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Abstract

We study the structure of spaces admitting a continuous bijection to the space of all countable
ordinals with its usual order topology. We relate regularity, zero-dimensionality and pseudonor-
mality. We examine the effect of covering properties and wi-compactness and show that locally
compact examples have a particularly nice structure assuming MA + —CH. We show that various
conjectures concerning normality-type properties in products can be settled (modulo set-theory)
amongst such spaces.
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1. Preamble

In [28], Reed defines the class C of spaces (X, 7 ), where X has size w; and 7T is
the join of two topologies Tr (which makes X homeomorphic to a subset of R) and
7., (which makes X homeomorphic to the ordinal space w;). Reed calls C the class of
‘intesection’ topologies since such spaces have a base of the form {BNG: B € T, G €
Ter }. This construction was inspired by various specific constructions, for example,
Pol’s perfectly normal, locally metrizable, nonmetrizable space, Pol and Pol’s hereditarily
normal, strongly zero-dimensional space with a subspace of positive dimension (see [28)),
and has also been studied by van Douwen [7], Jones {17] and Kunen [20]. Motivated by
Reed’s definition, we define W to be the class of all continuous bijective preimages of
the space of countable ordinals and we analyse the structure of such spaces. In [12], we
characterize bijective preimages of arbitrary ordinals.
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We begin with some remarks concerning regularity and first countability and then look
at covering properties, wj-compactness, normality and countable paracompactness, and
the effect of Martin’s axiom together with local compactness on W. Covering properties,
as one might expect, have a significant effect on members of W; for example, a regular X
in W is paracompact if and only if it has a club set of isolated points. On the other hand,
wi-compactness ensures that much of the structure of w; remains, since only stationary
sets can be both closed and uncountable. We end with a few examples, mostly concerning
normality-type properties in products. It is not suprising that many of these examples
are set-theoretic since, assuming MA + —CH, any locally compact X in W is either a
normal nonmetrizable Moore space, a metrizable LOTS or contains a club set which has
its usual order topology (Theorem 6.1), whilst there is a locally compact Dowker space
in W assuming {* [13]. Fleissner was prompted to call de Caux’s Dowker construction
a litmus test for set-theoretic models. The same could be said of W.

Obviously, every X in C is a member of W and some results about W generalize re-
sults about C. However, there are differences and it is worth comparing the two classes.
No member of C can be locally compact and the tension between R and w; gives a
global nature to constructions in C, whereas in W it is natural to aim for locally com-
pact examples, defined inductively. If X is in W and is w;-compact, then it is strongly
collectionwise Hausdorff if it is regular, and collectionwise normal if and only if it is
normal. In W countable paracompactness does not imply normality (Example 7.2, also
[13] for an w;-compact, strongly collectionwise Hausdorff example) and, for locally com-
pact spaces, the converse is consistent and independent (Theorem 6.1 and [13]). In C
normality, countable paracompactness, strong collectionwise Hausdorffness, collection-
wise normality and wj-compactness all coincide. Reed proves that under MA + —~CH
every X in C is perfect, and Kunen shows that no member of C is both normal and
perfect. This situation generalizes to W, since no X in W can be both w;-compact and
perfect. Kunen also shows that therc is a model of set theory in which C contains both
normal and perfect elements, and that, assuming CH, every X in C contains a closed
unbounded (club) set D which is a normal subspace. Since D is also a member of C
and there is a nonnormal X in C (see Example 7.2), this is about as close as possible to
reversing the situation under MA + —CH. Onc might compare this with our result under
Martin’s axiom: in C, where no clement can be locally compact, it is the (Q-sets assured
by MA + —CH that have the significant effect; in W it is the effect of local compactness
together with MA + —CH that is important.

All spaces are Hausdorff and our notation is standard, as found in [10,19,21]. We use
the fact that a nonstationary subset of w; is o-discrete and metrizable (see [8]) and that
a stationary subset of w; may be partitioned into w; many disjoint stationary sets. We
distinguish between o-closed discrete and o-discrete subsets. The limit type of a point
in a scattered space is denoted lt(r). A space is x-compact if every subset of size &
has a limit point, has the DFCC (or DCCC), if every discrete collection of open sets is
finite (or countable). A space is pscudonormal if cvery pair of disjoint closed sets can
be separated by disjoint open sets, provided at least one of them is countable.
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Given an X in W there will be several possible maps from X to w;, however, we
ignore this, fixing a map and regarding an element of W as a copy of w; together with a
topology which refines the usual order topology. We may refer to points of a given X in
W by their corresponding names in w; and we often talk about a subset of X as being
nonstationary, stationary or club if it is in w;. A basic open set about a point x is always
taken to be a subset of a basic open wy-interval, (v, z].

Some basic facts are summarized in the following lemma, the proof of which is
trivial, bearing in mind the following: Examples 1.6.19 and 1.6.20 of [10] can easily be
modified to show that members of W need not be either Fréchet or sequential. Since
initial segments are compact, countably compact X in W are homeomorphic to wy. If X
is not homeomorphic to wj, there must be an w-sequence which does not have a limit.
Hence the DFCC and regular, pseudocompact X in W are homeomorphic to wy. (The
first countable, nonregular space described in Example 2.1 below is pseudocompact but
not homeomorphic to wy.)

