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Abstract 

We study the structure of spaces admitting a continuous bijection to the space of all countable 
ordinals with its usual order topology. We relate regularity, zero-dimensionality and pseudonor- 
mality. We examine the effect of covering properties and wl-compactness and show that locally 
compact examples have a particularly nice structure assuming MA + -CH. We show that various 
conjectures concerning normality-type properties in products can be settled (modulo set-theory) 
amongst such spaces. 

Keywords: Countable ordinals; WI; Normality in products; WI-compactness; Covering properties; 
Intersection topologies 

AMS classification: 54AlO; 54D15; 54D20; 54G20 

1. Preamble 

In 1281, Reed defines the class C of spaces (X, ‘T), where X has size WI and ‘J is 

the join of two topologies 7~ (which makes X homeomorphic to a subset of Iw) and 

T,, (which makes X homeomorphic to the ordinal space WI). Reed calls C the class of 

‘intesection’ topologies since such spaces have a base of the form {B nG: B E TR, G c 

T,, }. This construction was inspired by various specific constructions, for example, 

Pol’s perfectly normal, locally metrizable, nonmetrizable space, Pol and Pol’s hereditarily 

normal, strongly zero-dimensional space with a subspace of positive dimension (see [28]), 

and has also been studied by van Douwen [7], Jones [17] and Kunen [20]. Motivated by 

Reed’s definition, we define W to be the class of all continuous bijective preimages of 

the space of countable ordinals and we analyse the structure of such spaces. In [ 121, we 

characterize bijective preimages of arbitrary ordinals. 
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We begin with some remarks concerning regularity and first countability and then look 

at covering properties, WI -compactness, normality and countable paracompactness, and 

the effect of Martin’s axiom together with local compactness on W. Covering properties, 

as one might expect, have a significant effect on members of W; for example, a regular X 

in W is paracompact if and only if it has a club set of isolated points. On the other hand, 

wi-compactness ensures that much of the structure of WI remains, since only stationary 

sets can be both closed and uncountable. We end with a few examples, mostly concerning 

normality-type properties in products. It is not suprising that many of these examples 

are set-theoretic since, assuming MA + -CH, any locally compact X in W is either a 

normal nonmetrizable Moore space, a metrizable LOTS or contains a club set which has 

its usual order topology (Theorem 6.1), whilst there is a locally compact Dowker space 

in W assuming V* [ 131. Fleissner was prompted to call de Caux’s Dowker construction 

a litmus test for set-theoretic models. The same could be said of W. 

Obviously, every X in C is a member of W and some results about W generalize re- 

sults about C. However, there are differences and it is worth comparing the two classes. 

No member of C can be locally compact and the tension between Iw and wi gives a 

global nature to constructions in C, whereas in W it is natural to aim for locally com- 

pact examples, defined inductively. If X is in W and is wi-compact, then it is strongly 

collectionwise Hausdorff if it is regular, and collectionwise normal if and only if it is 

normal. In W countable paracompactness does not imply normality (Example 7.2, also 

[I 31 for an wt -compact, strongly collectionwise Hausdorff example) and, for locally com- 

pact spaces, the converse is consistent and independent (Theorem 6.1 and [ 131). In C 

normality, countable paracompactness, strong collectionwise Hausdorffness, collection- 

wise normality and wt-compactness all coincide. Reed proves that under MA + CH 

every X in C is perfect, and Kuncn shows that no member of C is both normal and 

perfect. This situation generalizes to W, since no X in W can be both wl-compact and 

perfect. Kunen also shows that there is a model of set theory in which C contains both 

normal and perfect elements, and that, assuming CH, every X in C contains a closed 

unbounded (club) set D which is a normal subspace. Since D is also a member of C 

and there is a nonnormal X in C (see Example 7.2), this is about as close as possible to 

reversing the situation under MA + -CH. One might compare this with our result under 

Martin’s axiom: in C, where no clement can bc locally compact, it is the Q-sets assured 

by MA+ -CH that have the significant effect; in W it is the effect of local compactness 

together with MA + -CH that is important. 

All spaces are Hausdorff and our notation is standard, as found in [10,19,21]. We use 

the fact that a nonstationary subset of w1 is o-discrete and metrizable (see [S]) and that 

a stationary subset of wi may be partitioned into WI many disjoint stationary sets. We 

distinguish between g-closed discrete and a-discrete subsets. The limit type of a point 

in a scattered space is denoted lt(:c). A space is K.-compact if every subset of size K 

has a limit point, has the DFCC (or DCCC), if every discrete collection of open sets is 

finite (or countable). A space is pscudonormal if every pair of disjoint closed sets can 

be separated by disjoint open sets, provided at lcast one of them is countable. 
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Given an X in W there will be several possible maps from X to wt, however, we 

ignore this, fixing a map and regarding an element of W as a copy of wt together with a 

topology which refines the usual order topology. We may refer to points of a given X in 

W by their corresponding names in wi and we often talk about a subset of X as being 

nonstationary, stationary or club if it is in wt. A basic open set about a point x is always 

taken to be a subset of a basic open WI-interval, (7, ~1. 

Some basic facts are summarized in the following lemma, the proof of which is 

trivial, bearing in mind the following: Examples 1.6.19 and 1.6.20 of [lo] can easily be 

modified to show that members of W need not be either Frechet or sequential. Since 

initial segments are compact, countably compact X in W are homeomorphic to wt. If X 

is not homeomorphic to ~1, there must be an w-sequence which does not have a limit. 

