Review

Antibiotics in late clinical development

Prabhavathi Fernandes *, Evan Martens

Cempra, Inc., 6320 Quadrangle Dr. Bldg 2, Chapel Hill, NC 27517, USA

Article info

Article history:
Received 9 September 2016
Accepted 23 September 2016
Available online xxxx

Keywords:
New antibiotics
Antibiotic development
CABP (community-acquired bacterial pneumonia)
ABSSSI (acute bacterial skin and skin structure infections)
cUTI (complicated urinary tract infection)
cIAI (complicated intra-abdominal infection)

Abstract

Most pharmaceutical companies have stopped or have severely limited investments to discover and develop new antibiotics to treat the increasing prevalence of infections caused by multi-drug resistant bacteria, because the return on investment has been mostly negative for antibiotics that received marketing approved in the last few decades. In contrast, a few small companies have taken on this challenge and are developing new antibiotics. This review describes those antibiotics in late-stage clinical development. Most of them belong to existing antibiotic classes and a few with a narrow spectrum of activity are novel compounds directed against novel targets. The reasons for some of the past failures to find new molecules and a path forward to help attract investments to fund discovery of new antibiotics are described.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction ... 00
2. Why is it difficult to obtain investments for new antibiotics? ... 00
3. Antibiotics that have been approved in recent years .. 00
4. Beta-lactamases, cephalosporinase, and carbapenemase inhibitors in combination with old and new beta-lactams .. 00
5. New cephalosporins and beta-lactams that have activity against beta-lactamase and carbapenemase-producing bacteria .. 00
6. New aminoglycosides .. 00
7. New pleuromutilins .. 00
8. New tetracyclines ... 00
9. New macrolides .. 00
10. New fluoroquinolones and DNA gyrase inhibitors ... 00
11. New oxazolidinones .. 00
12. New fatty acid biosynthesis inhibitors .. 00
13. New folate biosynthesis inhibitors .. 00
14. Defensin-mimetic peptides .. 00
15. Other classes .. 00
16. Old antibiotics with new dosing regimens .. 00
16.1. Ramoplanin .. 00
16.2. Fusidane ... 00
16.3. Fosfomycin .. 00
17. Summary ... 00
18. Conclusion ... 00
Funding ... 00

* Corresponding author.
E-mail address: prabha.fernandes@gmail.com (P. Fernandes).

http://dx.doi.org/10.1016/j.bcp.2016.09.025
0006-2952/© 2016 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: P. Fernandes, E. Martens, Antibiotics in late clinical development, Biochem. Pharmacol. (2016), http://dx.doi.org/10.1016/j.bcp.2016.09.025
1. Introduction

Antibiotics are the first successful class of drugs that can cure disease and have been effective in treating many infections. Most of the antibiotics that are commonly used today were discovered in what is known as the “Golden Age” of antibiotics [1], have lost patent protection, and as with most generic drugs, are low priced. Low cost and easy access have led to their overuse and misuse. Bacteria evolve when subjected to selective pressure and multi-drug resistance in organisms as ubiquitous as *Escherichia coli* and *Staphylococcus aureus* has been observed. Antibiotic resistance has drawn attention from infectious diseases specialists, the Centers for Disease Control and Prevention, the World Health Organization, and U.S. and European governments [2–4]. Large pharmaceutical companies have re-directed their resources to develop drugs for chronic use, and for other areas, such as cancer, where the drugs can be priced high, leaving antibiotic discovery and development to small companies and start-up biotechnology companies.