Lemma 1.1. If X is a member of W, then X is a locally countable, countably tight,
Hausdorff scattered space of cardinality wy with countable pseudocharacter and char-
acter < ¢, but need not be Fréchet or sequential.

Further, X cannot be Lindeldf or have the CCC and, if it is countably compact, has
the DFCC or is both regular and pseudocompact, then it is homeomorphic to w.

Let D be nonstationary and C' = {z,: a € w;} a disjoint club and let D, be the
set {y € X: o <y < Taq1}. Then {Dy: a € w;} is a collection of open (in wy, as
well as X)) sets whose union is nonstationary and misses C and {C} U {Dy: a € w;}
partitions X . Thus we have

Lemma 1.2. Let X be a member of W. If D is a nonstationary subset of X, then D
can be covered by a collection U of pairwise disjoint, countable sets which are open
in wy and whose union is nonstationary. If X is regular (and first countable), then the
union is paracompact (metrizable). In fact X is first countable and regular if and only
if nonstationary sets are metrizable.

2. Local properties

Example 2.1. Let X = w; have the usual order topology. If, in addition, we declare sets
of the form

{wz}UU{(wk,w(k—l-l)): n<k<w}

to be open, then X is first countable but fails to be either regular or locally compact
at the point w?. Since every sequence of successor ordinals below w? has a limit, every
continuous function from (0,w?] to R is bounded and X is pseudocompact. It is clear
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that this space does not have the DFCC and is not homeomorphic to w;. If instead we
declare sets of the form

{w Ul J{(wk +me,wk + 1] my € w}

to be open, for any sequence {my}rc. from w, then X is regular but fails to be either
first countable or locally compact at the point w?. If we declare sets of the form

{wz}UU{(wk+mk,w(k+ 1)): me € w}

to be open, then regularity, first countability and local compactness all fail at w?. Fur-
thermore, if we isolate every point wk below w?, the resulting space is regular and first
countable but not locally compact.

Again, since a compact topology coincides with a coarser Hausdorff one, we have

Lemma 2.2. Let X be a member of W and suppose that X is locally compact at some
point x. If C is a compact neighbourhood of x, then the subspace topology on C is
the same as the topology induced on C by the usual w; topology. In particular, if X is
locally compact, then it is regular and first countable.

It is easy to see that first countable, collectionwise Hausdorff spaces are regular and,
if the subspace (3,a] of some X in W is collectionwise Hausdorff and It{cr) is a
successor, then X is regular at o. However, Example 3 of [23] describes an hereditarily
collectionwise Hausdorff refinememnt (at the point w*) of the usual topology on the
countable ordinal space w* + 1 which fails to be regular at w*. Hence collectionwise
Hausdorffness does not imply regularity. On the other hand, if X is regular, then it is
collectionwise Hausdorff with respect to nonstationary closed discrete sets by Lemma 1.2
and, as regularity is hereditary, regular X in W are collectionwise Hausdorff with respect
to any discrete set that is not stationary.

Lemma 2.3. If Y is a closed discrete subset of some X in W and Y is separated
by open sets (i.e., there are disjoint open neighbourhoods about each point), then all
but a nonstationary subset of Y consists of isolated points. If X is not collectionwise
Hausdorff, then it has a closed discrete stationary set of nonisolated points.

If X in W is regular and collectionwise Hausdorff, then it is collectionwise normal
with respect to closed nonstationary sets and, if X in W is normal and collection-
wise Hausdorff, then it is collectionwise normal with respect to collections containing
countably many stationary sets.

Proof. The first paragraph is trivial by the pressing down lemma.

Let {Do: o € w;} be a discrete collection of closed, nonstationary subsets. By
Lemma 1.2, each D, can be partitioned into a discrete collection of countable clopen
sets {Dg g0 B € wit Let {Cs: 6 € wi} list {Dupg: a,8 € wi}, let {esntnew list
Cs and let B, = {cs.n: 6 € wy}. It is sufficient to separate {Cs}, which is a discrete
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collection of closed sets. By, is a closed discrete subset of X and, by the first part, all
but a nonstationary subset N,, of B,, consists of isolated points. Let N = Un N,. N is
nonstationary and X is regular, so N is contained in a nonstationary, open paracompact
subset M. We can therefore separate {Cs N M: § € wy} and are done. The last claim
follows similarly. O

As we point out later, normal X in W are collectionwise Hausdorff assuming V = L,
whilst the ladder space built over a stationary set (Example 7.3) is always locally compact,
regular, first countable (and normal assuming MA + —~CH) but never collectionwise
Hausdorff.

Given Lemma 1.2, it should be clear that X is regular and first countable if and only
if it is locally metrizable if and only if nonstationary subsets are metrizable and can be
covered by a metrizable set which is open in wy. Given that locally countable, Tychonoff
spaces are zero-dimensional as well as Lemma 1.2, the proof of the following proposition
should also be clear.