Hence the DFCC and regular, pseudocompact X in W are homeomorphic to wt. (The 

first countable, nonregular space described in Example 2.1 below is pseudocompact but 

not homeomorphic to wt .) 

Lemma 1.1. If X is a member of W, then X is a locally countable, countably tight, 

Hausdorsf scattered space of cardinal@ WI with countable pseudocharacter and char- 

acter < c, but need not be Fre’chet or sequential. 

Further, X cannot be Lindelof or have the CCC and, if it is countably compact, has 

the DFCC or is both regular and pseudocompact, then it is homeomorphic to WI. 

Let D be nonstationary and C = (2,: o E WI} a disjoint club and let D, be the 

set {y E X: Z, < y < %,+I}. Then {Da: (Y E WI} is a collection of open (in wl, as 

well as X) sets whose union is nonstationary and misses C and {C} U {D,: cy E w,} 

partitions X. Thus we have 

Lemma 1.2. Let X be a member of W. lf D is a nonstationary subset of X, then D 

can be covered by a collection 1A of pairwise disjoint, countable sets which are open 

in WI and whose union is nonstationary. If X is regular (and first countable), then the 

union is paracompact (metrizable). In fact X is first countable and regular if and only 

if nonstationary sets are metrizable. 

2. Local properties 

Example 2.1. Let X = WI have the usual order topology. If, in addition, we declare sets 

of the form 

{w~}uu{(wk,w(lc+1)): n<Ic<w} 

to be open, then X is first countable but fails to be either regular or locally compact 

at the point w2. Since every sequence of successor ordinals below w* has a limit, every 

continuous function from (0, w2] to R is bounded and X is pseudocompact. It is clear 



that this space does not have the DFCC and is not homeomorphic to WI. If instead we 

declare sets of the form 

{w*}uU{(wk+mkrw(k+ I)]: mk E w} 
to be open, for any sequence {V&}&w from w, then X is regular but fails to be either 

first countable or locally compact at the point w*. If we declare sets of the form 

{W*} u u { (Wk + mk, W(k + 1)): mk E W} 

to be open, then regularity, first countability and local compactness all fail at w*. Fur- 

thermore, if we isolate every point wk below w *, the resulting space is regular and first 

countable but not locally compact. 

Again, since a compact topology coincides with a coarser Hausdorff one, we have 

Lemma 2.2. Let X be a member of W and suppose that X is locally compact at some 

point x. If C is a compact neighbourhood of 2, then the subspace topology on C is 

the same as the topology induced on C by the usual WI topology. In particular; if X is 

locally compact, then it is regular and$rst countable. 

It is easy to see that first countable, collectionwise Hausdorff spaces are regular and, 

if the subspace (,!Y, CY] f o some X in W is collectionwise Hausdorff and It(a) is a 

successor, then X is regular at cy. However, Example 3 of [23] describes an hereditarily 

collectionwise Hausdorff refinememnt (at the point w”) of the usual topology on the 

countable ordinal space wW + I which fails to be regular at ww. Hence collectionwise 

Hausdorffness does not imply regularity. On the other hand, if X is regular, then it is 

collectionwise Hausdorff with respect to nonstationary closed discrete sets by Lemma 1.2 

and, as regularity is hereditary, regular X in W are collectionwise Hausdorff with respect 

to any discrete set that is not stationary. 

Lemma 2.3. I!! Y is a closed discrete subset of some X in W and Y is separated 

by open sets (i.e., there are disjoint open neighbourhoods about each point), then all 

but a nonstationary subset of Y consists of isolatect points. If X is not collectionwise 

Hausdo@, then it has a closed discrete stationary set of nonisolated points. 

If X in W is regular and collectionwise Hausdoa then it is collectionwise normal 

with respect to closed nonstationary sets and, if X in W is normal and collection- 

wise Hausdoa then it is collectionwise norm.al with respect to collections containing 

countably many stationary sets. 

Proof. The first paragraph is trivial by the pressing down lemma. 

Let {D,: (Y E WI} be a discrete collection of closed, nonstationary subsets. By 

Lemma 1.2, each D, can be partitioned into a discrete collection of countable clopen 

sets {Da,a: p E WI}. Let {C’s: b E WI} list {Dn,a: CY,~ E w,}, let (~6,~)~~~ list 

Cb and let B, = (~6,~: b E WI}. It is sufficient to separate {C,}, which is a discrete 
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collection of closed sets. B, is a closed discrete subset of X and, by the first part, all 

but a nonstationary subset N, of B, consists of isolated points. Let N = U, N,. N is 

nonstationary and X is regular, so N is contained in a nonstationary, open paracompact 

subset M. We can therefore separate {Cb n M: b E WI} and are done. The last claim 

follows similarly. 0 

As we point out later, normal X in W are collectionwise Hausdorff assuming V = L, 

whilst the ladder space built over a stationary set (Example 7.3) is always locally compact, 

regular, first countable (and normal assuming MA + CH) but never collectionwise 

Hausdorff. 

Given Lemma 1.2, it should be clear that X is regular and first countable if and only 

if it is locally metrizable if and only if nonstationary subsets are metrizable and can be 

covered by a metrizable set which is open in WI. Given that locally countable, Tychonoff 

spaces are zero-dimensional as well as Lemma 1.2, the proof of the following proposition 

should also be clear. 