2. Why is it difficult to obtain investments for new antibiotics?

Many companies have been founded based on early-stage molecules or on screening methods against new targets. Novel compounds directed against novel targets have been reported against specific pathogens [5]. Pharmaceutical companies have invested in such programs over the past few decades but were not successful in finding new products. Some reasons for the lack of success of these programs are described here: i) Simple, small molecules directed against enzyme targets selected for resistance rapidly, even during treatment [1,5]. It should be noted that previous antibiotics were generally complex natural products with multiple binding sites at the target, making it less likely for resistance selection. ii) Many novel targets are genus, species or even strain specific. Clinical trials for new antibiotics are expected to cover disease indications that could have more than one bacterial species involved in the infection and not just a single pathogen. Recently approved, highly effective antibiotics, such as fidaxomicin that is pathogen-specific for *Clostridium difficile*, has not been able to compete in the market with older generics, such as vancomycin, which has uses in infections caused by other Gram-positive bacteria and therefore broader commercial use (such drugs are generally effective and sold at a lower price). iii) Antibiotic dosages are often in the range of hundreds of milligrams per day, so they should have exquisite selectivity for bacteria to avoid toxic effects on mammalian cells. However, many molecules that are active against bacteria are not selective and can cause collateral damage in the host. Exceptions are certain antibiotics, such as the polymyxins that are of natural product origin have been conducted to allow modifications in the structure, that were hitherto not accessible to semi-synthesis [7,8]; novel chemistries [8]; expression of polyketide genes in heterologous hosts to synthesize new, complex products [9,10]. In addition, start-up companies have a razor-sharp focus and persistence to overcome barriers to development such as in chemistry or bioavailability. These approaches are expected to be helpful in finding new molecules for the drug discovery and development in start-up small companies that have the advantage of a singular focus with lower cost programs.

3. Antibiotics that have been approved in recent years

Three antibiotics, telithromycin, tigecycline and trovafloxacin that were approved in the late 1990s and in the early 2000s were reported to have serious adverse events and subsequent product discontinuations [11–13]. These product failures and broad use of antibiotics, especially for simple infections, which amplified less frequent adverse events led to major changes in U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidance documents for conducting clinical trials. Efficacy endpoints were set with greater definition and clinical trials using non-inferiority margins were for complicated infections only. Stewardship and the movement to limit antibiotic usage are at odds with antibiotic use in simple infections, such as sinusitis and otitis media. The FDA guidance for clinical trials in simple infections requires that superiority be demonstrated [14]. Such trials are difficult to enroll and would need to be extraordinarily large to achieve statistical superiority, since most of these infections can resolve without therapy. Thus, new antibiotic approval is generally limited to marketing for complicated or more serious infections. Once approved, stewardship is likely to be practiced because of limited label indications and higher cost. According to the Association for Professionals in Infection Control and Epidemiology (APIC), antibiotic stewardship “promotes the appropriate use of antibiotics, improves patient outcomes, reduces microbial resistance, and decreases the spread of infections caused by multidrug-resistant organisms” [15]. The Infectious Diseases Society of America (IDSA) further emphasizes that selecting the optimal drug regimen, dose, duration, and route of administration are critical to the practice of stewardship. Furthermore, stewardship seeks to minimize toxicity and other adverse events as well as reduce the costs of healthcare infections [16].

During the last 6 years the following small molecule antibiotics have received marketing authorization: ceftaroline for acute bacterial skin and skin structure infection (ABSSSI) and community-acquired bacterial pneumonia (CABP); oritavancin for ABSSSI and CABP; telavancin for ABSSSI and CABP; dalbavancin for ABSSSI; tedizolid for ABSSSI; fidaxomicin for *C* difficile colitis; cefazidime-avibactam for complicated urinary tract infection
(cUTI) and intra-abdominal infection (IAI); and ceftolozane-avibactam for IAI and cUTI. Although the regulatory path is now clear, the revenues generated from each of these products is still small and the return on investment is low or negative compared with those of other therapeutic areas. (Fig. 1a, b). It is important to note that dalbavancin, telavancin and oritavancin compete with generic vancomycin and daptomycin. These new antibiotics were approved based on non-inferiority to lower cost antibiotics, and although the newer antibiotics may offer a more convenient dosing schedule, this alone has not convinced payers and patients that new antibiotics offer higher value. Fidaxomicin, as noted previously, must compete with generic vancomycin and metronidazole. Ceftaroline must compete with generic ceftriaxone, and tedizolid must compete with generic linezolid. Except for tedizolid, all recently approved antibiotics are administered intravenously. Generic antibiotics continue to be used in the outpatient sector despite treatment failures and increased hospitalizations [17].

This review will discuss those small molecules that are in late clinical development, i.e., those in Phase 3 clinical trials or with published Phase 2 clinical trial data. Where possible, antibiotics under development are grouped by class and similar mechanism of action. This review will focus on small molecules only and not vaccines, phage or antibody therapies.

