:

?? SVG = (1. such that 3i, j, i #j with I‘ E roars and I’ E rws(g,)).

?? SW = ((J’,w) such that 1’ @ SVG and it’ @ SV’G and Ii,;. i <j with I‘ E
IXUX(~,) and w E lars(g,)}.

Let us now consider a particular i_cond, that is,

ground (SVG) A indep(SVZ)

We will show that this i_cond is locally correct with respect to strict independence.

Theorem 9. The i_cond

ground(SVG) A indep(SVI),

whew SVG and SVI we computed on the collection of goals g,, . , g,, . is locall\
conrct with respect to stn’ct independence for those go&.

PROOF. We will prove the theorem for ?I = 2. The extension to a larger number of
goals is straightforward and based on the same idea. We have to prove that, for any
substitution 8, if both ground(SVGB) and indep(SV78) are true, then ~zrs(g,H) n
rxws(g, 8) = 0. Now, suppose. by contradiction with what we want to prove. that
there exists a variable 1’ in rms(g,O) n Iws(g,O). This variable 1‘ will occur in a
term resulting from applying (1 either to some variable already shared by g, and
g2. or to two different variables occurring in g, and g2. In any case. a contradiction
arises.

?? In the first case, assume that I’, E rws(g,), l’, E lxzrs(g2). Then I’ E rws(l., fl)
is in contradiction with ground(SVGO), since ground(SVGB) is true iff
t/l, E SVG, l’f3 is ground.

?? In the second case, suppose that l‘, E ~ws(g,) and I’? E ~ws(g.). Then
1‘ E lws(.,,O) and I’ E ~zzrs(r~,O), where (l.,, 1’2) E SW is in contradiciion with
indep(SVI), since indep(SVZ) is true iff Vl’,. L’? E SW, rars(r>,O) r7 rx7rs(r,,O)
= 0.

24 M. V. HERMENEGILDO AND F. ROSS1

This means that no variable can be in c&g, 0) n mrdg, 0) and thus g, and g,
are strictly independent. ??

In fact, it can also be easily shown that the above condition is also necessary for
strict independence and thus equivalent to the definition.

For efficiency reasons, we can improve the conditions further by grouping pairs
in SV7 which share a variable X, such as (x, y, 1,. . . , (x, y,,), by writing only one pair
of the form (x,[y,,..., y,]). By following this idea, Sl4’ can be defined in a more
compact way as a set of pairs of sets as follows: SV7 = {(V, W) such that 3i, j, i <j,
with V= uars(g,) - SVG and W= cars(g,> - SVG1. In some implementations this
“compacted” set of pairs may be less expensive to check than that generated by the
previous definition of SW.

Example 4. The following table lists a series of sets of goals, their associated SVG
and SK’ sets, and a correct local i_cond with respect to strict independence:

Goals SVG SVI i-cond

P(X), q(y) ux, y)) indep([(x, y)l)
p(x), q(x) !I 0 ground(x)
p(x), q(y), r(y) (Yl 0 ground(y)
PkY), d&Y) {X,Yl 0 gfound([x, yl)
PkYh dY, 2) (Y) ux, z)) ground(y), indep([x, z)l)
P(X, y, z), qk NJ) 1x1 uw, ty, 2))) ground(x), indep(Kw, [y, zl)l)
P(Y> 21, dw, k) 0 MY, 21, Iw, kl)) indePU([Y, zl,[w, kl)l)

As mentioned before, the main advantage in using ground (SVG) A indep(SVI)
instead of the naive conjunction of indep(g,, gj) is that the former can be more
efficiently checked. More precisely, let us consider a reasonably efficient imple-
mentation of such checks and give an estimate of their cost:

?? For ground(x), traverse the entire structure of the term to which x is
currently bound and check for the presence of any variable. Thus, the cost of
such check is, in this case, proportional to the size (i.e., number of symbols)
of x (Ix/>, i.e.,

cost(ground(x)) I klxl, and

cost(ground(x)) = klxl iff x is ground

(where k is some constant).

?? For indep(x, y>, traverse the term to which x is currently bound and bind all
the variables to a fixed new constant. If no variables found, stop. Else,
traverse the term to which y is bound and see if that constant appears there.’
Thus we have

klxl 5 cost(indep(x, y)) 5 k(lx + lyl),
cost(indep(x, y)) = k(1x1 + Iyl) ‘ff 1 x and y are independent, x not ground,

cost(indep(x, y)) = k(Ix/) iff x is ground.

It is easy to see that, in general, a groundness check is less expensive than an
independence check. Thus, a solution where some independence checks are

’ Note that the variables bound in the process should be unbound afterward.

INDEPENDENT AND-PARALLELISM .?5

replaced by groundness checks is obviously preferable. It is also straightforward to
show that the cost of an i_cond increases with the number of occurrences of
variables in it. Thus, reducing the number of variable occurrences, as is done by the
proposed i-co&, reduces cost. Finally, the number of variables in the i_cond
generated can be used as a heuristic in compile-time estimation of test cost.

Example 5.

?? Consider the simple collection of two goals

The naive i_cond would be indep(p(x, y), q(y, z)), whose cost is. as de-
scribed above, = (1x1 + lyl+ lyl + Izl). 1 n contrast, the i_cond that we would
us is ground(y), indep(x, z), whose cost is = (lyl + 1.x + 1~1).

?? Consider now the goals

The cost of the naive i_cond (indep(p(x, y, z>, q(x))) is = (III+ iy/ + I-71 +
In-I>, while the cost of ours [which is ground(x)] is only = (1x-l).

Conditions for the local correctness of an i_cond with respect to strict indepen-
dence were first proposed, to the best of our knowledge, in [21]. Those conditions
are herein proved correct and enhanced by checking independence on a minimal
set of pairs of variables (rather than on a list, which can result in unnecessary
checks).

3.4. Application Example: Local Correctness of CGEs w.r.t. Strict Independence

The results presented in the previous sections apply, in general, to all parallel
execution models for logic programs which exploit independent and-parallelism. As
an example, in this section we will apply such results to a particular approach:
independent/restricted and-parallelism. This approach combines compilation tech-
niques and parallel execution: It introduces parallelism in a given program by
adding “graph expressions” to some clauses at compile time. The evaluation of
such expressions results in parallel execution of sets of goals at run time. The
discussion will be presented in terms of the RAP-WAM model [21]. This model
extends DeGroot’s seminal work on restricted and-parallelism [ll] by providing
backward execution semantics, improved graph expressions (&-Prolog’s “condi-
tional graph expressions” (CGES) and other related constructs),’ and an efficient
implementation model based on the Warren abstract machine (WAM) [%I. &-Pro-
log, the source language in this model, is basically Prolog, with the addition of the
parallel conjunction operator “KC” and a set of parallelism-related builtins, which
includes several types of groundness and independence checks and synchronization
primitives. Parallel conditional execution graphs (which cause the execution of

’ &-Prolog’s constructs offer Prolog syntax-so that it is possible to view the annotation process as a
rewriting of the original program-and permit conjunctions of “checks,” thus lifting limitations in the
expressions proposed by DeGroot which prevented the use of the conjunctive i_conds presented in this
paper.

26 M. V. HERMENEGILDO AND F. ROSS1

goals in parallel if certain conditions are met) can be constructed by combining
these elements with the normal Prolog constructs, such as “->” (if-then-else). For
syntactic convenience (and historical reasons), an additional construct, the CGE, is
also provided. We now study the correctness of CGEs.