Proposition 2.4. For any X in W, the following are equivalent: 

(i) X is regular; 

(ii) X is Tychonoff; 

(iii) X is (hereditarily) pseudonormal; 

(iv) if C and D are any two disjoint closed subsets, at least one of which is countable, 

then there is a continuous map from X to [0, l] taking C to (0) and D to { 1); 

(v) any two disjoint closed nonstationary subsets of X can be separated by disjoint 

open nonstationary sets; 

(vi) X is zero-dimensional. 

For regular (i.e., zero-dimensional) X in W, 2 w1 is a universal space (see [lo]). For 

arbitrary X in W, 2”w1 IS universal: given 7 refining the usual topology on wt define 

f : (X,7) + 2”!-4 by f(z, u) = xu( x where Xv(z) is 1 if and only if z E U E 7 ) 
and 0 otherwise (see [29, 2.41). 

Of course we cannot expect to deduce normality from regularity and, as the next 

example shows, we cannot even expect to be able to separate a nonstationary closed set 

from a disjoint stationary set. 

Example 2.5. Let X be the set WI and let 

W={cY+w: aEw,} and R = {o: It(o) > 2}. 

Partition R into w stationary sets {&: n E w}. Topologize X by giving each of the 

sets X - R and T, = S, U {a + n: LY E WI }, n E w, the subspace topology inherited 

from the usual topology on wt and declaring each T, open. Since regularity is preserved 

in subspaces, and each of the sets X - R and S,, n E w, are mutually disjoint, X 

is regular. W and R are disjoint closed subsets of X, W is nonstationary and R is 

stationary. However, it is easy to see using the pressing down lemma that they cannot be 
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separated by disjoint open sets. See also Example 7.3, where a locally compact example 

is constructed assuming 4. Theorem 6.1 suggests that some set-theoretic assumption is 

needed in the locally compact case. 

3. Covering properties 

Recall that a space is said to be weakly 8-refinable if every open cover has an open 

refinement 4 = UnEw G,, such that, for each n: in X, 5 meets only finitely many open 

sets from G,, for some 72. If there exist such G,, each covering X, then X is said to 

be 0-rejinable or submetucompact. X is subparacompact if every open cover has a u- 

discrete closed refinement. A space is screenable if every open cover has a g-disjoint 

open refinement and is strongly paracompact if every open cover has a star-finite open 

refinement. 

It is clear that WI and other stationary sets have an extreme dislike for uncountable, 

locally countable open covers. We would, therefore, expect elements of W which satisfy 

covering properties to look very different from WI. This is indeed the case, stronger 

covering properties having stronger effect on WI. For example, it is certainly impossible 

to tell which subsets are the preimages of stationary sets for any paracompact X in W. 

This is not the case for O-refinable X in W; noncollectionwise Hausdorffness of the the 

ladder space is witnessed by a closed discrete stationary set, and assuming MA + -CH 

the space is &refinable hence g-closed discrete. 

Proposition 3.1. Let X be a member of W. 

(1) X is o-discrete if and only if it is weakly O-rejinable. 

(2) X is a-closed discrete if and only if it is 6-re@able if and only if it is weakly 

O-rejinable and perfect if and only if it is weakly B-rejinable and has a Gs-diagonal if 

and only if it is subparacompact. 

(3) X is developable (a Moore space) if and only if it is (regular), first countable and 

a-closed discrete. 

(4) X is screenable if and orzly if it is meta-Lindeltjf if and only if it is a-metacompact 

if and only if it is a-para-Lindel6f !f and only if it has a club set of isolated points. 

(5) If X is metacompact then it is screenable. If X is regular then it is screenable if 

and only if it is (strongly) parucompact. Moreover; if X is also$rst countable, then it is 

screenable if and only if it is metrizable 

Proof. Most of the first three equivalences follow directly from [24], but note also that 

subparacompact spaces are Q-refinable and, if X = U, X,, where each X, is closed 

discrete, and U is any open cover, then 

{{Unx,: UEU}: n~f.d} 

is a a-discrete closed refinement. 

If a space is screenable or (a-)para-Lindeliif, then it is meta-Lindelbf, so let us suppose 

that X is meta-Lindeliif. Let V be any point countable open refinement of any open cover 
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consisting of countable sets. Unless every stationary set contains an isolated point x, the 

pressing down lemma provides a contradiction to the point countability of V. Hence there 

is a club set of isolated points. 

Conversely, if C = {xx}x~~~ is a club set of isolated points (with ~0 = 0), 

{C} u {{y: xx < y < Xx+1>: x E WI} 

partitions X into a discrete collection of countable, clopen subsets. The rest follows 

easily, noting that paracompact, regular, first countable scattered spaces are metrizable 

[24]. q 

In fact, by the above and [lo, 6.3.2(f)], first countable, regular, paracompact X in W 

are LOTS. Given that monotonically normal X in W are either paracompact or contain 

a closed stationary subset with its usual topology [2], one might ask whether X in W is 

first countable and monotonically normaf if and only if it is a LOTS. 

Example 3.2. Let X = WI. Let neighbourhoods about the ordinal w2 be as for the 

nonregular space described in Example 2.1 and isolate every other point. With this 

topology X is not regular and is not metacompact but does have a club set of isolated 

points. 

It is clear that any paracompact X in W is a-closed discrete. How far is being g-closed 

discrete from having a club set of isolated points? By Lemma 2.3 and Proposition 3.1, 

the following is immediate. 