Proposition 2.4. For any X in W, the following are equivalent:
(1) X is regular;

(i) X is Tychonoff;

(iil) X is (hereditarily) pseudonormal;

(iv) if C and D are any two disjoint closed subsets, at least one of which is countable,
then there is a continuous map from X to [0,1] taking C to {0} and D 10 {1};

(v) any two disjoint closed nonstationary subsets of X can be separated by disjoint
open nonstationary sets;

(vi) X is zero-dimensional.

For regular (i.e., zero-dimensional) X in W, 2“7 is a universal space (see [10]). For
arbitrary X in W, 2P“! is universal: given 7 refining the usual topology on w; define
f:(X,T) = 2P by f(z,U) = xu(z) where xy(z) is lifand only if z € U € T
and O otherwise (see [29, 2.4]).

Of course we cannot expect to deduce normality from regularity and, as the next
example shows, we cannot even expect to be able to separate a nonstationary closed set
from a disjoint stationary set.

Example 2.5. Let X be the set w; and let
W={a+w acw} and R={a It{a)>2}.

Partition R into w stationary sets {S,: n € w}. Topologize X by giving each of the
sets X —Rand T,, = S, U{a+n: a € w}, n € w, the subspace topology inherited
from the usual topology on w; and declaring each T, open. Since regularity is preserved
in subspaces, and each of the sets X — R and S,, n € w, are mutually disjoint, X
is regular. W and R are disjoint closed subsets of X, W is nonstationary and R is
stationary. However, it is easy to see using the pressing down lemma that they cannot be
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separated by disjoint open sets. See also Example 7.3, where a locally compact example
is constructed assuming &. Theorem 6.1 suggests that some set-theoretic assumption is
needed in the locally compact case.

3. Covering properties

Recall that a space is said to be weakly 0-refinable if every open cover has an open
refinement G = J,, ¢, Gn such that, for each z in X, x meets only finitely many open
sets from G,,, for some n. If there exist such G,,, each covering X, then X is said to
be G-refinable or submetacompact. X is subparacompact if every open cover has a o-
discrete closed refinement. A space is screenable if every open cover has a o-disjoint
open refinement and is strongly paracompact if every open cover has a star-finite open
refinement.

It is clear that w; and other stationary sets have an extreme dislike for uncountable,
locally countable open covers. We would, therefore, expect elements of YW which satisfy
covering properties to look very different from w;. This is indeed the case, stronger
covering properties having stronger effect on w;. For example, it is certainly impossible
to tell which subsets are the preimages of stationary sets for any paracompact X in W.
This is not the case for 8-refinable X in W; noncollectionwise Hausdorffness of the the
ladder space is witnessed by a closed discrete stationary set, and assuming MA + —-CH
the space is #-refinable hence o-closed discrete.

Proposition 3.1. Let X be a member of W.

(1) X is o-discrete if and only if it is weakly 0-refinable.

(2) X is o-closed discrete if and only if it is 0-refinable if and only if it is weakly
0-refinable and perfect if and only if it is weakly 8-refinable and has a Gs-diagonal if
and only if it is subparacompact.

(3) X is developable (a Moore space) if and only if it is (regular), first countable and
o-closed discrete.

(4) X is screenable if and only if it is meta-Lindeldf if and only if it is o-metacompact
if and only if it is o-para-Lindeldf if and only if it has a club set of isolated points.

(5) If X is metacompact then it is screenable. If X is regular then it is screenable if
and only if it is (strongly) paracompact. Moreover, if X is also first countable, then it is
screenable if and only if it is metrizable

Proof. Most of the first three equivalences follow directly from [24], but note also that
subparacompact spaces are f-refinable and, if X = J,, X, where each X, is closed
discrete, and I{ is any open cover, then

{{UNXp: ueld}: new}

is a o-discrete closed refinement.
If a space is screenable or (o-)para-Lindeldf, then it is meta-Lindelof, so let us suppose
that X is meta-Lindelof. Let V be any point countable open refinement of any open cover
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consisting of countable sets. Unless every stationary set contains an isolated point z, the
pressing down lemma provides a contradiction to the point countability of V. Hence there
is a club set of isolated points.

Conversely, if C' = {Zx}xcw, 1s a club set of isolated points (with o = 0),

{CYU{{y: za <y <zrp}: AEw}

partitions X into a discrete collection of countable, clopen subsets. The rest follows
easily, noting that paracompact, regular, first countable scattered spaces are metrizable
[24]. D

In fact, by the above and [10, 6.3.2(f)], first countable, regular, paracompact X in W
are LOTS. Given that monotonically normal X in W are either paracompact or contain
a closed stationary subset with its usual topology [2], one might ask whether X in W is
first countable and monotonicaily normat if and only if it is a LOTS.

Example 3.2. Let X = wj. Let neighbourhoods about the ordinal w? be as for the
nonregular space described in Example 2.1 and isolate every other point. With this
topology X is not regular and is not metacompact but does have a club set of isolated
points.

It is clear that any paracompact X in W is o-closed discrete. How far is being o-closed
discrete from having a club set of isolated points? By Lemma 2.3 and Proposition 3.1,
the following is immediate.