Definition 8 fCGE). A CGE (conditional graph expression) is a structure of the
form

(i_cond = >goal, &goal,&. . . &goal,,)

where i_cond is an independence condition as defined previously, and each
goal,, i = 1,. . . , n, is either a literal or (recursively) a CGE.

CGEs appear as literals in the bodies of clauses. From an operational (Prolog)
point of view, a CGE can be viewed simply as syntactic sugar for the &-Prolog
expression

(i_cond- >goal,&goa12&. . . &goal,,
;goal,, goal?, . . , goal,,).

Therefore, the operational meaning of the CGE is:

1. Check i_cond.
2. If it succeeds, execute the goal, (i = 1,. . . , n) in parallel; else execute them

sequentially.

Since the goal, (i = l,..., n) can themselves be CGEs, CGEs can be nested in
order to create more complex execution graphs.

Definition 9 (Local correctness of a CGE w.r.t. strict independence). A CGE

(i-cond = >goal,&goal,& _ . , &goal,,)

is said to be locally correct with respect to strict independence iff i_cond is a
correct local condition for goal,, . . . , goal,, with respect to strict independence.

That is, a CGE is locally correct with respect to strict independence if for any
substitution 8, it holds that if i_cond 8 succeeds, then goal,, . . . , goal,, are strictly
independent for 0. It follows directly from the results presented so far that a
correct CGE with respect to strict independence can only generate correct and
efficient parallelism (not taking into account the time involved in the checks, as
well as scheduling and communication overheads).

Theorem IO. A CGE of the form

(ground(SVG), indep(SK') = >goal, &goa12&. . . &goal,,),

where SVG and SVI are computed on the collection of goals g,, . . . , g,, is locally
correct with respect to strict independence for those goals.

PROOF. The proof follows immediately from Theorem 9 and Definition 9. 0

Note that when CGEs are used to encode strict independence, then it is
guaranteed that no shared variables will ever appear at run time among goals to be
run in parallel. Therefore, the renaming transformation is never necessary (and is
not implemented in practice) in such a system.

INDEPENDENT AND-PARALLELISM 27

The problem of automatically annotating a given program with &-Prolog con-
structs (such as CGEs), for which the results in this paper are fundamental,
involves repeatedly selecting (grouping) a particular set of goals, generating a
correct i_cond for their independence, and rewriting the program so that the
selected goals are executed in parallel only if the i_cond succeeds. Heuristic
measures can be used in the goal selection process, based on minimizing the
overhead involved in the evaluation of i-co&, maximizing the probability of
success of i-co&, and granularity considerations. Further discussion of these
heuristics is outside the scope of this paper (see [12, 23, 36, 321 for more details). A
system which automatically performs such an annotation process and which also
uses global information as described in Section 3.5, is described in [36, 31. IX].
Some locally correct CGEs with respect to strict independence are shown in the
following example.

Example 6. The following CGEs are locally correct with respect to strict indepcn-
dence:

(t.rue =>P&q(Y) 1

(indep(x,Y) =>P(X)&cI(Y))

(ground(X) =>P(X)&q(X) 1

(vound([X,Yl) =>P(X,Y)&cJ(X,Y))

(ground(Y),indep(X,zi =>P(X,Y)&cl(Y,Z))

(ground(Y) =>p(X)&q(Y)&r(Y))

(ground(x),indep([Y,zl,W)=>p(x,Y,z)&q(x,w))

3.5. A Correct Global Condition for Strict Goal Independence
In Section 3.3 we described a way to write a correct local condition for the strict
independence of a given set of goals. We also proved that such a condition,
obtained using only local information about the goals, is sufficient for the strict
independence of the goals. However, if the goals in the set are not considered in
isolation, but rather as coming from a clause, sometimes this condition may be too
strong, i.e., it may be that simpler i_conds than those presented in Section 3.3 are
sufficient for guaranteeing the strict independence of the goals considered, for the
substitutions affecting all the resolvents which contain these goals in any branch of
the proof in which the clause is involved. Performing clause-level analysis in order
to gather information about such substitutions is common, for example, in current
Prolog compilers. Furthermore, if the whole program in which the clause appears is
also considered, even more information can be available at compile time (at least
in “abstract” form) regarding the substitutions affecting these goals in any proof
which can be constructed with the given clause in the given program. This is, for
example, the case if global analysis techniques, generally based on abstract inter-
pretation 191, are applied to the program (e.g., see [lo, 36, 29, 4, 31, 241).

In order to handle the availability of such information, we now define a new
kind of correctness for an i_cond which is less strong than the previous one, but it
is still sufficient for the strict independence of the goals under such circumstances.

28 M. V. HERMENEGILDO AND F. ROSS1

To do this, we first have to introduce some other concepts related to abstract
interpretation. This will be done in a rather informal way, since a more thorough
introduction to this technique is beyond the scope of this paper.

Given a logic program, during the proof of some goal, its variables can be bound
to any term of its first order language. This set of terms can be infinite, but an
elegant way to represent it in a finite structure is by using an abstract domain, i.e.,
a finite set, each element of which is used to represent an entire class of actual
(“concrete”) terms.3 Elements from the abstract and concrete domain are often
related by a “concretization” function y, which, given an element of the abstract
domain, returns the (possibly infinite) set of concrete elements that it represents.
This switch from the Herbrand domain (i.e., the set of all concrete terms) to an
abstract domain is used to approximate substitutions with abstract substitutions.
An abstract substitution then represents a possibly infinite set of concrete substitu-
tions.

Example 7. Consider the abstract domain {free, any, ground} (where jkee represents
the set of all free variables, ground the set of all ground terms, and any the set of
all terms) and the abstract substitution 13, = {x/flee, y/ground}. This substitution
represents the set of all concrete substitutions 8 E ~(0,) such that x is bound to a
free variable and y is bound to a ground term.

Definition 10 (Entry mode or query form). An entry mode, or query form, E for a
given program is a query such that its arguments are given in terms of an
abstract domain. Its concretization, y(E) is the set of all queries obtained by
replacing the arguments of E with elements of their concretization.

Thus, an entry mode may represent a possibly infinite set of queries for the
given program.

Example 8. The query form p(ground, ground) represents all the possible queries
of the form p(t,, tz), where t, and t, are ground terms.

Dejinition 11 (Global correctness of an i_cond w.r,t. strict independence). Let us
consider a program P, a collection of goals g,, . . . , g, in the body of a clause of
P, and an entry mode E for P. Let us consider the resolution trees for any
concrete query in y(E), and in those trees any node and the corresponding
current substitution 0 such that g,, . . . , g, appear leftmost in the resolvent
corresponding to that node. Let us call 0 the set of all such 0. An i_cond is
said to be globally correct with respect to the strict independence of g,, . . g,,
iff it is a correct independence condition for 0.

In other words, we relax the local correctness of an i_cond with respect to strict
independence by restricting our attention from the set of all the substitutions to
the set of the substitutions that can really occur at the considered point of the
program. In practice, rather than executing the program for the (possibly infinite)
set of all queries represented by E, an interpretation of the program over the

“Although a finite domain is mentioned in order to simplify the discussion, note, however, that
usefulness of the abstract interpretation technique is not necessarily limited to finite abstract domains.

INDEPENDENT AND-PARALLELISM 20

abstract domain is performed and an abstract substitution 0, is computed which
“approximates” the set of 0, where by approximation we mean set inclusion, i.e.,
we require that ~(0,) 2 0.

