

Topology and its Applications 75 (1997) 125-142

TOPOLOGY AND ITS APPLICATIONS

Bijective preimages of ω_1

Chris Good a,b,1

 ^a Wadham College, Oxford University, Oxford OX1 3PN, UK
 ^b School of Maths and Stats. The University of Birmingham, Birmingham B15 2TT, UK Received 13 July 1995; revised 11 June 1996

Abstract

We study the structure of spaces admitting a continuous bijection to the space of all countable ordinals with its usual order topology. We relate regularity, zero-dimensionality and pseudonormality. We examine the effect of covering properties and ω_1 -compactness and show that locally compact examples have a particularly nice structure assuming MA + \neg CH. We show that various conjectures concerning normality-type properties in products can be settled (modulo set-theory) amongst such spaces.

Keywords: Countable ordinals; ω_1 ; Normality in products; ω_1 -compactness; Covering properties; Intersection topologies

AMS classification: 54A10; 54D15; 54D20; 54G20

1. Preamble

In [28], Reed defines the class C of spaces (X, \mathcal{T}) , where X has size ω_1 and \mathcal{T} is the join of two topologies $\mathcal{T}_{\mathbb{R}}$ (which makes X homeomorphic to a subset of \mathbb{R}) and \mathcal{T}_{ω_1} (which makes X homeomorphic to the ordinal space ω_1). Reed calls C the class of 'intesection' topologies since such spaces have a base of the form $\{B \cap G: B \in \mathcal{T}_{\mathbb{R}}, G \in \mathcal{T}_{\omega_1}\}$. This construction was inspired by various specific constructions, for example, Pol's perfectly normal, locally metrizable, nonmetrizable space, Pol and Pol's hereditarily normal, strongly zero-dimensional space with a subspace of positive dimension (see [28]), and has also been studied by van Douwen [7], Jones [17] and Kunen [20]. Motivated by Reed's definition, we define W to be the class of all continuous bijective preimages of the space of countable ordinals and we analyse the structure of such spaces. In [12], we characterize bijective preimages of arbitrary ordinals.

¹ E-mail: c.good@bham.ac.uk.

^{0166-8641/97/\$17.00} Copyright © 1997 Elsevier Science B.V. All rights reserved PII S0166-8641(96)00085-5

We begin with some remarks concerning regularity and first countability and then look at covering properties, ω_1 -compactness, normality and countable paracompactness, and the effect of Martin's axiom together with local compactness on W. Covering properties, as one might expect, have a significant effect on members of W; for example, a regular Xin W is paracompact if and only if it has a club set of isolated points. On the other hand, ω_1 -compactness ensures that much of the structure of ω_1 remains, since only stationary sets can be both closed and uncountable. We end with a few examples, mostly concerning normality-type properties in products. It is not suprising that many of these examples are set-theoretic since, assuming MA + \neg CH, any locally compact X in W is either a normal nonmetrizable Moore space, a metrizable LOTS or contains a club set which has its usual order topology (Theorem 6.1), whilst there is a locally compact Dowker space in W assuming \diamondsuit^* [13]. Fleissner was prompted to call de Caux's Dowker construction a litmus test for set-theoretic models. The same could be said of W.

Obviously, every X in C is a member of W and some results about W generalize results about C. However, there are differences and it is worth comparing the two classes. No member of C can be locally compact and the tension between \mathbb{R} and ω_1 gives a global nature to constructions in C, whereas in W it is natural to aim for locally compact examples, defined inductively. If X is in W and is ω_1 -compact, then it is strongly collectionwise Hausdorff if it is regular, and collectionwise normal if and only if it is normal. In W countable paracompactness does not imply normality (Example 7.2, also [13] for an ω_1 -compact, strongly collectionwise Hausdorff example) and, for locally compact spaces, the converse is consistent and independent (Theorem 6.1 and [13]). In Cnormality, countable paracompactness, strong collectionwise Hausdorffness, collectionwise normality and ω_1 -compactness all coincide. Reed proves that under MA + \neg CH every X in C is perfect, and Kunen shows that no member of C is both normal and perfect. This situation generalizes to \mathcal{W} , since no X in \mathcal{W} can be both ω_1 -compact and perfect. Kunen also shows that there is a model of set theory in which C contains both normal and perfect elements, and that, assuming CH, every X in C contains a closed unbounded (club) set D which is a normal subspace. Since D is also a member of Cand there is a nonnormal X in C (see Example 7.2), this is about as close as possible to reversing the situation under MA $+ \neg$ CH. One might compare this with our result under Martin's axiom: in C, where no element can be locally compact, it is the Q-sets assured by $MA + \neg CH$ that have the significant effect; in W it is the effect of local compactness together with $MA + \neg CH$ that is important.

All spaces are Hausdorff and our notation is standard, as found in [10,19,21]. We use the fact that a nonstationary subset of ω_1 is σ -discrete and metrizable (see [8]) and that a stationary subset of ω_1 may be partitioned into ω_1 many disjoint stationary sets. We distinguish between σ -closed discrete and σ -discrete subsets. The limit type of a point in a scattered space is denoted lt(x). A space is κ -compact if every subset of size κ has a limit point, has the DFCC (or DCCC), if every discrete collection of open sets is finite (or countable). A space is pseudonormal if every pair of disjoint closed sets can be separated by disjoint open sets, provided at least one of them is countable. Given an X in \mathcal{W} there will be several possible maps from X to ω_1 , however, we ignore this, fixing a map and regarding an element of \mathcal{W} as a copy of ω_1 together with a topology which refines the usual order topology. We may refer to points of a given X in \mathcal{W} by their corresponding names in ω_1 and we often talk about a subset of X as being nonstationary, stationary or club if it is in ω_1 . A *basic* open set about a point x is always taken to be a subset of a basic open ω_1 -interval, $(\gamma, x]$.

Some basic facts are summarized in the following lemma, the proof of which is trivial, bearing in mind the following: Examples 1.6.19 and 1.6.20 of [10] can easily be modified to show that members of W need not be either Fréchet or sequential. Since initial segments are compact, countably compact X in W are homeomorphic to ω_1 . If X is not homeomorphic to ω_1 , there must be an ω -sequence which does not have a limit. Hence the DFCC and regular, pseudocompact X in W are homeomorphic to ω_1 . (The first countable, nonregular space described in Example 2.1 below is pseudocompact but not homeomorphic to ω_1 .)

Lemma 1.1. If X is a member of W, then X is a locally countable, countably tight, Hausdorff scattered space of cardinality ω_1 with countable pseudocharacter and character $\leq c$, but need not be Fréchet or sequential.

Further, X cannot be Lindelöf or have the CCC and, if it is countably compact, has the DFCC or is both regular and pseudocompact, then it is homeomorphic to ω_1 .