Lemma 3.3. Let X in W be o-closed discrete. If X is collectionwise Hausdorff, then it
has a club of isolated points. If X is, in addition, regular (and first countable), then X
is collectionwise Hausdorff if and only if it is paracompact (metrizable).

Assuming V' = L (in fact { for stationary systems on w;) normal X in W are
collectionwise Hausdorff (see [31], & will not suffice for the same reasons given in
[31]), hence collectionwise normal with respect to closed nonstationary subsets. The
same is true of countably paracompact X in W. Under MA + —CH [6] (also in a model
in which GCH holds [31]) the ladder space of Example 7.3 is a o-closed discrete, normal
Moore space which is clearly not collectionwise Hausdorff. Hence it is consistent and
independent that o-closed discrete, (first countable) normal or countably paracompact X
in W are collectionwise Hausdorff and hence paracompact (metrizable). Notice that in
any case normal, o-closed discrete X in W are countably paracompact (since they are
Moore spaces). Are normality and countable paracompactness equivalent for o-closed
discrete X in W? (Certainly they are ift MA+ -CH or V = L)

4. w;-compactness

We would like some topological property that reflects stationarity in WW. One candidate
might be the fact that nonstationary sets are o-discrete and metrizable in w;. Another
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that every continuous function from a stationary set to R is eventunally constant. The
space described in Example 7.1 satisfies such a property and this is put to use in [14].
However, any X in C is a continuous preimage of R, so in general this approach will
not be effective. It turns out that w;-compactness is the correct condition.

Lemma 4.1. Let X be a member of W. X is wy-compact if and only if every nonsta-
tionary closed subset is countable.

Proof. If X is not wj-compact, then it contains an uncountable closed discrete set K
say which certainly has an uncountable closed nonstationary subset. Conversely suppose
that X contains an uncountable closed set H that is not stationary. Let C be a club set
disjoint from H and let K be a subset of H such that between any two elements of K
there is an element of C and K is an uncountable closed discrete subset. O

Similar facts are true of C (see [20,28]).
The proof of the following proposition follows trivially from Proposition 3.1 and the
fact that discrete collections are countable in the presence of w)-compactness

Proposition 4.2. Let X € W be wi-compact. Every discrete collection of subsets is
countable and X
(i) has the DCCC;
(ii) is neither perfect nor subparacompact;
(iii) is collectionwise Hausdorff if it is regular;
(iv) is normal if and only if it is collectionwise normal.

Of course, X can simultaneously fail to be wi-compact and perfect: let X = w; have
the topology generated from the usual topology by declaring the set of successors closed
(note also that no stationary subset is g-discrete).

In his thesis and in [9], Tree has made an extensive study of generalizations of w;-
compactness and the Lindelof property. Certain of these properties are worth mentioning
in the context of W.

A space X is said to be n-star-Lindelof if for every open cover U there is a countable
subcollection V of U such that st™(|JV,U) = X and is said to be strongly n-star-
Lindelof if the subcollection V can be replaced by a countable set of points from X. X
is said to be w-star-Lindeldf if for every open cover I there exists an n and a countable
subcollection V such that st™(|J V,U) = X. (Recall that for a subset B and a countable
collection of subsets A, st(B, .A) is the set | J{A € A: ANB # 0} and that st"™' (B, A)
is defined inductively as st(st”(B,.A), A4).)

We can summarize the relevant results of [9]: If X is Lindeldf, then it is w;-compact.
If it is wi-compact, then it is strongly I-star-Lindelof. If X has the CCC, then it is
1-star-Lindelsf. If X is regular and w-star-Lindelof, then it has the DCCC and, if it has
the DCCC, it is 2-star-Lindelof. If X has the DCCC and is perfectly normal, then it
has the CCC. If X is strongly n-star-Lindelof, then it is n-star-Lindelsf, and, if it is
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n-star-Lindelof, then it is strongly (n + 1)-star-Lindelof. X is w-star-Lindel6f if it is n-
star-Lindeldf for any n. It is easy to show that locally countable space is n-star-Lindelof
space if and only if it is strongly n-star-Lindel&f.

Proposition 4.3. Any l-star-Lindelof X in W is wi-compact.
Any normal or strongly collectionwise Hausdorff X in W has the DCCC if and only
if it is w)-compact.

Proof. Suppose that X is not wj-compact and let D be an uncountable closed subset
of X, which is discrete in the usual order topology on w;. For each point z of D, choose
a basic open set meeting D in just the point z. For every other point of X, pick a
(countable) basic open neighbourhood which misses D. The open cover consisting of all
these neighbourhoods has the property that the first star about any countable subset of X
will miss U, for some (in fact uncountably many) z in D. Therefore X is not strongly
1-star-Lindelof, in which case it is not 1-star-Lindelof.

We have already shown that w;-compact X in W have the DCCC, so suppose that X
is not w;-compact. Let D be an uncountable closed discrete subset that is not stationary.
Let C = {zx}acw, be a club set disjoint from D. For each A, pick a point ¥ and an
open subset Uy of {y € X: x5 < y < zxt1} such that Uy N D = {y,}. By normality
pick an open set V' such that {yx: A € w1} SV CV C J,,,, Us. Then the collection
of open sets {V NUx: A € wy} is discrete. Strong collectionwise Hausdorffness also
gives such a collection. O

So, for regular X in W, X is strongly 2-star-Lindeldf if and only if it has the DCCC if
and only if it is w-star-Lindelof, and X is 1-star-Lindeldf if and only if it is wi-compact.
For normal X in W, all these properties coincide.