The following example shows that we are really relaxing the definition, because
there exist some i_conds that are globally correct but not locally correct for strict
independence, i.e., the set of locally correct i_conds is included in the set of
globally correct i_conds.

Example 9. Consider the program

p(x) :- q(x), r(x), s(x).

q(u).

Suppose that we want to parallelize the execution of Y(X) and s(x) in the first
clause. Following the approach of Section 3.3, we would consider the i_cond
ground(x), which we already know to be locally correct. Let us now consider the
query form p(any), which represents queries such as p(a) and p(x). The 0 set for
u(x), .P(x) given this query form is ({x/a)> (and, in a possible abstract form,
{{x/ground)}>, so it easily can be seen that the empty i_cond, which is not locally
correct, is, in contrast, globally correct.

As we did for local correctness, we now construct an i_cond that is globally
correct with respect to strict independence:

Definition 12 (SVC,, SVZX). Given a logic program P, a query mode, and a
sequence of goals g,, . . . , g, appearing in the body of some clause of P, we
define the two sets SVGg and W’Zg

SVGR = SVG - { x such that V0 E 0x0 is ground},

sv!,=svz-{(x,y) such that VO E 0x0 and y0 are strictly independent},

where the set 0 is as in Definition 11, or a safe approximation (r(O,)) of it.

Note that the resulting set of pairs defining SVZK can also be compacted as
described previously after defining SW. Note also that since 0 represents the set
of substitutions in all paths from a query form to the considered collection of goals
and since such a set may be infinite, the sets SVGK and SUg may not be statically
computable. On the other hand, the techniques related to abstract interpretation
mentioned above can be used to get an approximation of such sets in finite time.

Theorem Il. Given a logic program P, a query mode, a sequence of goals g,, . . , g,,
uppeanmg in the body of some clause of P, and the two sets SVG,Y und SVI, as
defined in Definition 12, the i_cond

(ground(SVG,),indep(SVI,))

is globally correct for the stn’ct independence of these goals.

PROOF. By Theorem 9, we have that (ground(SVG), indep(SVZ)) is correct for that
set of goals for all substitutions. By definition we have that (ground(SVG),
indep(SVZ)) = (ground(SI/G,), ground(SVG - SVC,), indep(SVZ,), indep(SVZ ~

30 M. V. HERMENEGILDO AND F. ROSS1

SI/I,)). In order to preserve correctness, we have to make sure that if (ground(SI/G),
indep(S1/7))0 is false, then ground(SVG,), indep(Sl/l,))0 is also false for all
substitutions 8 E 0. Let us assume that this does not hold. This can only happen if
either ground(SVG - SVG,)B or indep(SI/G - SVr,)6 evaluates to false for any
8 E 0, which would mean that there is at least one variable u in SVG - SI’Gg such
that ~0 is not ground or there is at least one pair of variables U, u in SP’Z - SV’,
such that ~0 and ~6’ are not independent. However, both those assumptions are in
contradiction with the hypothesis regarding 0. If an approximation ~(0,) of 0 is
used instead, we have by definition of approximation that -y(@,) 2 0 and thus the
hypothesis ensures that independence will hold for a larger set of substitutions
than the actual ones that will occur and thus the condition is also globally correct.
0

Example 10 (Application-global correctness of CGEs w.ct. strict independence). The
CGE in the following clause is globally correct with respect to strict independence,
given 0 = (0,,0,}, til = {x/f(a), y/a, z/w), and 8, = {x/b, y/b, z/a, w/b1 (repre-
sented perhaps by {x/ground, y/ground, z/any, w/any)>:

s(X,Y,Z,W) :-(indep(Z,W) => p(X,Y,Z) & q(X,W)).

Note that SI/G = {x), SP7 = {(y, w>,(z, w)), SVC, = 0, and SKg = {z, w>). Also,
note that this same CGE is not locally correct with respect to strict independence.

3.6. Existential Variables

In this section we will treat the case of clauses in which existential variables
(defined below) occur. This case turns out to be of practical importance. We will
show that by looking at such variables and using the definition of global correctness
of i_conds, it is, in some cases, possible to predict the unconditional failure of an
i_cond corresponding to a collection of goals contained in such clauses, and, in
other cases, to simplify the i_cond.

Definition 13 (Existential variable). A variable x which appears in a clause C is an
existential variable iff it does not appear in the head of C.

Proposition 1. Consider a collection G of goals in the body of a given clause and
the set V,, of existential variables appearing in G. If any variable in V,, occurs
in more than one goal of G, and one of these occurrences is the leftmost
occurrence of that variable in the clause body, then the goals in G are not
strictly independent.

PROOF. Since an existential variable does not appear in the head of the clause, it
cannot be bound before its leftmost occurrence in any possible path. Therefore,
the goals considered in the above proposition cannot be strictly independent
because they share a variable. ??

Proposition 2. Consider a collection G of goals in the body of a given clause and
the set V,, of existential variables appearing in G. Consider also the set F of all
the variables of V,, which appear only once in G and such that this one
occurrence is their leftmost occurrence. Then the variables in F are strictly
independent of any others.

INDEPENDENT AND-PARALLELISM 31

PROOF. Consider a variable in F, say x, and any other variable y. Since an
existential variable is unique and cannot be bound before its leftmost occurrence,
for any possible path, and for 0 current substitution in that path, IYJI:F(XH) n
l’ars(ye) = 0. 0

This means that the independence condition for each pair of these variables can
be deleted from the (locally correct) i-co&.

Except for cases such as those which will be treated in Section 4, the appearance
of existential variables in a clause implies a “hard” data dependency between goals
and it can be used as the primary heuristic in the goal selection (grouping) process
mentioned in Section 3.4.

Example 1 I (Application-existential cariables and CGEs). The CGE in the follow-
ing clause is globally correct with respect to strict independence:

s(X,Y):- (ground(Y) => p(X,Y) 61 q(Y,Z)), t(Y,Z).

Note that the indep(x, z> check is not required. However, note that this CGE is not
locally correct with respect to strict independence. Conversely, note that the
following CGE, although locally correct with respect to strict independence. can
never succeed since p(x, y) and q(x, y) cannot be strictly independent:

s(X):-(ground([X,Y]) => p(X,Y) & q(X,Y)).

3.7. Application Example: Generation of Dependency Graphs
One way in which the dependencies between goals can be represented is in the
form of a dependency graph [7, 23, 26, 27, 5, 321. Informally, a dependency graph is
a directed acyclic graph where each node represents a goal and each edge
represents, in some way, the dependency between the connected goals. We will
now show, using an example, how our approach subsumes such formalism and.
therefore, that our results are sufficient for reasoning about its correctness.

Consider the clause

p(X,Y):-q(X), r(Y,Z), g(Z,X).

As mentioned before, our efficiency results assume the literal precedence relation
given by the left-to-right selection rule and that this precedence is preserved unless
goals are determined to be independent. This precedence relation can be repre-
sented for the goals in the body of the clause above using a directed, acyclic graph
as follows:

Using the rules described in Section 3.3, we can associate with each edge which
connects a pair of literals the sufficient condition for their strict independence,

32 M. V. HERMENEGILDO AND F. ROSS1

thus resulting in the following dependency graph:

Note that while unlabeled edges state an unconditional precedence, edges
labeled by a condition mean that the precedence between the two connected goals
holds only if the condition is not satisfied by the (current) substitution.