Let D be nonstationary and $C = \{x_{\alpha}: \alpha \in \omega_1\}$ a disjoint club and let D_{α} be the set $\{y \in X: x_{\alpha} < y < x_{\alpha+1}\}$. Then $\{D_{\alpha}: \alpha \in \omega_1\}$ is a collection of open (in ω_1 , as well as X) sets whose union is nonstationary and misses C and $\{C\} \cup \{D_{\alpha}: \alpha \in \omega_1\}$ partitions X. Thus we have

Lemma 1.2. Let X be a member of W. If D is a nonstationary subset of X, then D can be covered by a collection U of pairwise disjoint, countable sets which are open in ω_1 and whose union is nonstationary. If X is regular (and first countable), then the union is paracompact (metrizable). In fact X is first countable and regular if and only if nonstationary sets are metrizable.

2. Local properties

Example 2.1. Let $X = \omega_1$ have the usual order topology. If, in addition, we declare sets of the form

$$\{\omega^2\} \cup \bigcup \left\{ \left(\omega k, \omega (k+1) \right) \colon \, n \leqslant k \leqslant \omega \right\}$$

to be open, then X is first countable but fails to be either regular or locally compact at the point ω^2 . Since every sequence of successor ordinals below ω^2 has a limit, every continuous function from $(0, \omega^2]$ to \mathbb{R} is bounded and X is pseudocompact. It is clear that this space does not have the DFCC and is not homeomorphic to ω_1 . If instead we declare sets of the form

$$\{\omega^2\} \cup \bigcup \left\{ \left(\omega k + m_k, \omega(k+1)\right]: \ m_k \in \omega
ight\}$$

to be open, for any sequence $\{m_k\}_{k\in\omega}$ from ω , then X is regular but fails to be either first countable or locally compact at the point ω^2 . If we declare sets of the form

$$\{\omega^2\} \cup \bigcup \left\{ \left(\omega k + m_k, \omega(k+1)\right): \ m_k \in \omega \right\}$$

to be open, then regularity, first countability and local compactness all fail at ω^2 . Furthermore, if we isolate every point ωk below ω^2 , the resulting space is regular and first countable but not locally compact.

Again, since a compact topology coincides with a coarser Hausdorff one, we have

Lemma 2.2. Let X be a member of W and suppose that X is locally compact at some point x. If C is a compact neighbourhood of x, then the subspace topology on C is the same as the topology induced on C by the usual ω_1 topology. In particular, if X is locally compact, then it is regular and first countable.

It is easy to see that first countable, collectionwise Hausdorff spaces are regular and, if the subspace $(\beta, \alpha]$ of some X in W is collectionwise Hausdorff and $lt(\alpha)$ is a successor, then X is regular at α . However, Example 3 of [23] describes an hereditarily collectionwise Hausdorff refinement (at the point ω^{ω}) of the usual topology on the countable ordinal space $\omega^{\omega} + 1$ which fails to be regular at ω^{ω} . Hence collectionwise Hausdorffness does not imply regularity. On the other hand, if X is regular, then it is collectionwise Hausdorff with respect to nonstationary closed discrete sets by Lemma 1.2 and, as regularity is hereditary, regular X in W are collectionwise Hausdorff with respect to any discrete set that is not stationary.

Lemma 2.3. If Y is a closed discrete subset of some X in W and Y is separated by open sets (i.e., there are disjoint open neighbourhoods about each point), then all but a nonstationary subset of Y consists of isolated points. If X is not collectionwise Hausdorff, then it has a closed discrete stationary set of nonisolated points.

If X in W is regular and collectionwise Hausdorff, then it is collectionwise normal with respect to closed nonstationary sets and, if X in W is normal and collectionwise Hausdorff, then it is collectionwise normal with respect to collections containing countably many stationary sets.

Proof. The first paragraph is trivial by the pressing down lemma.

Let $\{D_{\alpha}: \alpha \in \omega_1\}$ be a discrete collection of closed, nonstationary subsets. By Lemma 1.2, each D_{α} can be partitioned into a discrete collection of countable clopen sets $\{D_{\alpha,\beta}: \beta \in \omega_1\}$. Let $\{C_{\delta}: \delta \in \omega_1\}$ list $\{D_{\alpha,\beta}: \alpha, \beta \in \omega_1\}$, let $\{c_{\delta,n}\}_{n \in \omega}$ list C_{δ} and let $B_n = \{c_{\delta,n}: \delta \in \omega_1\}$. It is sufficient to separate $\{C_{\delta}\}$, which is a discrete

128

collection of closed sets. B_n is a closed discrete subset of X and, by the first part, all but a nonstationary subset N_n of B_n consists of isolated points. Let $N = \bigcup_n N_n$. N is nonstationary and X is regular, so N is contained in a nonstationary, open paracompact subset M. We can therefore separate $\{C_{\delta} \cap M: \delta \in \omega_1\}$ and are done. The last claim follows similarly. \Box

As we point out later, normal X in W are collectionwise Hausdorff assuming V = L, whilst the ladder space built over a stationary set (Example 7.3) is always locally compact, regular, first countable (and normal assuming MA + \neg CH) but never collectionwise Hausdorff.

Given Lemma 1.2, it should be clear that X is regular and first countable if and only if it is locally metrizable if and only if nonstationary subsets are metrizable and can be covered by a metrizable set which is open in ω_1 . Given that locally countable, Tychonoff spaces are zero-dimensional as well as Lemma 1.2, the proof of the following proposition should also be clear.

Proposition 2.4. For any X in W, the following are equivalent:

(i) X is regular;

(ii) X is Tychonoff;

(iii) X is (hereditarily) pseudonormal;

(iv) if C and D are any two disjoint closed subsets, at least one of which is countable, then there is a continuous map from X to [0, 1] taking C to $\{0\}$ and D to $\{1\}$;

(v) any two disjoint closed nonstationary subsets of X can be separated by disjoint open nonstationary sets;

(vi) X is zero-dimensional.

For regular (i.e., zero-dimensional) X in W, 2^{ω_1} is a universal space (see [10]). For arbitrary X in W, $2^{\mathcal{P}\omega_1}$ is universal: given \mathcal{T} refining the usual topology on ω_1 define $f:(X,\mathcal{T}) \to 2^{\mathcal{P}\omega_1}$ by $f(x,U) = \chi_U(x)$ where $\chi_U(x)$ is 1 if and only if $x \in U \in \mathcal{T}$ and 0 otherwise (see [29, 2.4]).

Of course we cannot expect to deduce normality from regularity and, as the next example shows, we cannot even expect to be able to separate a nonstationary closed set from a disjoint stationary set.