Clearly, w itself distinguishes w;-compactness from the Lindeldf property and the
CCC. The following example is a modification of an example due to Reed [9]. It is
essentially a subspace of the larger Reed machine ([26,27]) over w;. It is also an example
of a DCCC Moore space that is not DFCC (see Lemma 1.2).

Example 4.4. There is a strongly 2-star-Lindel6f Moore space in W which is not [-star-
Lindelof.

For each a € wy, let {B,(®): n € w} be a decreasing, countable neighbourhood base
in w; at the point a. Let @ be the set, including O, of all finite rational sums of the form
Yoo 1/2% where k;41 > k;. Partition w in to countably many disjoint stationary sets,
indexed by @, and let X = quQ S, = wy. For convenience, we denote points of X as
(a,q), where « is in S, and g is in Q.

‘Suppose that z = (a, ¢) and that ¢ = 5_7", 1/2%:. The nth neighbourhood about z is
defined to be the set Np(z) = {z} U(X NUys, (Br(a) x I)), where I is the interval
[q + 1/2mF*+1 g+ 1/2m+F) Let X have the topology generated by these basic open
sets. X is a Moore space just as for Reed’s original example and, since the topology
refines the usual topology on w;, X is in W.
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Since @ is countable the pressing down lemma yields: (x) If U is any open set
containing a stationary subset of S, then U contains ({o,w;) X {g,p]) N X for some o
in w; and some p > ¢ in Q.

Clearly X is not wj-compact. Suppose that if = {U,: a € w;} is an uncountable
collection of open sets in X. Without loss of generality we can assume that, for some
q in @, each U, is a basic open set about a point 2o in Sy. For each z in S, let B,
be a basic open neighbourhood. By (*) some B, meets uncountably many U,. Hence
U is not a discrete collection and X must have the DCCC. By the above, X is strongly
2-star-Lindelsf but not 1-star-Lindel6f.

Again the ladder space provides a locally compact example assuming <> (see Exam-
ple 7.3).

5. Covering properties and w;-compactness

As we can see, no X in W can be both w;-compact and paracompact. The following
simple modification from [12] of Balogh and Rudin’s difficult result [2] illustrates this
well.

Theorem S.1. A monotonically normal space is paracompact if and only if it does not
contain a closed subspace, which is homeomorphic to a stationary subset of some regular
cardinal k if and only if it does not contains a closed subset, which is homeomorphic to
some k-compact X in W, for some regular k.

Theorem 5.2. Let X € W be either wy-compact or o-closed discrete, or a free topolog-
ical sum of wi-compact and o-closed discrete clopen subsets. X x wy is normal if and
only if X is normal, countably paracompact and collectionwise Hausdorff.

Proof. By [16, Theorem 2.3], if X X w; is normal then X is countably paracompact and
{wi-)collectionwise normal. If X is wi-compact, then normality of the product follows
by [16, 3.3]. (Notice that in this case X is collectionwise Hausdorff.) If X is regular, o-
closed discrete and collectionwise Hausdorfft, then it has a clopen partition into countable
regular pieces, by Lemma 1.2, Proposition 3.1 and Lemma 3.3, and, therefore, has normal
product with wy. O

Assuming MA + —CH, the ladder space of Example 7.3 i1s a normal, o-closed dis-
crete, countably paracompact, locally compact Moore space which is not collectionwise
Hausdorff and so does not have normal product with w;. What happens if o-closed dis-
crete is replaced by o-discrete? (In [13], assuming {*, the space Z € W is o-discrete,
collectionwise normal, countably paracompact, locally compact and w;-compact so that
Z X wy is normal but Z2 x w, is not since Z2 is a Dowker space.) That the theorem
is about the best possible can be seen from the following modification of the space A
constructed by Beflagi¢ and Rudin [3], also used in [16].
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Example 5.3. Beslagi¢ and Rudin use the axiom {++ to construct a collectionwise nor-
mal, countably paracompact space A, which is shown in [16] to have nonnormal product
with wy. The point set for A is {(v,d) € w}: § < v}. The proofs of collectionwise nor-
mality, countable paracompactness and of the non-normality of A x w; follow essentially
from of [3, Lemma 1.2]. We shall associate w; with a subset E of A in such a way
that the subspace topology on E inherited from A satisfies this lemma. It is then easy
to verify that E is collectionwise normal and countably paracompact but has nonnormal
product with wy. It is also easy to check that E is in W. To get the lemma to hold for
E, we need an apparent strengthening of $™. We use the notation from [3] to state
this strengthening and point out that, in fact, it follows immediately from Fleissner’s
discussion of how to partition the set D in the statement of the axiom into a stationary,
co-stationary set [11, p. 72]. Fleissner gives two methods of partitioning D and from the
first it is clear that we can state the following version of $+:

There is a sequence {Ay: « € w;} such that for all « € wy:

(1) (i) Aq is a family of subsets of a; (i) |Aa| < w; (iil) (a — 8) € A, forall 8 € o
(iv) A, is closed under finite intersections.