Lemma 3.3. Let X in W be o-closed discrete. If X is collectionwise Hausdo#, then it 

has a club of isolated points. If X is, in addition, regular (and$rst countable), then X 

is collectionwise Hausdorfs if and only if it is paracompact (metrizable). 

Assuming V = L (in fact 0 for stationary systems on WI) normal X in W are 

collectionwise Hausdorff (see [31], 0 will not suffice for the same reasons given in 

[31]), hence collectionwise normal with respect to closed nonstationary subsets. The 

same is true of countably paracompact X in W. Under MA + -CH [6] (also in a model 

in which GCH holds [31]) the ladder space of Example 7.3 is a a-closed discrete, normal 

Moore space which is clearly not collectionwise Hausdorff. Hence it is consistent and 

independent that a-closed discrete, (first countable) normal or countably paracompact X 

in W are collectionwise Hausdorff and hence paracompact (metrizable). Notice that in 

any case normal, g-closed discrete X in W are countably paracompact (since they are 

Moore spaces). Are normality and countable paracompactness equivalent for g-closed 

discrete X in W? (Certainly they are if MA + +ZH or V = L.) 

4. w 1 -compactness 

We would like some topological property that reflects stationarity in W. One candidate 

might be the fact that nonstationary sets are a-discrete and metrizable in ~1. Another 
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that every continuous function from a stationary set to IR is eventually constant. The 

space described in Example 7.1 satisfies such a property and this is put to use in [14]. 

However, any X in C is a continuous preimage of lR, so in general this approach will 

not be effective. It turns out that WI-compactness is the correct condition. 

Lemma 4.1. Let X be a member qf W. X is WI-compact if and only if every nonsta- 

tionary closed subset is countable. 

Proof. If X is not wi-compact, then it contains an uncountable closed discrete set K 

say which certainly has an uncountable closed nonstationary subset. Conversely suppose 

that X contains an uncountable closed set H that is not stationary. Let C be a club set 

disjoint from H and let K be a subset of H such that between any two elements of K 

there is an element of C and K is an uncountable closed discrete subset. 0 

Similar facts are true of C (see [20,28]). 

The proof of the following proposition follows trivially from Proposition 3.1 and the 

fact that discrete collections are countable in the presence of wi-compactness 

Proposition 4.2. Let X E W be WI-compact. Every discrete collection of subsets is 

countable and X 

(i) has the DCCC; 

(ii) is neither perfect nor subparacompact; 

(iii) is collectionwise Hausdolfsif it is regular; 

(iv) is normal if and only if it is collectionwise normal. 

Of course, X can simultaneously fail to be wi-compact and perfect: let X = WI have 

the topology generated from the usual topology by declaring the set of successors closed 

(note also that no stationary subset is a-discrete). 

In his thesis and in [9], Tree has made an extensive study of generalizations of WI- 

compactness and the Lindelof property. Certain of these properties are worth mentioning 

in the context of W. 

A space X is said to be n-star-Lindelof if for every open cover IA there is a countable 

subcollection V of U such that st’“(U U, U) = X and is said to be strongly n-star- 

Lindelof if the subcollection V can be replaced by a countable set of points from X. X 

is said to be w-star-Lindelof if for every open cover U there exists an n and a countable 

subcollection U such that st”(U V, U) = X. (Recall that for a subset B and a countable 

collection of subsets A, st(B, d) is the set (_{A E A: AnB # 8) and that stn+’ (B, d) 

is defined inductively as st(stn(B, A), A).) 
We can summarize the relevant results of [9]: If X is Lindelof, then it is wr-compact. 

If it is wr-compact, then it is strongly I-star-Lindelof. If X has the CCC, then it is 

l-star-Lindelof. If X is regular and w-star-Lindelof, then it has the DCCC and, if it has 

the DCCC, it is 2-star-Lindelof. If X has the DCCC and is perfectly normal, then it 

has the CCC. If X is strongly n-star-Lindelof, then it is n-star-Lindelof, and, if it is 
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n-star-Lindeliif, then it is strongly (n + 1)star-Lindeliif. X is w-star-Lindelof if it is n- 

star-Lindelof for any n. It is easy to show that locally countable space is n-star-Lindelof 

space if and only if it is strongly n-star-Lindelbf. 

Proposition 4.3. Any 1-star-Lindeliif X in W is WI -compact. 

Any normal or strongly collectionwise HausdoflX in W has the DCCC if and only 

if it is WI-compact. 

Proof. Suppose that X is not WI-compact and let D be an uncountable closed subset 

of X, which is discrete in the usual order topology on WI. For each point x of D, choose 

a basic open set meeting D in just the point x. For every other point of X, pick a 

(countable) basic open neighbourhood which misses D. The open cover consisting of all 

these neighbourhoods has the property that the first star about any countable subset of X 

will miss U, for some (in fact uncountably many) x in D. Therefore X is not strongly 

I-star-Lindelof, in which case it is not 1-star-Lindelof. 

We have already shown that tit-compact X in W have the DCCC, so suppose that X 

is not WI-compact. Let D be an uncountable closed discrete subset that is not stationary. 