In addition to the generation and proof of correctness of such graphs, our
results from Sections 3.5 and 3.6 allow simplifications of these conditions. More
concretely, in the clause under consideration z is an existential variable with its
first occurrence in r. Thus ground(z) can never be true, transforming the
dependency between r and g into a hard one. Also, if we assume that it is known
from global analysis that Y is always ground, then the edge from q to r can be
eliminated since Z, having a first occurrence in r, is guaranteed to be free and thus
independent from X, resulting in the following simplified graph:

This graph allows the parallel execution of q and r. Also, g has to be executed
after r, and also after q if x is not ground when q starts executing. Such graphs can
be encoded, for example, using Lin and Kumar’s “bit-vector” approach [27] or
compiled as &-Prolog expressions [32], i.e., for our example,

P(X,Y) :-

; q(X) & r(Y,z), g(Z,X)

I .

Note that expressing more complex dependency graphs as &-Prolog expressions
may require the use of &-Prolog’s wait primitives [30].

4. NONSTRICT GOAL INDEPENDENCE

As mentioned before, our goal is to use the proposed framework for parallel
independent execution and to run in parallel as many goals as possible while
maintaining correctness and efficiency with respect to the sequential execution. In
the previous section, we showed that strictly independent goals, i.e., goals which do
not share any variable at run time, have these desirable properties. Here we will

INDEPENDENT AND-PARALLELISM 33

see how even some goals which do share variables can be run in parallel indepen-
dently while being correct and efficient. Such goals will be called nonstrictly
independent. A particular case of such “nonstrict independence” was hinted at by
DeGroot in the “qsort” example given in [ll]. The MA3 system, presented in [36],
incorporated an early concept of nonstrict independence in its parallelization rules.
Finally, the concept of “call instantiation correctness” was introduced by Winsbor-
ough and Waern in [38], which also allows a form of nonstrict independence. Here,
we follow the approach of [20], which generalizes these notions by proposing the
concept of nonstrict independence and then studying correctness and efficiency
results for it, as well as proposing compile-time conditions. Furthermore, we
propose a notion of nonstrict independence which allows a slight relaxation of the
conditions of [20].

4.1. Nonstrict Goal Independence: Defznition

Definition 14 (u- and nc-binding). A binding x/t is called a v-binding if t is a
variable; otherwise, it is called an nv-binding.

Definition 15 fNonsttict independence). Consider a collection of goals g,, . . , g,, and
a given substitution 8. Consider also the set of shared variables SH = 11, I3i,j,
1 I i, j I n, i f j, I: E (r;ars(g,O) n uars(g,O))) and the set of goals containing
each shared variable G(u) = {g, 0 I c E L:ars(g; O)}, L’ E SH. Let 0, be any answer
substitution for g,8. The given collection of goals is nonstrictly independent for
8 if the following conditions are satisfied:

?? Vrl E SH, at most the rightmost g E G(r,1, say g,H, nv-binds 1’ in any 0,.

?? For any giO (except the rightmost) containing more than one variable of SH.
say I‘,, . . . , L’~, then c’, 13~, . . . , 11~ 0, are strictly independent.

Intuitively, the first condition of the above definition requires that at most one
goal further instantiates a shared variable. The choice of the rightmost goal (where
that variable occurs) is not arbitrary. If the goal that nv-binds x is g,0 and there is
another goal gjO, with j > i, that also contains x, then in the sequential execution
with the usual left to right selection rule, the execution of g,8 may restrict the
search space of gjO, because 0, may affect g,f3. In the parallel execution, g,B will
be executed as it is (without any further instantiation of x1, therefore leading to a
possibly greater number of steps.

The second condition eliminates the possibility of creating aliases (of different
shared variables) during the execution of one of the parallel goals which might
affect goals to the right. In fact, an alias is also a restriction of the search space (to
be avoided because of the reason discussed in the last paragraph) because it
creates a dependence among different shared variables.

Example 12. Consider the collection of goals (r(x, z, x>, s(x, w, z>, p(x, y), q(y))
and an empty 0. Suppose that p(x, y> is the only goal that will nv-bind x, q(y) is
the only one nv-binding y, and that no goal will nv-bind z. Furthermore, assume
that after execution of r(x, y, x>, x and y are strictly independent and that after
the execution of s(x, w, z), x, w, z are strictly independent. Then the original goals
are nonstrictly independent.

34 M. V. HERMENEGILDO AND F. ROSS1

The conditions of Definition 1.5 have been devised in order to ensure correct-
ness and efficiency, in general. However, if purity of goals is taken into account,
these conditions can be relaxed. Furthermore, the strict independence condition
for answer substitutions can also be relaxed slightly in any case. Based on these
ideas, we propose the following concept of generalized nonstrict independence:

Dejinition 16 (Generalized nonstrict independence). Consider a collection of goals

g1,..., g, and a given substitution 8. Consider also the set of shared variables
SH = (u13i, j, 1 I i,j sn, i #j, u E (uars(g,O) n uars(g,O))I and the set of goals
containing each shared variable G(u) = (giO I u E uars(gjO)), L: E SH. Let 19, be
any answer substitution for g,B. The given collection of goals is nonstrictly
independent for 1’3 if the following conditions are satisfied:

?? Vx, y E SH, 3 at most one g,B such that for any O1 we have that ix, ~18, f

Ix, y).

?? Vx, y E SH, if 3g, 8 meeting the condition above, then Vg,O, j > i, such that
(x, y} n uars(g,O) z 0, gj is a pure goal, and Ix, y}O, = 1x, y) for all Oj which
are partial answers during the execution of gjO.

Note that in the definition above the cases where x =y are not excluded.
Intuitively, the first condition of the above definition requires that at most one

goal modifies a shared variable or aliases a pair of variables. The second condition
does not require that it be the rightmost goal containing the variables, but it does
require that any goals to the right of the one modifying the variables be pure and
not “touch” such variables. This ensures that their search space could not have
been pruned by any bindings made to those variables and, therefore, it is safe to
run them in parallel, i.e., isolated from such bindings by the renaming transforma-
tion. Finally, note that, although left out in Definition 16 for simplicity, the notion
could be generalized even further if “purity” is determined at the level of shared
variables, rather than goals.

Example 13. Consider the collection of goals p(x, y), q(x, y) in the resolvent
where:

pta, y).

qh, b).

Then p(x, y), q(x, y) are (generalized) nonstrictly independent.

It is also interesting to notice that the conditions in Definitions 15 and 16 can be
checked only through an analysis of the whole program and its possible executions,
while the strict independence of a set of goals can always be checked by only
looking at the goals and the current substitution. This will obviously be significant
when we try to propose sufficient compile-time conditions for nonstrict indepen-
dence, since such conditions will necessarily have to involve global-level analysis.
Thus, to use the same terminology as before, no “locally-correct” condition for
nonstrict independence will be proposed.

Proposition 3. If a collection of goals is strictly independent for a given 8, then it is
also nonstrictly independent for 8.

INDEPENDENT AND-PARALLELISM 35

PROOF. In fact, the conditions in the definitions of nonstrict independence are
always satisfied for a collection of strictly independent goals, since strictly indepen-
dent goals do not share any variable and such conditions only need to be satisfied
whenever shared variables are present. ??

4.2. Nonstrict Goal Independence is Suficient for a Correct and IZfficient
Parallelization

Since nonstrictly independent goals may share variables, in general they will be
renamed before their parallel execution, and then their renamed versions will be
executed in parallel, followed by the execution of the back-binding goals. Thus, for
correctness purposes, we need to compare (and prove the coincidence of) any
answer substitution 0, generated by the sequential execution of the selected goals,
and that H,, generated by the parallel execution of the renamed goals plus the
sequential execution of the back-binding goals. We will do this for two goals. The
generalization to n goals is straightforward. We will prove the result for the
general case of Definition 16 in which the rightmost goal can be pure or impure,
since, as shown in the following proposition, it includes that of Definition 1.5.