(2) If X is a subset of wy, there is a club Cx such that (v) (X Nvy) € A, and
(CxnNvy)e A, forall y € Cx.

(3) Also there are disjoint stationary sets { D~ }~e,, such that, if

Co ={C € Ay Cisclubin a}
and, for X a subset of wy,
Sx ={a: XNC#Pforall Cely},

then: (vi) Cs is closed under finite intersections for all ¢ in Uv D.; (vii) if S is a countable
collection of stationary sets then | J{Sx: X € S} N D, is stationary for all v € w;.

Without loss of generality, we assume that D., is a subset of (y,w) and that {D.},
partitions wy. Let E = |J, Dy x {7} be associated with w; by the projection map
(v,6) = 7.

6. Martin’s axiom and local compactness
In this section we prove:

Theorem 6.1. (MA + —CH) Suppose that X in W is locally compact. X is countably
metacompact. Further, either
(i) X contains a closed subspace homeomorphic to wy, or
(ii) X is a o-closed discrete, normal, nonmetrizable Moore space that is not collec-
tionwise Hausdorff, or
(iii) X is a metrizable LOTS.

(As a corollary it is consistent and independent that normality implies countable para-
compactness in locally compact members of W. It is also clear that w;-compact, locally
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compact X in W are, assuming MA +—CH, homeomorphic to a copy of w; together with
a countable clopen set; assuming ™ there is a Dowker space in W which is w-compact
and locally compact.)

Our proof is based on the following three results from [1,6,18]. To state them we
recall some terminology: A family C separates disjoint members of A and B if, given
disjoint A from A and B from B, there are C and D in C such that A C C — D and
B C D—C. Aladder on a limit « in w is a strictly increasing sequence {an, }ne,, cofinal
in «, a ladder system is a collection of ladders for each limit a. A colouring of a ladder
system is a collection of functions {fo: fo(an) € 2 for all n € w}. A uniformization of
a colouring of a ladder system is a function f:w; — 2 with the property that for each
limit « there is n € w such that f(ag) = fo(ck), whenever n < k.

Theorem 6.2 (Balogh). (MA+—CH) If X is a locally countable, locally compact space
of cardinality less than ¢, then X is either o-closed discrete or contains a perfect pre-
image of wy.

Theorem 6.3 (Juhdsz and Weiss). (MA + ~CH) Let Hy and H, be subsets of a space X
such that H; N H; = 0, and |H;| = k < ¢, i # 3. If, for i € 2, there is a family of closed
subsets A;, which is closed under finite intersections and contains a neighbourhood base
for points of H;, and a family C, which is countable and separates disjoint members of
Ao and Ay, then Hy and H, can be separated by disjoint open sets.

Theorem 6.4 (Devlin and Shelah). (MA 4 —CH) Every colouring of a ladder system
has a uniformization.

The proof of the following lemma is easy

Lemma 6.5. Every perfect preimage of w) is a countably compact, noncompact space
and no space containing a perfect preimage of w is o-discrete.

Lemma 6.6. (MA + —CH) If X € W is locally compact and o-discrete, then it is
normal.

Proof. If X is locally compact and o-discrete, then it is a o-closed discrete Moore space
by Theorem 6.2 and Proposition 3.1 and can be written as a union of closed discrete sets
D,,. By Theorem 6.3, it is enough to separate disjoint, closed (discrete) subsets of each
Dy. Let H and K be two such subsets. Since X is a Moore space, Dy, is a G5 and is an
intersection of open sets (| U,. For each « in H U K choose a neighbourhood base of
compact, clopen sets { By (n)}ne, such that By (n) is a subset of Uy,. For each limit «,
define a ladder {a;, }, where o, = sup(Bu(n)—U,41). The colouring f, of B,(0) where
fo takes the value O if v is in H and 1 if a is in K induces a colouring of the ladder sys-
tem. Uniformization of this colouring chooses disjoint neighbourhoods of H and K. O

Proof of Theorem 6.1. By Theorem 6.2, either X contains a perfect preimage of wy,
or it is o-closed discrete. If the first holds, then, by Lemma 6.5, X contains a countably
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compact, noncompact subspace K. This subspace is closed, since X is first countable,
and since it is uncountable, it is also an element of W in its own right. Lemma 1.1, then,
implies that X is homeomorphic to wy. If X 1s o-closed discrete, then, by Lemma 6.6,
it is a normal Moore space. By Lemma 3.3, if X is collectionwise Hausdorff, then it is
paracompact and, since it is first countable, it is a metrizable LOTS, as mentioned above.