Example 2.5. Let X be the set ω_1 and let

 $W = \{ \alpha + \omega : \alpha \in \omega_1 \} \text{ and } R = \{ \alpha : \operatorname{lt}(\alpha) \ge 2 \}.$

Partition R into ω stationary sets $\{S_n: n \in \omega\}$. Topologize X by giving each of the sets X - R and $T_n = S_n \cup \{\alpha + n: \alpha \in \omega_1\}$, $n \in \omega$, the subspace topology inherited from the usual topology on ω_1 and declaring each T_n open. Since regularity is preserved in subspaces, and each of the sets X - R and S_n , $n \in \omega$, are mutually disjoint, X is regular. W and R are disjoint closed subsets of X, W is nonstationary and R is stationary. However, it is easy to see using the pressing down lemma that they cannot be

separated by disjoint open sets. See also Example 7.3, where a locally compact example is constructed assuming \clubsuit . Theorem 6.1 suggests that some set-theoretic assumption is needed in the locally compact case.

3. Covering properties

Recall that a space is said to be *weakly* θ -refinable if every open cover has an open refinement $\mathcal{G} = \bigcup_{n \in \omega} \mathcal{G}_n$ such that, for each x in X, x meets only finitely many open sets from \mathcal{G}_n , for some n. If there exist such \mathcal{G}_n , each covering X, then X is said to be θ -refinable or submetacompact. X is subparacompact if every open cover has a σ -disjoint open refinement and is strongly paracompact if every open cover has a star-finite open refinement.

It is clear that ω_1 and other stationary sets have an extreme dislike for uncountable, locally countable open covers. We would, therefore, expect elements of W which satisfy covering properties to look very different from ω_1 . This is indeed the case, stronger covering properties having stronger effect on ω_1 . For example, it is certainly impossible to tell which subsets are the preimages of stationary sets for any paracompact X in W. This is not the case for θ -refinable X in W; noncollectionwise Hausdorffness of the the ladder space is witnessed by a closed discrete stationary set, and assuming MA + \neg CH the space is θ -refinable hence σ -closed discrete.

Proposition 3.1. Let X be a member of W.

(1) X is σ -discrete if and only if it is weakly θ -refinable.

(2) X is σ -closed discrete if and only if it is θ -refinable if and only if it is weakly θ -refinable and perfect if and only if it is weakly θ -refinable and has a G_{δ} -diagonal if and only if it is subparacompact.

(3) X is developable (a Moore space) if and only if it is (regular), first countable and σ -closed discrete.

(4) X is screenable if and only if it is meta-Lindelöf if and only if it is σ -metacompact if and only if it is σ -para-Lindelöf if and only if it has a club set of isolated points.

(5) If X is metacompact then it is screenable. If X is regular then it is screenable if and only if it is (strongly) paracompact. Moreover, if X is also first countable, then it is screenable if and only if it is metrizable

Proof. Most of the first three equivalences follow directly from [24], but note also that subparacompact spaces are θ -refinable and, if $X = \bigcup_n X_n$, where each X_n is closed discrete, and \mathcal{U} is any open cover, then

 $\{\{U \cap X_n: u \in \mathcal{U}\}: n \in \omega\}$

is a σ -discrete closed refinement.

If a space is screenable or $(\sigma$ -)para-Lindelöf, then it is meta-Lindelöf, so let us suppose that X is meta-Lindelöf. Let V be any point countable open refinement of any open cover

Conversely, if $C = \{x_{\lambda}\}_{\lambda \in \omega_1}$ is a club set of isolated points (with $x_0 = 0$),

$$\{C\} \cup ig \{y: \; x_\lambda < y < x_{\lambda+1}\}: \; \lambda \in \omega_1ig\}$$

partitions X into a discrete collection of countable, clopen subsets. The rest follows easily, noting that paracompact, regular, first countable scattered spaces are metrizable [24]. \Box

In fact, by the above and [10, 6.3.2(f)], first countable, regular, paracompact X in W are LOTS. Given that monotonically normal X in W are either paracompact or contain a closed stationary subset with its usual topology [2], one might ask whether X in W is first countable and monotonically normal if and only if it is a LOTS.

Example 3.2. Let $X = \omega_1$. Let neighbourhoods about the ordinal ω^2 be as for the nonregular space described in Example 2.1 and isolate every other point. With this topology X is not regular and is not metacompact but does have a club set of isolated points.

It is clear that any paracompact X in W is σ -closed discrete. How far is being σ -closed discrete from having a club set of isolated points? By Lemma 2.3 and Proposition 3.1, the following is immediate.

Lemma 3.3. Let X in W be σ -closed discrete. If X is collectionwise Hausdorff, then it has a club of isolated points. If X is, in addition, regular (and first countable), then X is collectionwise Hausdorff if and only if it is paracompact (metrizable).

Assuming V = L (in fact \diamondsuit for stationary systems on ω_1) normal X in W are collectionwise Hausdorff (see [31], \diamondsuit will not suffice for the same reasons given in [31]), hence collectionwise normal with respect to closed nonstationary subsets. The same is true of countably paracompact X in W. Under MA + \neg CH [6] (also in a model in which GCH holds [31]) the ladder space of Example 7.3 is a σ -closed discrete, normal Moore space which is clearly not collectionwise Hausdorff. Hence it is consistent and independent that σ -closed discrete, (first countable) normal or countably paracompact X in W are collectionwise Hausdorff and hence paracompact (metrizable). Notice that in any case normal, σ -closed discrete X in W are countably paracompact (since they are Moore spaces). Are normality and countable paracompactness equivalent for σ -closed discrete X in W? (Certainly they are if MA + \neg CH or V = L.)

4. ω_1 -compactness

We would like some topological property that reflects stationarity in W. One candidate might be the fact that nonstationary sets are σ -discrete and metrizable in ω_1 . Another

that every continuous function from a stationary set to \mathbb{R} is eventually constant. The space described in Example 7.1 satisfies such a property and this is put to use in [14]. However, any X in C is a continuous preimage of \mathbb{R} , so in general this approach will not be effective. It turns out that ω_1 -compactness is the correct condition.

Lemma 4.1. Let X be a member of W. X is ω_1 -compact if and only if every nonstationary closed subset is countable.

Proof. If X is not ω_1 -compact, then it contains an uncountable closed discrete set K say which certainly has an uncountable closed nonstationary subset. Conversely suppose that X contains an uncountable closed set H that is not stationary. Let C be a club set disjoint from H and let K be a subset of H such that between any two elements of K there is an element of C and K is an uncountable closed discrete subset. \Box

Similar facts are true of C (see [20,28]).