Let C = {ZX}XE~~ be a club set disjoint from D. For each A, pick a point ye and an 

open subset Ux of {y E X: xx < y < x~+i} such that VA n D = {ye}. By normality 

pick an open set V such that {yx: X E WI} C V 2 v C UXEwl Ux. Then the collection 

of open sets {V n Ux: X E WI} is discrete. Strong collectionwise Hausdorffness also 

gives such a collection. 0 

So, for regular X in W, X is strongly 2-star-Lindelof if and only if it has the DCCC if 

and only if it is w-star-Lindelof, and X is 1-star-Lindeliif if and only if it is wi-compact. 

For normal X in W, all these properties coincide. 

Clearly, wi itself distinguishes WI-compactness from the Lindelof property and the 

CCC. The following example is a modification of an example due to Reed [9]. It is 

essentially a subspace of the larger Reed machine ([26,27]) over WI. It is also an example 

of a DCCC Moore space that is not DFCC (see Lemma 1.2). 

Example 4.4. There is a strongly 2-star-Lindelof Moore space in W which is not I-star- 

Lindelof. 

For each Q: E wt, let {&(a): n E w} be a decreasing, countable neighbourhood base 

in wi at the point a. Let Q be the set, including 0, of all finite rational sums of the form 

Cy’“=, l/2”’ where Ici+i > ki. Partition wi in to countably many disjoint stationary sets, 

indexed by Q, and let X = lJ ne& S, = WI. For convenience, we denote points of X as 

(cx,q), where cy is in S, and q is in Q. 

Suppose that x = (cr, q) and that q = CzO l/2 ka. The nth neighbourhood about x is 

defined to be the set Nn(zr) = {z} U (X n Uk_n(Bk(o) x Ik)), where Ik is the interval 

[q + l/2”+“+’ ) q + 1/2m+” ). Let X have the topology generated by these basic open 

sets. X is a Moore space just as for Reed’s original example and, since the topology 

refines the usual topology on wi, X is in W. 



Since Q is countable the pressing down lemma yields: (*) If U is any open set 

containing a stationary subset of S,, then U contains ((cy,wl) x (q, p]) n X for some cy 

in WI and some p > q in Q. 

Clearly X is not wl-compact. Suppose that L4 = {Ua: Q: E WI} is an uncountable 

collection of open sets in X. Without loss of generality we can assume that, for some 

q in Q, each U, is a basic open set about a point x, in S,. For each x in S, let B, 

be a basic open neighbourhood. By ( ) * some B, meets uncountably many U,. Hence 

U is not a discrete collection and X must have the DCCC. By the above, X is strongly 

2-star-LindelBf but not I-star-Lindeliif. 

Again the ladder space provides a locally compact example assuming 0 (see Exam- 

ple 7.3). 

5. Covering properties and WI -compactness 

As we can see, no X in W can be both WI-compact and paracompact. The following 

simple modification from [ 121 of Balogh and Rudin’s difficult result [2] illustrates this 

well. 

Theorem 5.1. A monotonically normal space is purucompuct if and only if it does not 

contain a closed subspuce, which is homeomorphic to a stutionury subset of some regular 

cardinal K ifund only ifit does not contains a closed subset, which is homeomorphic to 

some Ic-compact X in W, for some regular K,. 

Theorem 5.2. Let X E W be either WI -compact or u-closed discrete, or a free topolog- 

ical sum of WI-compact and a-closed discrete clopen subsets. X x WI is normal if and 

only if X is normal, countably parucompact and collectionwise Hausdor# 

Proof. By [ 16, Theorem 2.31, if X x WI is normal then X is countably paracompact and 

(wi-)collectionwise normal. If X is tit-compact, then normality of the product follows 

by [16, 3.31. (Notice that in this case X is collectionwise Hausdorff.) If X is regular, O- 

closed discrete and collectionwise Hausdorff, then it has a clopen partition into countable 

regular pieces, by Lemma I .2, Proposition 3.1 and Lemma 3.3, and, therefore, has normal 

product with ~1. 0 

Assuming MA + -CH, the ladder space of Example 7.3 is a normal, c-closed dis- 

Crete, countably paracompact, locally compact Moore space which is not collectionwise 

Hausdorff and so does not have normal product with WI. What happens if a-closed dis- 

Crete is replaced by a-discrete? (In [13], assuming O*, the space 2 E W is a-discrete, 

collectionwise normal, countably paracompact, locally compact and WI -compact so that 

2 x WI is normal but 2’ x WI is not since 2* is a Dowker space.) That the theorem 

is about the best possible can be seen from the following modification of the space n 

constructed by BeSlagik and Rudin [3], also used in [16]. 



Example 5.3. BeSlagiC and Rudin use the axiom O++ to construct a collectionwise nor- 

mal, countably paracompact space A, which is shown in [ 161 to have nonnormal product 

with wi. The point set for A is {(y, 6) E w:: b < r}. The proofs of collectionwise nor- 

mality, countable paracompactness and of the non-normality of A x WI follow essentially 

from of [3, Lemma 1.21. We shall associate WI with a subset E of A in such a way 

that the subspace topology on E inherited from A satisfies this lemma. It is then easy 

to verify that E is collectionwise normal and countably paracompact but has nonnormal 

product with WI. It is also easy to check that E is in W. To get the lemma to hold for 

E, we need an apparent strengthening of 0 ++. We use the notation from [3] to state 

this strengthening and point out that, in fact, it follows immediately from Fleissner’s 

discussion of how to partition the set D in the statement of the axiom into a stationary, 

co-stationary set [ 1 1, p. 721. Fleissner gives two methods of partitioning D and from the 

first it is clear that we can state the following version of Of+: 

There is a sequence {A,: Q E WI} such that for all N E WI: 

(1) (i) A, is a family of subsets of cr; (ii) IA,1 < w; (iii) ((Y - @) E A, for all /3 E a; 

(iv) A, is closed under finite intersections. 