Proposition 4. Nonstrict independence implies generalized nonstrict independence.

PROOF. The proof follows trivially from the fact that the conditions of Definition
15 imply those of Definition 16. The first condition of Definition 15 effectively
prevents more than one goal from nv-binding shared variables (it only allows the
rightmost containing them to do so), and the second condition prevents any
aliasing, so any pair of shared variables will be unchanged, module variable
renaming, except for those which appear in the rightmost goal containing them
(which is clearly a single goal). Furthermore, since the only goal allowed to perform
any changes to shared variables is the rightmost containing them, the second
condition is trivially met (there are no goals to the right of it containing those
variables). 0

Theorem 12 (Generalized nonstrict independence and correct parallelization). Consider
two goals g,, g, in a resokent (gl, g,, g,, . . . ,g,,) and a substitution 0. L,ef g, and
g? be (generalized) nonstrictly independent for 8 (Dejinition 16). Let g:. g>, R be
the new collection of goals obtained from the renaming transformation. Let 0, be
any answer substitution from the sequential execution of (g,, g?)O and t$ the
corresponding answer substitution from the parallel execution of g; and g> . followed
by R. Then (g3,. . ., g,)@, = (g3,. . ,s,,>@,~.

PROOF. We study branches of the execution of g, and g? that result in success (for
the others, the parallel and the sequential are trivially equivalent since, as shown in
Section 2.6, they both fail). The answers from the sequential execution of
(g,,g?,g, ,..., g,)O and those from <g’,,gi, R,g, ,..., g,M are equivalent, since
these two resolvents are equivalent, except for the possible appearance of new
infinite branches or different solutions in either g’, or g;. By definition of the
renaming transformation g, 0 = g’, and thus their execution is identical. Thus, we
only need to study g,. We first consider the case in which gz is impure. Then by
hypothesis for any x,y E SH, we have that {x, ~10, = {x, y} and thus g,OH, -g> and

36 M. V. HERMENEGILDO AND F. ROSSI

the execution of gh is equivalent to that of g,80, and thus the answers. On the
other hand, if g, is pure, then, although it is possible that for some X, y E
SH{x, y)el f {x, y}, by hypothesis {x, ~10, = {x, yl is met for any partial answer 0, of
g, 8. Thus, the executions of g, 0 and g, 88, are equivalent and thus that of g, 08,
and g;. Finally, since from the point of view of answers, the sequential and parallel
executions of (g;, gL> must be equivalent given that they have no variables in
common, the conclusion holds. 0

That is, it is correct to execute (generalized) nonstrictly independent goals in
parallel. The next theorem shows that it is also efficient.

Theorem 13 (Generalized nonstrict independence and ejj5cient parallelization). Con-
sider two goals g, and g,. Let us call T, the time for the sequential execution of g,
and g,, and T, the time for the parallel execution of g; and g;. Assume also that g,
and g, are (generalized) nonstrictly independent (Definition 16). Then Tp I T,.

PROOF. The proof follows directly from Theorem 6 since either g, is pure and then
the definition guarantees that the conditions of Theorem 1 hold (since g, 0 = g, 80,)
or g, is impure, in which case the definition guarantees that the conditions of
Theorem 3 hold. 0

Note that Tr is the time to execute in parallel g; and g;, to which we must add
the time to execute the k back-binding goals. Note also that, since the conditions
of Theorem 2 are satisfied, back-binding goals (if executed), always succeed and
thus represent a single, deterministic step. In practice, for a given implementation,
this time can often be considered insignificant.

4.3. A Correct Global Condition for Nonstrict Independence

Given a logic program P and a collection of goals g,, . . . , g, in the body of some
clause of P, and assuming that some amount of global information about the
bindings occurring in P is available at compile time, we would like to be able to
write a condition (for example, an i_cond) on the variables in these goals that is
sufficient to guarantee their nonstrict independence at run time, i.e., a condition
similar to that of Section 3.5, but applied to nonstrict independence. However, it is
important to note that whereas determining strict independence only requires
knowledge of 8, nonstrict independence requires information on the 0, as well
(and, in the case of considering purity of goals, on their partial answers), which
cannot be obtained in general from an i_cond check previous to the parallel
execution of the goals (short of actually running the goals themselves). This
information can only be obtained from global analysis and, therefore, only a global
independence condition can be generated for nonstrict independence. Therefore,
we only define global correctness of an i_cond with respect to nonstrict indepen-
dence.

Definition 17 (Global correctness of an i_cond w.r.t. nonstrict independence). An
i_cond is said to be globally correct with respect to nonstrict independence for a set
of goals g,, . . . , g, in a program P and a set of substitutions 0 iff VO E 0, if
i-condo is true, then g,, . . , g, are nonstrictly independent for 8.

INDEPENDENT AND-PARALLELISM 17

Above, the set 0 as is defined in Definition 11. Also, in the following para-
graphs, SW and SVG are as defined in Section 3.3, and SVGs and SVI,Y are as in
Section 3.5.

The main difficulty in generating a globally correct i_cond for nonstrict inde-
pendence comes again from the fact that the definition of nonstrict independence
is given in terms of variables in 0 and H,, whereas during compilation, and unless
an extremely sophisticated global analysis is available, we can only refer to
variables in the program. Therefore, we would like to translate the conditions in
Definition 15 into conditions involving the program variables. The nature of such
conditions will, of course, be very closely tied to the power of the global analysis.

As an example, we present conditions corresponding to a type of information
which appears feasible to obtain with current abstract interpretation techniques:
information about whether program ~nriables will be v or nv-bound at run time.
and about the possible sharing of variables among the terms to which such
variables will be bound. Relatively conventional abstract analyzers can obtain the
former kind of information. Recently, such techniques have been extended in order
to accurately obtain the latter kind of information, as in [31, 241. Given such global
information, a set S can be constructed which contains all shared program
variables which are known to be v-bound in all 0 in 0, which are all v-bound by all
0, for all g,O in which they appear, except at most the rightmost one, and which
are independent in 8, from other variables in S appearing in the same goal.
Intuitively, these are program uariables which are bound to run-time variables for
which the conditions in the definition of nonstrict independence hold. and thus the
conditions will only have to ensure that the rest of variables are also safe.

Given the set S, consider the set SD = S x S -{(x,x),x ES} - ((.I-,I’), 3g,.
x E ~~ardg,), y E r,ars(g,>} (i.e., the set of pairs of variables of S that riced to be
checked for independence), the set of nonshared variables SI = (A- such that .r
appears in at least one pair in SVZg), and the set SSf of pairs of variables in S and
SI which may be dependent, i.e., SSZ = {(x. ~1 such that x E S and v E SI and they
do not appear in the same goal}.

Definition 18 (SVG,,,, SVl,,5). Given a logic program P and a sequence of goals
g,, . . . , g,, in the body of some clause of P, we define two sets SVG,,, and SVI,,,
as follows:

. SVG,,, = SVG, - S.

?? SW,,, = (SVlg u SD u SSI> -SIP, where SIP is the set of pairs in CSVZg U
SD U SSI) that are known to be strictly independent due to global analysis.