The proof of the following proposition follows trivially from Proposition 3.1 and the fact that discrete collections are countable in the presence of ω_1 -compactness

Proposition 4.2. Let $X \in W$ be ω_1 -compact. Every discrete collection of subsets is countable and X

- (i) has the DCCC;
- (ii) is neither perfect nor subparacompact;
- (iii) is collectionwise Hausdorff if it is regular;
- (iv) is normal if and only if it is collectionwise normal.

Of course, X can simultaneously fail to be ω_1 -compact and perfect: let $X = \omega_1$ have the topology generated from the usual topology by declaring the set of successors closed (note also that no stationary subset is σ -discrete).

In his thesis and in [9], Tree has made an extensive study of generalizations of ω_1 compactness and the Lindelöf property. Certain of these properties are worth mentioning
in the context of W.

A space X is said to be *n*-star-Lindelöf if for every open cover \mathcal{U} there is a countable subcollection \mathcal{V} of \mathcal{U} such that $\operatorname{st}^n(\bigcup \mathcal{V}, \mathcal{U}) = X$ and is said to be strongly *n*-star-Lindelöf if the subcollection \mathcal{V} can be replaced by a countable set of points from X. X is said to be ω -star-Lindelöf if for every open cover \mathcal{U} there exists an n and a countable subcollection \mathcal{V} such that $\operatorname{st}^n(\bigcup \mathcal{V}, \mathcal{U}) = X$. (Recall that for a subset B and a countable collection of subsets \mathcal{A} , $\operatorname{st}(B, \mathcal{A})$ is the set $\bigcup \{A \in \mathcal{A}: A \cap B \neq \emptyset\}$ and that $\operatorname{st}^{n+1}(B, \mathcal{A})$ is defined inductively as $\operatorname{st}(\operatorname{st}^n(B, \mathcal{A}), \mathcal{A})$.)

We can summarize the relevant results of [9]: If X is Lindelöf, then it is ω_1 -compact. If it is ω_1 -compact, then it is strongly 1-star-Lindelöf. If X has the CCC, then it is 1-star-Lindelöf. If X is regular and ω -star-Lindelöf, then it has the DCCC and, if it has the DCCC, it is 2-star-Lindelöf. If X has the DCCC and is perfectly normal, then it has the CCC. If X is strongly n-star-Lindelöf, then it is n-star-Lindelöf, and, if it is

132

n-star-Lindelöf, then it is strongly (n + 1)-star-Lindelöf. X is ω -star-Lindelöf if it is *n*-star-Lindelöf for any *n*. It is easy to show that locally countable space is *n*-star-Lindelöf space if and only if it is strongly *n*-star-Lindelöf.

Proposition 4.3. Any 1-star-Lindelöf X in W is ω_1 -compact.

Any normal or strongly collectionwise Hausdorff X in W has the DCCC if and only if it is ω_1 -compact.

Proof. Suppose that X is not ω_1 -compact and let D be an uncountable closed subset of X, which is discrete in the usual order topology on ω_1 . For each point x of D, choose a basic open set meeting D in just the point x. For every other point of X, pick a (countable) basic open neighbourhood which misses D. The open cover consisting of all these neighbourhoods has the property that the first star about any countable subset of X will miss U_x for some (in fact uncountably many) x in D. Therefore X is not strongly 1-star-Lindelöf, in which case it is not 1-star-Lindelöf.

We have already shown that ω_1 -compact X in \mathcal{W} have the DCCC, so suppose that X is not ω_1 -compact. Let D be an uncountable closed discrete subset that is not stationary. Let $C = \{x_\lambda\}_{\lambda \in \omega_1}$ be a club set disjoint from D. For each λ , pick a point y_λ and an open subset U_λ of $\{y \in X: x_\lambda < y < x_{\lambda+1}\}$ such that $U_\lambda \cap D = \{y_\lambda\}$. By normality pick an open set V such that $\{y_\lambda: \lambda \in \omega_1\} \subseteq V \subseteq \overline{V} \subseteq \bigcup_{\lambda \in \omega_1} U_\lambda$. Then the collection of open sets $\{V \cap U_\lambda: \lambda \in \omega_1\}$ is discrete. Strong collectionwise Hausdorffness also gives such a collection. \Box

So, for regular X in W, X is strongly 2-star-Lindelöf if and only if it has the DCCC if and only if it is ω -star-Lindelöf, and X is 1-star-Lindelöf if and only if it is ω_1 -compact. For normal X in W, all these properties coincide.

Clearly, ω_1 itself distinguishes ω_1 -compactness from the Lindelöf property and the CCC. The following example is a modification of an example due to Reed [9]. It is essentially a subspace of the larger Reed machine ([26,27]) over ω_1 . It is also an example of a DCCC Moore space that is not DFCC (see Lemma 1.2).

Example 4.4. There is a strongly 2-star-Lindelöf Moore space in \mathcal{W} which is not 1-star-Lindelöf.

For each $\alpha \in \omega_1$, let $\{B_n(\alpha): n \in \omega\}$ be a decreasing, countable neighbourhood base in ω_1 at the point α . Let Q be the set, including 0, of all finite rational sums of the form $\sum_{i=0}^{n} 1/2^{k_i}$ where $k_{i+1} > k_i$. Partition ω_1 in to countably many disjoint stationary sets, indexed by Q, and let $X = \bigcup_{q \in Q} S_q = \omega_1$. For convenience, we denote points of X as (α, q) , where α is in S_q and q is in Q.

Suppose that $x = (\alpha, q)$ and that $q = \sum_{i=0}^{m} 1/2^{k_i}$. The *n*th neighbourhood about x is defined to be the set $N_n(x) = \{x\} \cup (X \cap \bigcup_{k \ge n} (B_k(\alpha) \times I_k))$, where I_k is the interval $[q + 1/2^{m+k+1}, q + 1/2^{m+k})$. Let X have the topology generated by these basic open sets. X is a Moore space just as for Reed's original example and, since the topology refines the usual topology on ω_1 , X is in W.

Since Q is countable the pressing down lemma yields: (*) If U is any open set containing a stationary subset of S_q , then U contains $((\alpha, \omega_1) \times (q, p]) \cap X$ for some α in ω_1 and some p > q in Q.

Clearly X is not ω_1 -compact. Suppose that $\mathcal{U} = \{U_{\alpha}: \alpha \in \omega_1\}$ is an uncountable collection of open sets in X. Without loss of generality we can assume that, for some q in Q, each U_{α} is a basic open set about a point x_{α} in S_q . For each x in S_q let B_x be a basic open neighbourhood. By (*) some B_x meets uncountably many U_{α} . Hence \mathcal{U} is not a discrete collection and X must have the DCCC. By the above, X is strongly 2-star-Lindelöf but not 1-star-Lindelöf.

Again the ladder space provides a locally compact example assuming \Diamond (see Example 7.3).