Moore spaces are countably metacompact. Suppose that X contains a closed copy K
of wy, and that { Dy, }ne. is a decreasing sequence of closed sets with empty intersection.
If every D,, meets K, then there is an n such that D,, has countable intersection with
K for all n < m. Otherwise, the D, are nonstationary and, by Lemma 1.2, can be
covered by an open, metrizable set. In either case it is easy to see that X is countably
metacompact. O

7. Some examples

Dowker proved that a topological space is normal and countably paracompact if and
only if its product with the closed unit interval is normal. There is a sequence of similar
results. A common theme links these results—they all involve some notion related to
being perfect: X x [0, 1] is P if and only if X is @ for pairs of properties (P; @)

(1) (monotonically normal; monotonically normal and (semi-)stratifiable)

(2) (hereditarily normal; perfectly normal)

(3) (normal; normal and countably paracompact)

(4) (6-normal; countably paracompact)

(5) (perfect (and normal); perfect (and normal))

(6) (orthocompact; countably metacompact)

For references and definitions see [15,25,30,22]. As we have seen w; is decidedly
nonperfect and it turns out that for each pair (P; Q) (excepting, of course, the fifth) there
is a space in W satisfying P but not @, at least modulo some set-theoretic assumption.
For the first two w; itself will do and, for the third, the {* Dowker space [13]. In
Example 7.1 a simple modification of the space described in [14, 3.1], based partly on
Davies’ almost Dowker space [5], gives an example that will do for the fourth and sixth
pairings. (A space is orthocompact if every open cover has a refinement every subset of
which has open intersection. A set is a regular G if it is a countable intersection of the
closures of open sets each containing it. A space is é-normal if every pair of disjoint
closed sets, one of which is a regular G5 can be separated by disjoint open sets.)

Example 7.1. There is a pseudonormal, §-normal, orthocompact, almost-Dowker space
in W.

Let X = w; and partition X into stationary sets {S}U{Sy: a € w}U{T,: n € w}.
We identify X with a subset of w? U (w; X w): If v is in S then identify o with (a, a)
in w?. If a is in Sg then identify a with (o, 8) in w}. If « is in T}, then identify a with
(a,n) in w; X w. Let R be the set {(o,3): a < B € w;}.
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If « is not in § then « is isolated. If « is in S then choose a countable, decreasing
clopen neighbourhood base {B,(n)}ne, for a. Let the nth basic open neighbourhood
of (a, @) in X be the set

{(a; )} U(BA(m) N R) U | (Balh) x {5}) N T
j>n
Bearing in mind the identification of X made above, with the topology generated by
these sets it is clear that X is a first countable, zero-dimensional member of W. Since
a diagonal intersection of club sets is club, only a nonstationary subset of S is isolated.
We give outline proofs only (see [5,14]).

X is not countably metacompact since the closed subspace S U], S, is not: let
{D,}jew be a decreasing sequence of stationary subsets of .S, each D; is closed but, by
the pressing down lemma applied twice to each Dj, if {U;} is a sequence of open sets,
Uj containing Dj, then (| U; is nonempty. Since X is Tychonoff, it is an almost Dowker
space.

X is orthocompact because every point of X — S is isolated and S' is a closed discrete
subset, so that every open cover has a refinement, the intersection of any two elements
of which consists entirely of isolated points.

X is 6-normal: Consider the (Moore) subspace .S U Un T,. Let C be any closed set,
D a disjoint regular G5 and £ = D N S. Using the pressing down lemma it is not hard
to show that E is either a countable or co-countable subset of S. Since at most one
of C M S and E can be co-countable, X is pseudonormal and all points in X — S are
isolated, C and D can be separated by disjoint open sets.

It is also possible to modify the other construction that Davies describes in [5] to ob-
tain a Tychonoff space in W that has a point countable base but is not perfect. Note also
that the subspace SU|J,, T, is a Moore space hence perfect and countably metacompact.

The Dowker space mentioned above shows that normality is not hereditary in W and
the example mentioned in Example 5.3 satisfies the same properties as the space A [3]:
it is a normal space with an open cover having no closed shrinking such that every
increasing open cover has a clopen shrinking. Assuming {*, there is a locally compact
anti-Dowker (countably paracomapct but not normal) space in W [13] which is both
strongly collectionwise Hausdorff and w;-compact, both of which (along with countable
paracompactness) imply normality in C. In the next example we construct an anti-Dowker
space in ZFC. The space is based on an example due to Reed [28] which we outline first.

Example 7.2. There is an anti-Dowker space in W.

First we describe Reed’s example of a pseudonormal, collectionwise Hausdorff, non-
normal space in C:

Let X = wy, and let 7, be the usual topology on wy. Let L be the set {a+n: n < w},
L; the set {a+w?: o € w}and let R = wy —(LUL,). For each a+w?in Ly, {a+wnl}y,
is cofinal in a + w? and {(a + wn,@ + w(n + 1)]: n € w,a € w,} partitions L into
disjoint wy-intervals. Let C be a Cantor subset of R, let B denote a countable base for R
and, for each z in R, let {B(z,1): i € w} be a decreasing R-neighbourhood base at .
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We identify the points of X with points of the reals in the following way: Identify L,
with a subset of C. Associate R with a subset of R — C so that BN R is stationary for
every B € B. For each a + w? in L; and each n € w, let (@ 4+ wn, a + w(n + 1)] be
associated with a countable dense subset of B(«,n). With this identification, let T be
the topology that X inherits from R.