In words, SVC,, contains all SVGg except those variables meeting the nonstrict
independence conditions. SM,, makes sure that, in addition to the normal pairs to
be checked for strict independence (SW,), also variables in S are mutually
independent and independent from those in the pairs in SVZg. The pairs that are
known to be already independent (SIP) are, of course, excluded.

Now we can consider the particular i_cond

ground(SVC,,) , indep(S1/7,,) .

(which, again, can be compacted as shown when defining SW). The following
theorem shows that this i-cod is sufficient for the nonstrict independence of
g,,...,g,.

38 M. V. HERMENEGILDO AND F. ROSS1

Theorem I4. The i _cond

where WC,, and SVZ,,, are computed on the collection of goals g,, . . . , g, as in
Dejinition 18, is global4 correct with respect to nonstrict independence for those
goals.

PROOF. The definition of nonstrict independence imposes conditions on the set of
variables actually shared by the goals g,, . . . , g,. These variables will appear in one
or more of the terms to which the variables in the program are bound by the 0 in
0. Such program variables belong, in principle, to SVG U SZ. Except for the
program variables in S, all other variables in SVG are either known to be ground
or checked for groundness and thus contain no variables. Therefore, variables can
only appear in the terms to which the program variables in S and SI are bound.
The success of the independence check on the pairs in SVIg assures that none of
the variables in the terms to which the variables in SZ are bound is shared.
Therefore, only the variables in the terms to which the variables in S are bound
can be shared. By definition of the set S, these variables will not be aliased upon
success of their corresponding goals (provided they were not before) and they meet
the binding conditions. However, these variables could not have been aliased
before (either directly among themselves or indirectly through the variables in S1)
because of the success of the checks for independence of the pairs in (SD U SSI).
0

Example 14. Given the collection of goals p(f(x), g(y, z, I, m, n>), q(x, w, m, u),
r(y, h(k,n,u)) and the global knowledge that m is ground in 0, that w and z as
well as I and k are independent in 0, and that x, y meet the single, rightmost goal
nv-binding and nonaliasing conditions, we have the sets: SVGg = {x, y, n, u), S =
Ix, yl, SWg = k k), (I, w>, (I, k), (w, kN, SD = 0, SZ = Iz,w, k, [I, SSZ = Rx, k),
(y,w)), and SIP = {(w, z), (x, k)}. Thus, WC,, = {n,u) and Svl,, = {(w, k), (z, k),
Kw), (1, k), (y, w>l.

Because of the rather conservative way in which it is given, the global condition
for nonstrict independence provided can only be considered as a first approxima-
tion of what is achievable in terms of compile-time detection of this type of
independence. Furthermore, we have not treated the issue of the run-time renam-
ing transformation, which, unlike in strict independence, cannot be avoided, in
general, for nonstrictly independent goals. It would be desirable to perform this
transformation when possible at compile time or, at least, to minimize the run-time
work involved through compile-time analysis. As will be mentioned in the conclu-
sions, these issues are left as future work.

Example 15 Oipplication-global correctness of CGEs w.r.t. nonstrict independence). In
a difference-list quick-sort program, given the goals

qsort(S,sort,[PiLs]), qsort(L,Ls,R)

and the knowledge that S, L, and P are ground in 0, that LS in the first qsort
goal is a leftmost occurrence (and therefore independent from all other variables),
and that the first qsort call does not nv-bind LS, the following CGE is globally

INDEPENDENT AND-PARALLELISM
-

39

correct with respect to nonstrict independence:

(indep(Sor,R)=>qsort(S, Sor,[PlLsl) & qsort(L,Ls,F?) 1.

Note that this is one of the cases hinted at above in which the actual renaming
transformation can also be done at compile time. Here LS is known to be free
before and after the execution of the first qsort call. Thus the program variable
LS coincides with the run-time variable that has to be renamed. Therefore, the
following CGE is a correct compile-time encoding of the run-time renaming
transformation (which can then be avoided):

(indepi,Sor,R)=>qsort(S, Sor,[PILsP, & qsort(L,Ls,!;i I,
I..sP=Ls.

Note that the dependency graph approach (mentioned in Section 3.7) could benefit
in a straightforward way from the introduction of the concept of nonstrict indcpen-
dence. This would allow the parallel execution of many more goals.

4.4. A Special Case of Nonstrict Independence: Negatil’e Goals

Because of the definition of negation in Prolog as negation by failure, we can easily
see that no negative literal can ever nv-bind any variable or produce any alias. In
fact, even when a negative goal succeeds, this means that the corresponding
positive one failed, so that any bindings created by the positive one are undone.

Let us now consider a collection of goals ,q,, . . , g,, and let us suppose that some
of the g, are positive and some are negative. Because of the above consideration
(that can be formally derived also by appropriate global analysis), the following
facts hold:

* If a shared variable x occurs only in negative goals or in at most one positive
goal which is to the right of the negative ones, then the first condition of the
definition of nonstrict independence holds for s.

?? If g, is a negative goal, then the second condition of the definition of
nonstrict independence holds for all the pairs of variables in this goal.

The above discussion is given in terms of run-time variables. However. it is also
possible to exploit the presence of negative goals at compile time, as the following
corollary shows:

Corollury 1. Gicen a collection of literals g,, . . , g,, _ , . g,, in the body q/’ a cku~~e of’ a
program, if gj is a negative literal Vi = 1,. . , II - 1, then they are nonstrict~~~
independent.

PROOF. Consider any substitution 0. Then, for any shared variable I‘, at most s,, H
nv-binds 11. Consider then any pair (x, y) of shared variables which appear in the
same R, 0, i 4 n - 1. Then, since g, 0 is negative, it will not nv-bind or alias them, so
they will be strictly independent. Therefore, the two conditions for nonstrict
independence hold. ??

Exumple 16. Consider the following clause:

[~(X,_Y,Z.~,,W):- ~Y(x,I:),~s~‘,w),~(x.)‘),~(Y,z).

40 M. V. HERMENEGILDO AND F. ROSSI

For the first three literals, the corollary holds and thus they are nonstrictly
independent. If all four literals are considered, then it is straightforward to show
that even if no global information is available, by combining concepts and condi-
tions from strict and nonstrict independence, a globally correct i_cond for these
four goals is simply ground (y) , indep (x, z) .

Of course this discussion about negative literals assumes that the program has
been written to take into account any problems that might occur when executing
possibly nonground negative goals.

5. USING STRICT AND NONSTRICT INDEPENDENCE IN PRACTICE

The concepts presented regarding strict and nonstrict independence can be used in
practice to obtain speedups with respect to the sequential execution. This has been
shown for several benchmarks, for example, in [18]. As an example, in this section
we present actual run times for the result of parallelizing a medium-sized bench-
mark (boyer, a reduced version of the Boyer-Moore theorem prover, written by
Evan Tick), which has the advantage of allowing the exploitation of both strict and
nonstrictly independence, although to different degrees. This benchmark proves
theorems in basically two steps: a rewriting step (“rewrite,” which comprises most
of the computation) and a tautology checking step (“prove”). Table 1 gives
execution times for the benchmark running on the unoptimized version of the
&-Prolog system [18], using l-10 sequent balance processors, for the original,
sequential program and for the cases in which the program has been parallelized
using either strict or nonstrict independence. The results for the whole benchmark
are represented in speedup form in Figure 1. It can be observed that while only a
small amount of speedup can be obtained by using strict independence, reasonable
speedups4 can be obtained using the nonstrict independence notion. It is interest-
ing to observe, as shown in Figure 2, that strict independence is relatively
successful at parallelizing the “prove” part of the algorithm. On the other hand, it
is unsuccessful at parallelizing the “rewrite” part, while nonstrict independence
parallelizes both. As can be seen in Table 1, the fact that “rewrite” represents the
bulk of the computation explains why, despite parallelizing the “prove” part
correctly, no significant speedup is observed for strict independence in the whole
benchmark. However, this result should not be taken as far as to imply that strict
independence is not, in general, useful in practice. It has the advantage of being