5. Covering properties and ω_1 -compactness

As we can see, no X in W can be both ω_1 -compact and paracompact. The following simple modification from [12] of Balogh and Rudin's difficult result [2] illustrates this well.

Theorem 5.1. A monotonically normal space is paracompact if and only if it does not contain a closed subspace, which is homeomorphic to a stationary subset of some regular cardinal κ if and only if it does not contains a closed subset, which is homeomorphic to some κ -compact X in W_{κ} for some regular κ .

Theorem 5.2. Let $X \in W$ be either ω_1 -compact or σ -closed discrete, or a free topological sum of ω_1 -compact and σ -closed discrete clopen subsets. $X \times \omega_1$ is normal if and only if X is normal, countably paracompact and collectionwise Hausdorff.

Proof. By [16, Theorem 2.3], if $X \times \omega_1$ is normal then X is countably paracompact and (ω_1) -collectionwise normal. If X is ω_1 -compact, then normality of the product follows by [16, 3.3]. (Notice that in this case X is collectionwise Hausdorff.) If X is regular, σ -closed discrete and collectionwise Hausdorff, then it has a clopen partition into countable regular pieces, by Lemma 1.2, Proposition 3.1 and Lemma 3.3, and, therefore, has normal product with ω_1 . \Box

Assuming MA + \neg CH, the ladder space of Example 7.3 is a normal, σ -closed discrete, countably paracompact, locally compact Moore space which is not collectionwise Hausdorff and so does not have normal product with ω_1 . What happens if σ -closed discrete is replaced by σ -discrete? (In [13], assuming \diamond^* , the space $Z \in W$ is σ -discrete, collectionwise normal, countably paracompact, locally compact and ω_1 -compact so that $Z \times \omega_1$ is normal but $Z^2 \times \omega_1$ is not since Z^2 is a Dowker space.) That the theorem is about the best possible can be seen from the following modification of the space Δ constructed by Bešlagić and Rudin [3], also used in [16].

Example 5.3. Bešlagić and Rudin use the axiom \diamondsuit^{++} to construct a collectionwise normal, countably paracompact space Δ , which is shown in [16] to have nonnormal product with ω_1 . The point set for Δ is $\{(\gamma, \delta) \in \omega_1^2: \delta < \gamma\}$. The proofs of collectionwise normality, countable paracompactness and of the non-normality of $\Delta \times \omega_1$ follow essentially from of [3, Lemma 1.2]. We shall associate ω_1 with a subset E of Δ in such a way that the subspace topology on E inherited from Δ satisfies this lemma. It is then easy to verify that E is collectionwise normal and countably paracompact but has nonnormal product with ω_1 . It is also easy to check that E is in W. To get the lemma to hold for E, we need an apparent strengthening of \diamondsuit^{++} . We use the notation from [3] to state this strengthening and point out that, in fact, it follows immediately from Fleissner's discussion of how to partition the set D in the statement of the axiom into a stationary, co-stationary set [11, p. 72]. Fleissner gives two methods of partitioning D and from the first it is clear that we can state the following version of \diamondsuit^{++} :

There is a sequence $\{A_{\alpha}: \alpha \in \omega_1\}$ such that for all $\alpha \in \omega_1$:

(1) (i) \mathcal{A}_{α} is a family of subsets of α ; (ii) $|\mathcal{A}_{\alpha}| \leq \omega$; (iii) $(\alpha - \beta) \in \mathcal{A}_{\alpha}$ for all $\beta \in \alpha$; (iv) \mathcal{A}_{α} is closed under finite intersections.

(2) If X is a subset of ω_1 , there is a club C_X such that (v) $(X \cap \gamma) \in \mathcal{A}_{\gamma}$ and $(C_X \cap \gamma) \in \mathcal{A}_{\gamma}$ for all $\gamma \in C_X$.

(3) Also there are disjoint stationary sets $\{D_{\gamma}\}_{\gamma \in \omega_1}$ such that, if

 $\mathcal{C}_{\alpha} = \{ C \in \mathcal{A}_{\alpha} : C \text{ is club in } \alpha \}$

and, for X a subset of ω_1 ,

$$S_X = \{ \alpha \colon X \cap C \neq \emptyset \text{ for all } C \in \mathcal{C}_\alpha \},\$$

then: (vi) C_{δ} is closed under finite intersections for all δ in $\bigcup_{\gamma} D_{\gamma}$; (vii) if S is a countable collection of stationary sets then $\bigcup \{S_X : X \in S\} \cap D_{\gamma}$ is stationary for all $\gamma \in \omega_1$.

Without loss of generality, we assume that D_{γ} is a subset of (γ, ω_1) and that $\{D_{\gamma}\}_{\gamma}$ partitions ω_1 . Let $E = \bigcup_{\gamma} D_{\gamma} \times \{\gamma\}$ be associated with ω_1 by the projection map $(\gamma, \delta) \mapsto \gamma$.

6. Martin's axiom and local compactness

In this section we prove:

Theorem 6.1. (MA + \neg CH) Suppose that X in W is locally compact. X is countably metacompact. Further, either

(i) X contains a closed subspace homeomorphic to ω_1 , or

(ii) X is a σ -closed discrete, normal, nonmetrizable Moore space that is not collectionwise Hausdorff, or

(iii) X is a metrizable LOTS.

(As a corollary it is consistent and independent that normality implies countable paracompactness in locally compact members of W. It is also clear that ω_1 -compact, locally compact X in W are, assuming MA+ \neg CH, homeomorphic to a copy of ω_1 together with a countable clopen set; assuming \diamondsuit^* there is a Dowker space in W which is ω_1 -compact and locally compact.)

Our proof is based on the following three results from [1,6,18]. To state them we recall some terminology: A family C separates disjoint members of A and B if, given disjoint A from A and B from B, there are C and D in C such that $A \subseteq C - D$ and $B \subseteq D - C$. A ladder on a limit α in ω_1 is a strictly increasing sequence $\{\alpha_n\}_{n \in \omega}$ cofinal in α , a ladder system is a collection of ladders for each limit α . A colouring of a ladder system is a collection of functions $\{f_{\alpha}: f_{\alpha}(\alpha_n) \in 2 \text{ for all } n \in \omega\}$. A uniformization of a colouring of a ladder system is a function $f:\omega_1 \to 2$ with the property that for each limit α there is $n \in \omega$ such that $f(\alpha_k) = f_{\alpha}(\alpha_k)$, whenever $n \leq k$.

Theorem 6.2 (Balogh). (MA + \neg CH) If X is a locally countable, locally compact space of cardinality less than c, then X is either σ -closed discrete or contains a perfect preimage of ω_1 .