Let X have the “intersection” topology T generated by T, U Tg. Clearly X is in
C, and is therefore first countable, pseudonormal and collectionwise Hausdorff. L, is a
subset of a Cantor set and is Tg-closed and R is 7T, -closed so R and L, are disjoint
closed subsets of X.

Suppose that U and V' are disjoint open sets separating L, and R. For each « in Lo,
there is an iy € w such that («;_, ] N B(a,i4) is a subset of U. There is an uncountable
subset M of Ly, a B in B and an i € w such that ¢, = ¢ and B(«,i,) = B, for all
in M. RN B is stationary, so there is a A in RN B which is a 7,,-limit of M. But,
if (8, ] is any 7, -open set containing A, then (v, a;41] C (8, A] for some « in M,
where (o, a;41] is Tr-dense in B. Hence A is a 7-limit of U contained in R and U and
V' are not disjoint.

Now let ¥ = wy. Let the sets L and L,, and the topologies 7, and T be as defined
above. Partition w; — L into two disjoint stationary sets Sy and S, with L, C §). We
topologize Y so that it is an anti-Dowker space as follows:

The subspace topology on both .S} and 5, is precisely the subspace topology inherited
from w;. If z is in Sy, then a basic open set about z is of the form

BnSYU |J A,
y€EBNS,

where A, is a basic 7-open set and B is a basic open interval from 7. Basic open sets
about points in L U L, are inherited from 7,

Y with the topology 7 is just X and is pseudonormal. If z is in S}, then the set
L, = {y € Ly y < z} is countable and T-closed. By T -pseudonormality, therefore,
we can pick an 7-open set U, containing L, whose closure misses S;. Let basic open
sets about x in S be those inherited from the usual topology 7, restricted to the set
S U _U_ET

Clearly Y with this topology is a first countable member of W. To see that it is regular,
consider the three cases:

(a) If = is an element of either L or Ly, then it has a base of clopen sets inherited
from wy.

(b) Let z be an element of S;. Since X is regular, it is zero-dimensional and there
is a T-clopen A, set containing x disjoint from L,. If By = {y € S»: y, < y < z},
where y, is the least element of A;, then A, U B, is a clopen set containing z. By
construction, z has a base of such clopen sets.

(c) Let z be an element of S| — L;. Since the subspace S; U L U Ly is regular, it is
pseudonormal. Therefore, there is an open set U, containing {y € L,: y < z} whose
closure misses S;. If B, = {y € S: y < z}, then U, N B, is a closed neighbourhood
of z which misses S,.
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With this information one can see that Y is regular.

The proof that X is not normal only requires that R is stationary. The same argument
shows that the disjoint closed sets S; and S, of Y cannot be separated by disjoint open
sets.

To see that Y is countably paracompact, let {D,}ne, be a decreasing sequence of
closed subsets with empty intersection. We require a decreasing sequence {U,} of open
sets, D,, C U,, such that ﬂUn is empty. If some D,, is countable, then we are done.
Suppose that each D, is uncountable. The subspace topology on both S and S, is
precisely the subspace topology inherited from w;. Hence the intersection | J , D,, N S; is
nonempty only if D,,N(S;US,) is countable for some n. By construction, « in S1US; is a
limit of a cofinal sequence {@,,+ jn }ncw in L if and only if it is a limit of {an+w}. Hence
D, lies in a clopen set U, which is contained in the paracompact subspace (0, 3] U L.

Example 7.3. The ladder space.

Partition X = wy into two disjoint sets A and B. For each « in A, which is a limit of
B, choose a sequence {an fnew from B cofinal in «. Let neighbourhoods of any such
a be o and all but finitely many points of {a,} and isolate all the other points of X.
With this topology X is a ladder space (see [31]). X is clearly a locally compact, first
countable, regular member of W of scattered length 2. By the pressing down lemma,
if A is stationary then X is not collectionwise Hausdorff. By Theorem 6.1, assuming
MA + —CH X is a o-closed discrete, hereditarily normal Moore space, which is neither
collectionwise Hausdorff or w;-compact.

Under < for stationary systems on w, normal X in W are collectionwise Hausdorff
(see [31]). Hence no Jadder space with A stationary is normal assuming < for stationary
systems.

If we assume &, then we may take the ladder space to be a strongly 2-star-Lindel6f
space, which is not 1-star-Lindelof (4.4): Let {Ry: o« € LIMNw;} be a &-sequence.
Let A be the set of all limit ordinals and B the set of all nonlimits If B, N B is infinite,
then let {an} be Ry MW indexed increasingly; otherwise let {a,} be some arbitrary
sequence from B which is cofinal in . Let I{ be an uncountable collection of open sets
and U be an uncountable subset of B meeting uncountably many members of U{. By &,
{an} is a subset of U for some v, so U is not a discrete collection of open sets and Y’
has the DCCC. Clearly X is not w;-compact so we are done by Proposition 4.3. Notice
also that X is o-discrete, regular and locally compact but is neither o-closed discrete nor
normal (in fact it is not possible to separate the nonstationary set W = {a+w: « € wi}
from the stationary 4 — W).
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