TABLE 1. Execution time of boyer .pl (rewrite+prove) on Sequent Balance l-10
processors, sequential vs. strict independence vs. nonstrict independence

Nproc seq

1 6338 (6179 + 159)
2 6339 (6179 + 160)
4 6339 (6179 + 160)
8 6339 (6179 + 160)

10 6339 (6179 + 160)

si nsi

6338 (6179 + 159) 8479 (8320 + 159)
6269 (6179 + 90) 4479 (4389 + 90)
6238 (6169 + 69) 2488 (2419 + 69)
6228 (6169 + 59) 2029 (1970 + 59)
6228 (6169 + 59) 1838 (1779 + 59)

4 This speedup can be made arbitrarily large by using appropriate data. In this case, a theorem
requiring a relatively small proof was used.

INDEPENDENT AND-PARALLELISM 41

5.0

4.0

[3x

v1
2.0

1.0

0.0

5s

4.c

3.0

%
v) 2.0

1.0

OS

Benchmark: boYer.Pl(2)

i I I : : : : : ;
: j j

:
; j i :

: j :
: : : j :

: :

j : : :
:

: : :

Numba of Agam
‘-(r non-strict indcj-mdmce
- strict independence
-o- sequential version

Benchmark: boyer.pl (2) (rewrite only)

:

FIGURE 1. Speedup for boyer i 2 i -
strict vs. nonstrict independence.

Benchmark: boyer.pl(2) @rove OtiY)

Number of Agents

-o- non-strict indqmdmcc
- strict indepndewt
--a- sqmmtial version

FIGURE 2. Speedup for “rewrite” and “prove ” of boyer (2)-strict vs. nonstrict indepen-
dence.

42 M. V. HERMENEGILDO AND F. ROSS1

easier to detect than nonstrict independence and, in fact, as shown for example in
[18], some programs can still be parallelized quite successfully using strict indepen-
dence alone.

6. CONCLUSIONS AND FUTURE WORK

Much work has been done and is currently in progress in the compilation and
implementation of independent and-parallelism in its various forms. In this paper
we have provided a theoretical justification for such efforts, more general defini-
tions of independent and-parallelism which can extend their applicability, and a
formal basis for the automatic exploitation of such parallelism.

We have introduced a parallel execution framework and used it to reason about
the correctness and efficiency of running goals in a resolvent in parallel indepen-
dently. As a result of this, we have identified two interesting classes of goals (one
included in the other one> whose parallel execution is both correct and efficient.
Goals in such classes are called, respectively, strictly and nonstrictly independent.

More precisely, we have proved the correctness and ejfficiency of running in
parallel strictly independent goals, i.e., that the solutions obtained through parallel
execution are the same as those produced by standard sequential SLD resolution
and that the execution time is reduced (or, in the worst case, it remains the same).
We then introduced the concept of nonstrict independence and we have shown
that the same results hold for nonstrictly independent goals, thus expanding the
applicability of the method.

Most importantly, we also proposed different sets of efficient conditions which
can be constructed at compile time and then used at run time to check for strict
and nonstrict independence. These different conditions apply to the cases when the
goals to be executed in parallel are considered in isolation and also when they are
considered as part of a clause or of a program. In this latter case we have shown
how to make use of whatever clause-level or program-level binding information is
available. Simplifications of the above conditions have also been pointed out for
the interesting cases of existential variables and negative goals. In particular, we
have proved that negative goals are always nonstrictly independent, and that goals
which share an existential variable (and one of them contains in leftmost occur-
rence) are never strictly independent. Moreover, all the proposed independence
conditions have been proved to be sufficient.

The condition generation algorithms which we have presented can also be used
in parallel execution methods that do not use run-time checks. In this case, it is
sufficient to require that the generated compile-time condition be empty for each
set of goals to be (unconditionally) executed in parallel. Furthermore, they can be
used also for checking at compile or run time the correctness and efficiency of
user-provided annotations.

Because of its dependence on information to be obtained from global analysis,
the exact nature of which is outside the scope of this paper, the compile-time
conditions for nonstrict independence given have been proposed only to serve as
an example, and under quite simplistic assumptions regarding such information.
This topic, which clearly needs to be developed further in view of the capabilities of
particular analyzers, and the related topic of determining when and how to perform
the renaming transformation at compile time, are proposed as future work.

INDEPENDENT AND-PARALLELISM 43

Another subject for future study is the extension of the results of this paper to
the constraint logic programming framework [25], which extends logic programming
by replacing term equalities with constraints and the unification algorithm with any
constraint solver. In fact, the “back-binding” goals and the conditions on them for
ensuring correctness and efficiency also have a natural interpretation in terms of
the constraint logic programming model as constraints that have to be satisfiable.

Finally, the model used in this paper has considered the parallel execution of
entire proof trees associated with goals, since this reflects the operation of a
significant class of models of and-parallel execution for nondeterministic logic
languages. In other words, if two or more goals are found to be dependent, then
their proof trees are explored one after the other (of course, parallelism is still
allowed within the exploration of each one of the trees). However, we believe that
the ideas and results presented in this paper are not inherently limited to this
particular model and can be used in a quite straightforward manner also as a basis
for reasoning about the correctness and efficiency of running in parallel parts of
executions of goals smaller than a whole proof tree, down to a single resolution
step. We will refer to these possibly smaller parts as “threads.” Ultimately. all
parallel execution is, by nature, independent at some level of granularity, and
therefore much of what is conventionally referred to as “dependent and-paralle-
lism” could also be considered as independent and-parallelism if the concept of
independence is applied at the right level. The basis for the exploitation of the
remaining dependent and-parallelism is the concept of determinism, which is, with
independence, the other main principle governing parallel execution models be-
cause of its ability to also guarantee the “no slowdown” property. While the
determinism principle allows safely running deterministic threads in parallel inde-
pendently of whether they are dependent or not, the independence principles allow
safely running nondeterministic threads in parallel, provided the independence
conditions are met. Further exploration of these points of view is also proposed as
future work.

We thank Daniel Cabeza Gras, Maria J. Garcia de la Banda, Pedro tipez. Garcia, Saumya Debray,
Kevin Greene, Kalyan Muthukumar, Carlo Zaniolo, Kish Shen, Thomas Sjoland, and the anonymous
(and not anonymous) referees for suggesting several improvements to our presentation. Francesca Rossi
would also like to thank the Italian National Research Council for supporting her stay at MCC. Part of
this work was performed in the context of the ESPRIT project 2471 “PEPMA” and CICYT project
TICgO-1105-CE and has greatly benefited from discussions with other members of the partner
institutions, most significantly from SICS and University of Bristol, as well as with members of the CLIP
group at the Technical University of Madrid (UPM). The research described in this paper was done at
MCC, University of Texas, Technical University of Madrid (UPM), and University of Pisa. The final
version of this paper was produced under partial support from ESPRIT project 6707 “PARFORCE”
and CICYT project TIC93-0976CE.