Theorem 6.3 (Juhász and Weiss). $(MA + \neg CH)$ Let H_0 and H_1 be subsets of a space X such that $\overline{H_i} \cap H_j = \emptyset$, and $|H_i| = \kappa \leq c$, $i \neq j$. If, for $i \in 2$, there is a family of closed subsets A_i , which is closed under finite intersections and contains a neighbourhood base for points of H_i , and a family C, which is countable and separates disjoint members of A_0 and A_1 , then H_0 and H_1 can be separated by disjoint open sets.

Theorem 6.4 (Devlin and Shelah). $(MA + \neg CH)$ Every colouring of a ladder system has a uniformization.

The proof of the following lemma is easy

Lemma 6.5. Every perfect preimage of ω_1 is a countably compact, noncompact space and no space containing a perfect preimage of ω_1 is σ -discrete.

Lemma 6.6. (MA + \neg CH) If $X \in W$ is locally compact and σ -discrete, then it is normal.

Proof. If X is locally compact and σ -discrete, then it is a σ -closed discrete Moore space by Theorem 6.2 and Proposition 3.1 and can be written as a union of closed discrete sets D_n . By Theorem 6.3, it is enough to separate disjoint, closed (discrete) subsets of each D_k . Let H and K be two such subsets. Since X is a Moore space, D_k is a G_{δ} and is an intersection of open sets $\bigcap U_n$. For each α in $H \cup K$ choose a neighbourhood base of compact, clopen sets $\{B_{\alpha}(n)\}_{n \in \omega}$ such that $B_{\alpha}(n)$ is a subset of U_n . For each limit α , define a ladder $\{\alpha_n\}$, where $\alpha_n = \sup(B_{\alpha}(n) - U_{n+1})$. The colouring f_{α} of $B_{\alpha}(0)$ where f_{α} takes the value 0 if α is in H and 1 if α is in K induces a colouring of the ladder system. Uniformization of this colouring chooses disjoint neighbourhoods of H and K. \Box

Proof of Theorem 6.1. By Theorem 6.2, either X contains a perfect preimage of ω_1 , or it is σ -closed discrete. If the first holds, then, by Lemma 6.5, X contains a countably

compact, noncompact subspace K. This subspace is closed, since X is first countable, and since it is uncountable, it is also an element of W in its own right. Lemma 1.1, then, implies that K is homeomorphic to ω_1 . If X is σ -closed discrete, then, by Lemma 6.6, it is a normal Moore space. By Lemma 3.3, if X is collectionwise Hausdorff, then it is paracompact and, since it is first countable, it is a metrizable LOTS, as mentioned above.

Moore spaces are countably metacompact. Suppose that X contains a closed copy K of ω_1 , and that $\{D_n\}_{n \in \omega}$ is a decreasing sequence of closed sets with empty intersection. If every D_n meets K, then there is an n such that D_m has countable intersection with K for all n < m. Otherwise, the D_n are nonstationary and, by Lemma 1.2, can be covered by an open, metrizable set. In either case it is easy to see that X is countably metacompact. \Box

7. Some examples

Dowker proved that a topological space is normal and countably paracompact if and only if its product with the closed unit interval is normal. There is a sequence of similar results. A common theme links these results—they all involve some notion related to being perfect: $X \times [0, 1]$ is P if and only if X is Q for pairs of properties (P; Q)

- (1) (monotonically normal; monotonically normal and (semi-)stratifiable)
- (2) (hereditarily normal; perfectly normal)
- (3) (normal; normal and countably paracompact)
- (4) (δ -normal; countably paracompact)
- (5) (perfect (and normal); perfect (and normal))
- (6) (orthocompact; countably metacompact)

For references and definitions see [15,25,30,22]. As we have seen ω_1 is decidedly nonperfect and it turns out that for each pair (P; Q) (excepting, of course, the fifth) there is a space in W satisfying P but not Q, at least modulo some set-theoretic assumption. For the first two ω_1 itself will do and, for the third, the \diamond^* Dowker space [13]. In Example 7.1 a simple modification of the space described in [14, 3.1], based partly on Davies' almost Dowker space [5], gives an example that will do for the fourth and sixth pairings. (A space is orthocompact if every open cover has a refinement every subset of which has open intersection. A set is a regular G_{δ} if it is a countable intersection of the closures of open sets each containing it. A space is δ -normal if every pair of disjoint closed sets, one of which is a regular G_{δ} can be separated by disjoint open sets.)

Example 7.1. There is a pseudonormal, δ -normal, orthocompact, almost-Dowker space in W.

Let $X = \omega_1$ and partition X into stationary sets $\{S\} \cup \{S_{\alpha}: \alpha \in \omega_1\} \cup \{T_n: n \in \omega\}$. We identify X with a subset of $\omega_1^2 \cup (\omega_1 \times \omega)$: If α is in S then identify α with (α, α) in ω_1^2 . If α is in S_{β} then identify α with (α, β) in ω_1^2 . If α is in T_n then identify α with (α, n) in $\omega_1 \times \omega$. Let R be the set $\{(\alpha, \beta): \alpha < \beta \in \omega_1\}$. If α is not in S then α is isolated. If α is in S then choose a countable, decreasing clopen neighbourhood base $\{B_{\alpha}(n)\}_{n \in \omega}$ for α . Let the *n*th basic open neighbourhood of (α, α) in X be the set

$$\{(\alpha, \alpha)\} \cup (B^2_{\alpha}(n) \cap R) \cup \bigcup_{j>n} (B_{\alpha}(j) \times \{j\}) \cap T_j.$$

Bearing in mind the identification of X made above, with the topology generated by these sets it is clear that X is a first countable, zero-dimensional member of W. Since a diagonal intersection of club sets is club, only a nonstationary subset of S is isolated. We give outline proofs only (see [5,14]).

X is not countably metacompact since the closed subspace $S \cup \bigcup_{\alpha} S_{\alpha}$ is not: let $\{D_j\}_{j \in \omega}$ be a decreasing sequence of stationary subsets of S, each D_j is closed but, by the pressing down lemma applied twice to each D_j , if $\{U_j\}$ is a sequence of open sets, U_j containing D_j , then $\bigcap U_j$ is nonempty. Since X is Tychonoff, it is an almost Dowker space.

X is orthocompact because every point of X - S is isolated and S is a closed discrete subset, so that every open cover has a refinement, the intersection of any two elements of which consists entirely of isolated points.

X is δ -normal: Consider the (Moore) subspace $S \cup \bigcup_n T_n$. Let C be any closed set, D a disjoint regular G_{δ} and $E = D \cap S$. Using the pressing down lemma it is not hard to show that E is either a countable or co-countable subset of S. Since at most one of $C \cap S$ and E can be co-countable, X is pseudonormal and all points in X - S are isolated, C and D can be separated by disjoint open sets.