(2) If X is a subset of WI, there is a club Cx such that (v) (X fl y) E A, and 

(C, n y) E A, for all y E CX 
(3) Also there are disjoint stationary sets {Dy}y~w, such that, if 

C, = {C E A,: C is club in o} 

and, for X a subset of wr, 

SX = {o: X n C # 0 for all C E C,}: 

then: (vi) Cg is closed under finite intersections for all 6 in U, D,; (vii) if S is a countable 

collection of stationary sets then U{Sx: X E S} n D, is stationary for all y E ~1. 

Without loss of generality, we assume that D, is a subset of (y, WI) and that {Dy}y 

partitions WI. Let E = U, D, x {y} b e associated with WI by the projection map 

(Y: 6) * Y. 

6. Martin’s axiom and local compactness 

In this section we prove: 

Theorem 6.1. (MA + 1CH) Suppose that X in W is locally compact. X is countably 

metacompact. Furthel; either 

(i) X contains a closed subspace homeomorphic to WI, or 

(ii) X is a a-closed discrete, normal, nonmetrizable Moore space that is not collec- 

tionwise Hausdorjf or 

(iii) X is a metrizable LOTS. 

(As a corollary it is consistent and independent that normality implies countable para- 

compactness in locally compact members of W. It is also clear that wl-compact, locally 
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compact X in W are, assuming MA+ -CH, homeomorphic to a copy of WI together with 

a countable clopen set; assuming o* there is a Dowker space in W which is wi-compact 

and locally compact.) 

Our proof is based on the following three results from [I ,6,18]. To state them we 

recall some terminology: A family C separates disjoint members of A and B if, given 

disjoint A from A and B from L3, there are C and D in C such that A 2 C - D and 

B C D-C. A ladder on a limit (3~ in wi is a strictly increasing sequence {cY,},~, cofinal 

in cy, a ladder system is a collection of ladders for each limit (Y. A colouring of a ladder 

system is a collection of functions {fa: fa(on) E 2 for all n E w}. A uniformization of 

a colouring of a ladder system is a function f : WI + 2 with the property that for each 

limit a there is n E w such that f(ok) = fa(ak), whenever n < k. 

Theorem 6.2 (Balogh). (MA+ +ZH) IfX 1s a locally countable, locally compact space 

of cardinal& less than c, then X is either o-closed discrete or contains a perfect pre- 

image of WI. 

Theorem 6.3 (Juhasz and Weiss). (MA + CH) Let HO and HI be subsets of a space X 
- 

suchthatH~nHJ=8,andIHI=n<c,i#j.Iff or i E 2, there is a family of closed 

subsets Ai, which is closed under$nite intersections and contains a neighbourhood base 

for points of Hi, and a family C, which is countable and separates disjoint members of 

J&J and AI, then HO and HI can be separated by disjoint open sets. 

Theorem 6.4 (Devlin and Shelah). (MA + -CH) Every colouring of a ladder system 

has a uniformization. 

The proof of the following lemma is easy 

Lemma 6.5. Every perfect preimage of WI is a countably compact, noncompact space 

and no space containing a perfect preimage of w] is o-discrete. 

Lemma 6.6. (MA + +ZH) Zf X E W is locally compact and o-discrete, then it is 

normal. 

Proof. If X is locally compact and a-discrete, then it is a c-closed discrete Moore space 

by Theorem 6.2 and Proposition 3.1 and can be written as a union of closed discrete sets 

D,. By Theorem 6.3, it is enough to separate disjoint, closed (discrete) subsets of each 

Dk. Let H and K be two such subsets. Since X is a Moore space, DI, is a Gb and is an 

intersection of open sets n U,. For each cy in H U K choose a neighbourhood base of 

compact, clopen sets {B,(n.)},E, such that B,(n) is a subset of U,. For each limit CY, 

define a ladder {aTb}, where Q, = sup( B, (n) - lJT1+ 1) The colouring fa of B, (0) where 

fa takes the value 0 if LY is in H and 1 if cy is in K induces a colouring of the ladder sys- 

tem. Uniformization of this colouring chooses disjoint neighbourhoods of H and K. 0 

Proof of Theorem 6.1. By Theorem 6.2, either X contains a perfect preimage of ~1, 

or it is a-closed discrete. If the first holds, then, by Lemma 6.5, X contains a countably 
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compact, noncompact subspace K. This subspace is closed, since X is first countable, 

and since it is uncountable, it is also an element of W in its own right. Lemma 1.1, then, 

implies that K is homeomorphic to WI. If X is a-closed discrete, then, by Lemma 6.6, 

it is a normal Moore space. By Lemma 3.3, if X is collectionwise Hausdorff, then it is 

paracompact and, since it is first countable, it is a metrizable LOTS, as mentioned above. 

Moore spaces are countably metacompact. Suppose that X contains a closed copy K 

of WI, and that {Dn}n~w is a decreasing sequence of closed sets with empty intersection. 