REFERENCES
1. Apt, K. and van Emden, M., Contributions to the theory of logic programming, J. ACM

29(3):841-863 (1982).
2. Apt, K. R. Introduction to Logic Programming (revised and extended version), Technical

Report CS-R8826, Centre for Mathematics and Computer Science (CWI), Amsterdam,

44 M. V. HERMENEGILDO AND F. ROSS1

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

1988. To appear in: J. van Leeuwen (ed.), Handbook of Theoretical Computer Science,
North-Holland.
Biswas, P., Su, S., and Yun, D., A scalable abstract machine model to support limited-
OR/restricted AND parallelism in logic programs, in: Fifth International Conference and
Symposium on Logic Programming, MIT Press, Cambridge, MA, 1988, pp. 1160-1179.
Bruynooghe, M., A Framework for the Abstract Interpretation of Logic Programs,
Technical Report CW62, Department of Computer Science, Katholieke Universiteit
Leuven, October 1987.
Chang, J.-H., Despain, A. M., and Degroot, D., And-parallelism of logic programs based
on static data dependency analysis, in: Compcon Spring ‘8.5, February 1985, pp. 218-225.
Chang, S.-E. and Chiang, Y. P., Restricted AND-parallelism execution model with
side-effects, in: E. L. Lusk and R. A. Overbeek (eds.), Proceedings of the North American
Conference on Logic Programming, MIT Press, Cambridge, MA, 1989, pp. 350-368.
Conery, J. S.,,The And/.Gr Process Model for Parallel Interpretation of Logic Programs,
Ph.D. thesis,“Technical Report 204, The University of California at Irvine; 1983.
Conery, J. S., Binding environments for parallel logic programs in nonshared memory
multiprocessors, in: Symp. on Logic Prog., MIT Press, Cambridge, MA, 1987, pp.
457-467.
Cousot, P. and Cousot, R., Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints, in: ACM Symp. on
Principles of Programming Languages, ACM, 1977, pp. 238-252.
Debray, S. K. and Warren, D. S., Automatic mode inference for Prolog programs, J.
Logic Programming 5(3x207-229 (1988).
DeGroot, D., Restricted AND-parallelism, in: International Conference on Fifth Genera-
tion Computer Systems, Tokyo, November 1984, pp. 471-478.
DeGroot, D., A technique for compiling execution graph expressions for restricted
AND-parallelism in logic programs, in: Proc. of the 1987 Znt. Supercomputing Conf.,
Springer-Verlag, Berlin, 1987, pp. 80-89.
DeGroot, D., Restricted AND-parallelism and side-effects, in: International Symposium
on Logic Programming, IEEE Computer Society, New York, 1987, pp. 80-89.
Delcher, A. L. and Kasif, S., Some results on the complexity of exploiting dependency in
parallel logic programs, J. Logic Programming 6(3):229-241 (1989).
Garey, M. R. and Johnson, D. S., Computers and Zntractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, New York, 1979.
Gupta, G. and Jayaraman, B., Compiled and-or parallelism on shared memory multipro-
cessors, in: 1989 North American Conference on Loguz Programming, MIT Press, Cam-
bridge, MA, 1989, pp. 332-349.
Haridi, S. and Janson, S., Kernel Andorra Prolog and its computation model, in:
Proceedings of the Seventh International Conference on Logic Programming, MIT Press,
Cambridge, MA, 1990, pp. 31-46.
Hermenegildo, M. and Greene, K., &-Prolog and its performance: Exploiting indepen-
dent And-parallelism, in: 1990 International Conference on Logic Programming, MIT
Press, Cambridge, MA, 1990, pp. 2.53-268.
Hermenegildo, M. and Rossi, F., On the correctness and efficiency of independent
and-parallelism in logic programs, in: 1989 North American Conference on Logic Pro-
gramming, MIT Press, Cambridge, MA, 1989, pp. 369-390.
Hermenegildo, M. and Rossi, F., Non-strict independent and-parallelism, in: 1990
International Conference on Logic Programming, MIT Press, Cambridge, MA, 1990, pp.
237-252.
Hermenegildo, M. V., An Abstract Machine Based Execution Model for Computer
Architecture Design and Efficient Implementation of Logic Programs in Parallel, Ph.D.
thesis, University of Texas at Austin, August 1986.
Hermenegildo, M. V. and Nasr, R. I., Efficient management of backtracking in AND-
parallelism, in: Third International Conference on Logic Programming, Lecture Notes in
Computer Science 225, Springer-Verlag, Berlin, July 1986.

INDEPENDENT AND-PARALLELISM 45

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Jacobs, D. and Langen, A., Compilation of logic programs for restricted and-parallelism,
in: European Symposium on Programming, 1988, pp. 284-297.
Jacobs, D. and Langen, A., Accurate and efficient approximation of variable aliasing in
logic programs, in: 1989 North American Conference on Logic Programming, MIT Press,
Cambridge, MA, 1989.
Jaffar, J. and Lassez, J.-L., Constraint logic programming, in: ACM Symp. Principles of
Programming Languages, ACM, New York, 1987, pp. 11 l-l 19.
Kale, L., Completeness and full parallelism of parallel logic programming schemes, in:
Fourth IEEE Symposium on Logic Programming, IEEE, New York, 1987, pp. 125 133.
Lin. Y.-J., A Parallel Implementation of Logic Programs, Ph.D. thesis, Dept. of Com-
puter Science, University of Texas at Austin, August 1988.
Lloyd, J. W., Logic Programming, Springer-Vcrlag, Berlin, 1987.
Mellish, C. S., Abstract interpretation of Prolog programs, in: Third Internutional
Conference on Logic Programming, Lecture Notes in Computer Science 225. Springer-
Verlag, Berlin, July 1986.
Muthukumar, K. and Hermenegildo, M., Complete and efficient methods for supporting
side effects in independent/restricted And-parallelism, in: 1989 International Conference
on Logic programming, MIT Press, Cambridge, MA, 1989, pp. 80-101.
Muthukumar, K. and Hermenegildo, M., Determination of variable dependence infor-
mation at compile-time through abstract interpretation, in: 1989 North Americun Confer-
ence on Logic Programming, MIT Press, Cambridge, MA, 1989, pp. 166-l 89.
Muthukumar, K. and Hermenegildo, M., The CDG. UDG, and MEL methods for
automatic compile-time parallelization of logic programs for independent and-parallc-
lism, in: 1990 international Conference on Logic Programming, MIT Press, Cambridge,
MA, 1990, pp. 221-237.
Warren, D. H. D., An Abstract Prolog Instruction Set, Technical Report 309. SRI
International, 1983.
Warren, D. H. D., OR-parallel execution models of Prolog, in: Proceedings qf TAPSOFT
‘87, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1987.
Warren, D. H. D., The extended Andorra model with implicit control. in: Jansson (cd.),
Parallel Logic Programming Workshop, Spanga, Sweden, June 1990.
Warren, R., Hermenegildo, M., and Debray, S., On the practicality of global flow
analysis of logic programs, in: Fifth International Conference and Symposium on Logic
Programming, MIT Press, Cambridge, MA, 1988, pp. 684-699.
Westphal. H. and Robert, P., The PEPSys model: Combining backtracking, AND- and
OR-parallelism, in: Symp. of Logic Prog., IEEE Comp Society, 1987, pp. 436448.
Winsborough, W. and Waern, A., Transparent and-parallelism in the presence of shared
free variables, in: Fifth International Conference and Symposium on Logic Programming,
MIT Press, Cambridge, MA, 1988, pp. 749-764.