It is also possible to modify the other construction that Davies describes in [5] to obtain a Tychonoff space in W that has a point countable base but is not perfect. Note also that the subspace $S \cup \bigcup_n T_n$ is a Moore space hence perfect and countably metacompact.

The Dowker space mentioned above shows that normality is not hereditary in W and the example mentioned in Example 5.3 satisfies the same properties as the space Δ [3]: it is a normal space with an open cover having no closed shrinking such that every increasing open cover has a clopen shrinking. Assuming \Diamond^* , there is a locally compact anti-Dowker (countably paracomapct but not normal) space in W [13] which is both strongly collectionwise Hausdorff and ω_1 -compact, both of which (along with countable paracompactness) imply normality in C. In the next example we construct an anti-Dowker space in ZFC. The space is based on an example due to Reed [28] which we outline first.

Example 7.2. There is an anti-Dowker space in \mathcal{W} .

First we describe Reed's example of a pseudonormal, collectionwise Hausdorff, non-normal space in C:

Let $X = \omega_1$, and let \mathcal{T}_{ω_1} be the usual topology on ω_1 . Let L be the set $\{\alpha+n: n \leq \omega\}$, L_2 the set $\{\alpha+\omega^2: \alpha \in \omega_1\}$ and let $R = \omega_1 - (L \cup L_2)$. For each $\alpha+\omega^2$ in L_2 , $\{\alpha+\omega n\}_n$ is cofinal in $\alpha + \omega^2$ and $\{(\alpha + \omega n, \alpha + \omega(n + 1)]: n \in \omega, \alpha \in \omega_1\}$ partitions L into disjoint ω_1 -intervals. Let \mathbb{C} be a Cantor subset of \mathbb{R} , let \mathcal{B} denote a countable base for \mathbb{R} and, for each x in \mathbb{R} , let $\{B(x, i): i \in \omega\}$ be a decreasing \mathbb{R} -neighbourhood base at x.

138

We identify the points of X with points of the reals in the following way: Identify L_2 with a subset of \mathbb{C} . Associate R with a subset of $\mathbb{R} - \mathbb{C}$ so that $B \cap R$ is stationary for every $B \in \mathcal{B}$. For each $\alpha + \omega^2$ in L_2 and each $n \in \omega$, let $(\alpha + \omega n, \alpha + \omega(n + 1)]$ be associated with a countable dense subset of $B(\alpha, n)$. With this identification, let $\mathcal{T}_{\mathbb{R}}$ be the topology that X inherits from \mathbb{R} .

Let X have the "intersection" topology \mathcal{T} generated by $\mathcal{T}_{\omega_1} \cup \mathcal{T}_{\mathbb{R}}$. Clearly X is in \mathcal{C} , and is therefore first countable, pseudonormal and collectionwise Hausdorff. L_2 is a subset of a Cantor set and is $\mathcal{T}_{\mathbb{R}}$ -closed and R is \mathcal{T}_{ω_1} -closed so R and L_2 are disjoint closed subsets of X.

Suppose that U and V are disjoint open sets separating L_2 and R. For each α in L_2 , there is an $i_{\alpha} \in \omega$ such that $(\alpha_{i_{\alpha}}, \alpha] \cap B(\alpha, i_{\alpha})$ is a subset of U. There is an uncountable subset M of L_2 , a B in B and an $i \in \omega$ such that $i_{\alpha} = i$ and $B(\alpha, i_{\alpha}) = B$, for all α in M. $R \cap B$ is stationary, so there is a λ in $R \cap B$ which is a \mathcal{T}_{ω_1} -limit of M. But, if $(\beta, \lambda]$ is any \mathcal{T}_{ω_1} -open set containing λ , then $(\alpha_i, \alpha_{i+1}] \subseteq (\beta, \lambda]$ for some α in M, where $(\alpha_i, \alpha_{i+1}]$ is $\mathcal{T}_{\mathbb{R}}$ -dense in B. Hence λ is a \mathcal{T} -limit of U contained in R and U and V are not disjoint.

Now let $Y = \omega_1$. Let the sets L and L_2 , and the topologies \mathcal{T}_{ω_1} and \mathcal{T} be as defined above. Partition $\omega_1 - L$ into two disjoint stationary sets S_1 and S_2 , with $L_2 \subseteq S_1$. We topologize Y so that it is an anti-Dowker space as follows:

The subspace topology on both S_1 and S_2 is precisely the subspace topology inherited from ω_1 . If x is in S_2 , then a basic open set about x is of the form

$$(B\cap S_2)\cup \bigcup_{y\in B\cap S_2}A_y,$$

where A_y is a basic \mathcal{T} -open set and B is a basic open interval from \mathcal{T}_{ω_1} . Basic open sets about points in $L \cup L_2$ are inherited from \mathcal{T}_{ω_1} .

Y with the topology \mathcal{T} is just X and is pseudonormal. If x is in S_1 , then the set $L_x = \{y \in L_2: y < x\}$ is countable and \mathcal{T} -closed. By \mathcal{T} -pseudonormality, therefore, we can pick an \mathcal{T} -open set U_x containing L_x , whose closure misses S_2 . Let basic open sets about x in S_1 be those inherited from the usual topology \mathcal{T}_{ω_1} restricted to the set $S_1 \cup \overline{U_x}^{\mathcal{T}}$.

Clearly Y with this topology is a first countable member of W. To see that it is regular, consider the three cases:

(a) If x is an element of either L or L_2 , then it has a base of clopen sets inherited from ω_1 .

(b) Let x be an element of S_2 . Since X is regular, it is zero-dimensional and there is a \mathcal{T} -clopen A_x set containing x disjoint from L_2 . If $B_x = \{y \in S_2: y_x \leq y \leq x\}$, where y_x is the least element of A_x , then $A_x \cup B_x$ is a clopen set containing x. By construction, x has a base of such clopen sets.

(c) Let x be an element of $S_1 - L_2$. Since the subspace $S_2 \cup L \cup L_2$ is regular, it is pseudonormal. Therefore, there is an open set U_x containing $\{y \in L_2: y < x\}$ whose closure misses S_2 . If $B_x = \{y \in S_1: y \leq x\}$, then $\overline{U_x \cap B_x}$ is a closed neighbourhood of x which misses S_2 .

With this information one can see that Y is regular.

The proof that X is not normal only requires that R is stationary. The same argument shows that the disjoint closed sets S_1 and S_2 of Y cannot be separated by disjoint open sets.