If every D, meets K, then there is an n such that D,, has countable intersection with 

K for all n < m. Otherwise, the D, are nonstationary and, by Lemma 1.2, can be 

covered by an open, metrizable set. In either case it is easy to see that X is countably 

metacompact. 0 

7. Some examples 

Dowker proved that a topological space is normal and countably paracompact if and 

only if its product with the closed unit interval is normal. There is a sequence of similar 

results. A common theme links these results-they all involve some notion related to 

being perfect: X x [0, l] is P if and only if X is Q for pairs of properties (P; Q) 

(1) (monotonically normal; monotonically normal and (semi-)stratifiable) 

(2) (hereditarily normal; perfectly normal) 

(3) (normal; normal and countably paracompact) 

(4) (b-normal; countably paracompact) 

(5) (perfect (and normal); perfect (and normal)) 

(6) (orthocompact; countably metacompact) 

For references and definitions see [15,25,30,22]. As we have seen WI is decidedly 

nonperfect and it turns out that for each pair (P; Q) (excepting, of course, the fifth) there 

is a space in W satisfying P but not Q, at least modulo some set-theoretic assumption. 

For the first two wi itself will do and, for the third, the O* Dowker space [ 131. In 

Example 7.1 a simple modification of the space described in [ 14, 3.11, based partly on 

Davies’ almost Dowker space [5], gives an example that will do for the fourth and sixth 

pairings. (A space is orthocompact if every open cover has a refinement every subset of 

which has open intersection. A set is a regular Gb if it is a countable intersection of the 

closures of open sets each containing it. A space is &normal if every pair of disjoint 

closed sets, one of which is a regular GJ can be separated by disjoint open sets.) 

Example 7.1. There is a pseudonormal, h-normal, orthocompact, almost-Dowker space 

in W. 

Let X = wi and partition X into stationary sets {S} U {S,: a E WI} U {T,: n E w}. 

We identify X with a subset of WY U (~1 x w): If (Y is in S then identify (Y with ((ly, cr) 

in wf. If Q is in Sp then identify a with (cr,p) m wt. If cy is in T, then identify cy with 

(a,n) in wi x w. Let R be the set {(a,@): LY < p E WI}. 
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If cy is not in S then a is isolated. If hi is in S then choose a countable, decreasing 

clopen neighbourhood base (Bcy(n)}nEw for cy. Let the nth basic open neighbourhood 

of (a, a) in X be the set 

{(a, a)} ” (B:(n) “R) ” u (B&3) x {j)) 0 Tj. 
j>Yl 

Bearing in mind the identification of X made above, with the topology generated by 

these sets it is clear that X is a first countable, zero-dimensional member of W. Since 

a diagonal intersection of club sets is club, only a nonstationary subset of S is isolated. 

We give outline proofs only (see [5,14]). 

X is not countably metacompact since the closed subspace S U U, S, is not: let 

{Dj}jew be a decreasing sequence of stationary subsets of S, each Rj is closed but, by 

the pressing down lemma applied twice to each Dj, if {Uj} is a sequence of open sets, 

Uj containing Dj, then n Uj is nonempty. Since X is Tychonoff, it is an almost Dowker 

space. 

X is orthocompact because every point of X - S is isolated and S is a closed discrete 

subset, so that every open cover has a refinement, the intersection of any two elements 

of which consists entirely of isolated points. 

X is &normal: Consider the (Moore) subspace S U U, Tn. Let C be any closed set, 

D a disjoint regular Gg and E = D n S. Using the pressing down lemma it is not hard 

to show that E is either a countable or co-countable subset of S. Since at most one 

of C n S and E can be co-countable, X is pseudonormal and all points in X - S are 

isolated, C and D can be separated by disjoint open sets. 

It is also possible to modify the other construction that Davies describes in [5] to ob- 

tain a Tychonoff space in W that has a point countable base but is not perfect. Note also 

that the subspace SUU, T, is a Moore space hence perfect and countably metacompact. 

The Dowker space mentioned above shows that normality is not hereditary in W and 

the example mentioned in Example 5.3 satisfies the same properties as the space n [3]: 

it is a normal space with an open cover having no closed shrinking such that every 

increasing open cover has a clopen shrinking. Assuming o*, there is a locally compact 

anti-Dowker (countably paracomapct but not normal) space in W [13] which is both 

strongly collectionwise Hausdorff and wr-compact, both of which (along with countable 

paracompactness) imply normality in C. In the next example we construct an anti-Dowker 

space in ZFC. The space is based on an example due to Reed [28] which we outline first. 

Example 7.2. There is an anti-Dowker space in W. 

First we describe Reed’s example of a pseudonormal, collectionwise Hausdorff, non- 

normal space in C: 

Let X = ~1, and let 7,, be the usual topology on WI. Let L be the set {c~+n: n < w}, 

L2 the set {a+w2: (;~i E WI} and let R = wr -(LU&). For each cr+w2 in L2, {a+wn},, 

is cofinal in (x + w2 and { (CY + wn, cr + w(n + l)]: n E w, Q E ~1 } partitions L into 

disjoint wr-intervals. Let (C be a Cantor subset of K?, let a denote a countable base for Iw 

and, for each z in Iw, let {B(z,i): i E w} be a decreasing IW-neighbourhood base at 2. 
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We identify the points of X with points of the reals in the following way: Identify L2 

with a subset of @. Associate R with a subset of W - @ so that B n R is stationary for 

every B E B. For each LY + w2 in L2 and each n E w, let (o + wn, (Y + w(n + l)] be 

associated with a countable dense subset of B(a, n). With this identification, let ‘& be 

the topology that X inherits from R. 