To see that Y is countably paracompact, let $\{D_n\}_{n\in\omega}$ be a decreasing sequence of closed subsets with empty intersection. We require a decreasing sequence $\{U_n\}$ of open sets, $D_n \subseteq U_n$, such that $\bigcap \overline{U}_n$ is empty. If some D_n is countable, then we are done. Suppose that each D_n is uncountable. The subspace topology on both S_1 and S_2 is precisely the subspace topology inherited from ω_1 . Hence the intersection $\bigcup_m D_m \cap S_i$ is nonempty only if $D_n \cap (S_1 \cup S_2)$ is countable for some n. By construction, α in $S_1 \cup S_2$ is a limit of a cofinal sequence $\{\alpha_n + j_n\}_{n\in\omega}$ in L if and only if it is a limit of $\{\alpha_n + \omega\}$. Hence D_n lies in a clopen set U, which is contained in the paracompact subspace $\{0, \beta\} \cup L$.

Example 7.3. The ladder space.

Partition $X = \omega_1$ into two disjoint sets A and B. For each α in A, which is a limit of B, choose a sequence $\{\alpha_n\}_{n \in \omega}$ from B cofinal in α . Let neighbourhoods of any such α be α and all but finitely many points of $\{\alpha_n\}$ and isolate all the other points of X. With this topology X is a ladder space (see [31]). X is clearly a locally compact, first countable, regular member of W of scattered length 2. By the pressing down lemma, if A is stationary then X is not collectionwise Hausdorff. By Theorem 6.1, assuming MA + \neg CH X is a σ -closed discrete, hereditarily normal Moore space, which is neither collectionwise Hausdorff or ω_1 -compact.

Under \diamond for stationary systems on ω_1 , normal X in W are collectionwise Hausdorff (see [31]). Hence no ladder space with A stationary is normal assuming \diamond for stationary systems.

If we assume \clubsuit , then we may take the ladder space to be a strongly 2-star-Lindelöf space, which is not 1-star Lindelöf (4.4): Let $\{R_{\alpha}: \alpha \in \text{LIM} \cap \omega_1\}$ be a \clubsuit -sequence. Let A be the set of all limit ordinals and B the set of all nonlimits If $R_{\alpha} \cap B$ is infinite, then let $\{\alpha_n\}$ be $R_{\alpha} \cap W$ indexed increasingly; otherwise let $\{\alpha_n\}$ be some arbitrary sequence from B which is cofinal in α . Let \mathcal{U} be an uncountable collection of open sets and U be an uncountable subset of B meeting uncountably many members of \mathcal{U} . By \clubsuit , $\{\alpha_n\}$ is a subset of U for some α , so \mathcal{U} is not a discrete collection of open sets and Y has the DCCC. Clearly X is not ω_1 -compact so we are done by Proposition 4.3. Notice also that X is σ -discrete, regular and locally compact but is neither σ -closed discrete nor normal (in fact it is not possible to separate the nonstationary set $W = \{\alpha + \omega: \alpha \in \omega_1\}$ from the stationary A - W).

Acknowledgements

The majority of the material in this paper formed the second chapter of my thesis. I would like to take this opportunity to express my sincerest gratitude to my supervisors Peter Collins and Mike Reed for their continued help and support.

References

- Z. Balogh, Locally nice spaces under Martin's axiom, Comment. Math. Univ. Carolinae 24 (1983) 63-87.
- [2] Z. Balogh and M.E. Rudin, Monotone normality, Topology Appl. 47 (1992) 115-127.
- [3] A. Bešlagić and M.E. Rudin, Set-theoretic constructions of non-shrinking open covers, Topology Appl. 20 (1985) 167–177.
- [4] D.K. Burke, Covering properties, in: Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 347–422.
- [5] P. Davies, Nonperfect spaces with point-countable bases, Proc. Amer. Math. Soc. 77 (1979) 276–278.
- [6] K.J. Devlin and S. Shelah, A weak version of \Diamond which follows from $2^{\aleph_0} < 2^{\aleph_1}$, Israel J. Math. 29 (1978) 239–247.
- [7] E.K. van Douwen, On Mike's misnomed intersection topology, Topology Appl. 51 (1993) 197–201.
- [8] E.K. van Douwen and D.J. Lutzer, On the classification of stationary sets, Michigan Math. J. 26 (1979) 47–63.
- [9] E.K. van Douwen, G.M. Reed, A.W. Roscoe and I.J. Tree, Star covering properties, Topology Appl. 39 (1991) 71–103.
- [10] R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989).
- [11] W.G. Fleissner, Son of George and V = L, J. Symbolic Logic 48 (1983) 71–77.
- [12] C. Good, Topological characterizations of ordinals, to appear.
- [13] C. Good, Dowker spaces, anti-Dowker spaces, products and manifolds, Topology Proc., to appear.
- [14] C. Good and I.J. Tree, On δ -normality, Topology Appl. 56 (1994) 117–127.
- [15] G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 423–501.
- [16] G. Gruenhage, T. Nogura and S. Purisch, Normality of $X \times \omega_1$, Topology Appl. 39 (1991) 263–275.
- [17] M.R. Jones, Intersection topologies, Fund. Math., to appear.
- [18] I. Juhász and W. Weiss, Martin's axiom and normality, Gen. Topology Appl. 9 (1978) 263-274.
- [19] K. Kunen, Set Theory, An Introduction to Independence Proofs (North-Holland, Amsterdam, 1984).
- [20] K. Kunen, On ordinal-metric intersection topologies, Topology Appl. 22 (1986) 315-319.
- [21] K. Kunen and J.E. Vaughan, eds., Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984).
- [22] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970) 265–272.
- [23] Zs. Nagy and S. Purisch, When hereditarily collectionwise Hausdorffness implies regularity, in: J. Steprans and W.S. Watson, eds., Set Theory and its Applications, Lecture Notes in Math. (Springer, Berlin, 1989) 128–134.
- [24] P.J. Nyikos, Covering properties on σ -scattered spaces, Topology Proc. 2 (1977) 509–541.
- [25] T.C. Przymusiński, Products of normal spaces, in: Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 781–826.
- [26] G.M. Reed, On chain conditions in Moore spaces, Gen. Topology Appl. 4 (1974) 255-267.
- [27] G.M. Reed, On continuous images of Moore spaces, Canad. J. Math. 26 (1974) 1475–1479.
- [28] G.M. Reed, The intersection topology w.r.t. the real line and the countable ordinals, Trans. Amer. Math. Soc. 297 (1986) 509-520.
- [29] H. Reiter, Spaces with compact subtopologies, Rocky Mountain J. Math. 2 (1972) 239-247.

- [30] M.E. Rudin, Dowker spaces, in: Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 761-780.
- [31] F.D. Tall, Normality versus collectionwise normality, in: Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 685–732.
- [32] J.E. Vaughan, Countably compact and sequentially compact spaces, in: Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 569-602.