Let X have the “intersection” topology 7 generated by 7,, U 7~. Clearly X is in 

C, and is therefore first countable, pseudonormal and collectionwise Hausdorff. L2 is a 

subset of a Cantor set and is TR-closed and R is T,,-closed so R and LIZ are disjoint 

closed subsets of X. 

Suppose that U and V are disjoint open sets separating LZ and R. For each LY in L2, 

there is an i, E w such that (ai,, a] n B( a, ia) is a subset of U. There is an uncountable 

subset M of Lz, a B in B and an i E w such that i, = i and B(a,ia) = B, for all CY 

in M. R n B is stationary, so there is a X in R n B which is a T&-limit of M. But, 

if (0, X] is any 7,,-open set containing X, then (cq, c~i+i] C (p, X] for some cy in M, 

where (c~i, cxi+i] is ‘&-dense in B. Hence X is a T-limit of U contained in R and U and 

V are not disjoint. 

Now let Y = WI. Let the sets L and L2, and the topologies T,, and 7 be as defined 

above. Partition WI - L into two disjoint stationary sets 5’1 and S2, with L2 L Si. We 

topologize Y so that it is an anti-Dowker space as follows: 

The subspace topology on both Si and 5’2 is precisely the subspace topology inherited 

from wi. If z is in ,572, then a basic open set about 5 is of the form 

(BnS2)U U A,, 

where A, is a basic ‘T-open set and B is a basic open interval from T,, . Basic open sets 

about points in L U L2 are inherited from 7,, . 

Y with the topology 7 is just X and is pseudonormal. If x is in Si, then the set 

L, = {y E Lz: y < x} is countable and 7-closed. By 7-pseudonormality, therefore, 

we can pick an ‘T-open set U, containing L,, whose closure misses Sz. Let basic open 

sets about z in Si be those inherited from the usual topology 7,, restricted to the set 

s1 uv,? 

Clearly Y with this topology is a first countable member of W. To see that it is regular, 

consider the three cases: 

(a) If z is an element of either L or L2, then it has a base of clopen sets inherited 

from WI. 

(b) Let 5 be an element of Sz. Since X is regular, it is zero-dimensional and there 

is a ‘J--clopen A, set containing z disjoint from Lz. If B, = {y E S2: yI < y < x}, 

where yZ is the least element of A,, then A, u B, is a clopen set containing x. By 

construction, x has a base of such clopen sets. 

(c) Let z be an element of 5’1 - L2. Since the subspace 5’2 U L U Lz is regular, it is 

pseudonormal. Therefore, there is an open set U, containing {y E Lz: y < x} whose 

closure misses S2. If B, = {y E Si: y < x}, then U, n B, is a closed neighbourhood 

of x which misses ,572. 
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With this information one can see that Y is regular. 

The proof that X is not normal only requires that R is stationary. The same argument 

shows that the disjoint closed sets Sr and S2 of Y cannot be separated by disjoint open 

sets. 

To see that Y is countably paracompact, let {Dn}nEw be a decreasing sequence of 

closed subsets with empty intersection. We require a decreasing sequence {Un} of open 

sets, D, C U,, such that nu, is empty. If some D, is countable, then we are done. 

Suppose that each D, is uncountabIe. The subspace topology on both St and Sz is 

precisely the subspace topology inherited from wt. Hence the intersection U, D, f~S,i is 

nonempty only if D,fl(S, US_) 7 IS countable for some n. By construction, Q: in St USA is a 

limit of a cofinal sequence {o~~~,+.&}~~~ in L if and only if it is a limit of {a,+~}. Hence 

D, lies in a clopen set U, which is contained in the paracompact subspace (0, p] U L. 

Example 7.3. The ladder space. 

Partition X = WI into two disjoint sets A and B. For each N in A, which is a limit of 

B, choose a sequence {cY~}~~~ from B cofinal in cr. Let neighbourhoods of any such 

(Y be (Y and all but finitely many points of {an} and isolate all the other points of X. 

With this topology X is a ladder space (see [31]). X is clearly a locally compact, first 

countable, regular member of W of scattered length 2. By the pressing down lemma, 

if A is stationary then X is not collectionwise Hausdorff. By Theorem 6.1, assuming 

MA + CH X is a o-closed discrete, hereditarily normal Moore space, which is neither 

collectionwise Hausdorff or WI -compact. 

Under 0 for stationary systems on WI, normal X in W are collectionwise Hausdorff 

(see [31]). Hence no ladder space with A stationary is normal assuming 0 for stationary 

systems. 

If we assume 4, then we may take the ladder space to be a strongly 2-star-Lindeldf 

space, which is not I-star-Lindelof (4.4): Let {Roi: CY E LIM n WI} be a $-sequence. 

Let A be the set of all limit ordinals and B the set of all nonlimits If R, n B is infinite, 

then let {cu,} be R, f? W indexed increasingly; otherwise let {a,} be some arbitrary 

sequence from B which is cofinal in Q. Let U be an uncountable collection of open sets 

and U be an uncountable subset of B meeting uncountably many members of U. By $, 

{an} is a subset of U for some CY, so IA is not a discrete collection of open sets and Y 

has the DCCC. Clearly X is not WI-compact so we are done by Proposition 4.3. Notice 

also that X is g-discrete, regular and locally compact but is neither a-closed discrete nor 

normal (in fact it is not possible to separate the nonstationary set W = (cy + w: c~ E wr } 
from the stationary A - W). 
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