4. Beta-lactamases, cephalosporinase, and carbapenemase inhibitors in combination with old and new beta-lactams

The success of ampicillin-clavulanic acid and ampicillin-sulbactam combinations that were widely used in outpatients, especially for urinary tract infections has led to the selection of new beta-lactamases and more treatment failures. Piperacillin-tazobactam, a next-generation product, was developed in the 1990s to treat serious Gram-negative infections, such as intra-abdominal infections and complicated urinary tract infections. The increasing incidence of new cephalosporinase and carbapenemases since introduction of piperacillin-tazobactam increased the interest in finding new beta-lactam plus new beta-lactamase inhibitor combinations [18,19]. Ceftazidime-avibactam (Avycaz) (1), a fixed-combination drug containing ceftazidime, a generic third-generation cephalosporin, and avibactam, a new beta-lactamase inhibitor, received regulatory approval to treat adults with complicated intra-abdominal infections (cIAI), and complicated urinary tract infections (cUTI) who have limited or no alternative treatment options. Interestingly, this approval was supported, in part, by the efficacy and safety of ceftazidime for the treatment of cIAI and cUTI. The contribution of avibactam to Avycaz was based on data from in vitro studies and animal models of infection. Two Phase 3 trials for Avycaz, one each in cIAI and cUTI were conducted (NCT01726023, NCT01598906) (Fig. 2).

Another cephalosporin–beta-lactamase inhibitor combination that was recently approved (December 2014) by the U.S. FDA was ceftolozane/tazobactam (Zerbaxa) (2), also used to treat adults with cIAI and cUTI. In this combination, the cephalosporin is new and the beta-lactam inhibitor was known, being the same beta-lactamase inhibitor as in piperacillin-tazobactam. Like the efficacy of the ceftazidime-avibactam combination, ceftolozane/tazobactam's efficacy to treat cIAI in combination with metronidazole was established in a clinical trial (NCT01147640) with a total of 979 adults. The results showed that Zerbaxa plus metronidazole was effective for the treatment of cIAI. In addition, the efficacy of Zerbaxa to treat cUTI was established in a clinical trial of 1068 patients where it was shown to be non-inferior to levofloxacin (NCT01345929).

Klebsiella pneumoniae strains resistant to carbapenem (carbapenem-resistant Enterobacteriaceae or CRE), have been reported. Effort is underway to find new combinations to treat these infections. Carabavance (Rempex, a subsidiary of Medicines Company), is a meropenem and a novel boronic beta-lactamase inhibitor RPX7009 (3) (aka vaborbactam) [20]. It is in Phase 3 development and will target Gram-negative bacteria that produce new beta-lactamase enzymes that have spread in the U.S. and Europe, including strains producing the Klebsiella pneumoniae carbapenemase (KPC) enzyme. The first Phase 3 trial (TANGO 1) (NCT02166476) was a randomized, comparative study against piperacillin/tazobactam for the treatment of cUTI. Carabavance was statistically superior to piperacillin/tazobactam, with overall success in 98.4% of treated patients. Safety of carabavance was comparable to that of piperacillin/tazobactam. A second Phase 3 trial (TANGO 2) (NCT02168946) is a multi-center, randomized, open-label study of carabavance versus best available therapy in subjects with selected serious infections due to CRE. Approximately 150 study subjects with cUTI, nosocomial pneumonia and/or bacteremia are expected to be randomly assigned (2:1) to carabavance or “best available therapy” for up to 14 days. This study is ongoing and will provide supportive data for the regulatory marketing authorization submission. When approved, carabavance will target...
the urgent and growing global threat of deadly Gram-negative “superbugs”, including the CRE.

In an effort to meet the growing need for antibiotics to treat CRE, a new monobactam antibiotic, relebactam (4), in combination with the old carbapenem, imipenem, and the carbapenemase inhibitor, cilastatin (MK-7655) is being developed (Merck & Co. Inc.) [21]. The challenge is to optimize the pharmacokinetics and safety for three drugs while gaining efficacy against CRE and other serious infections caused by Gram-negative bacteria. The target indications are cUTI, acute pyelonephritis, cIAI, and hospital-acquired bacterial pneumonia (HAP)/ventilator-associated bacterial pneumonia (VAP). In a phase 2 blinded, comparative study of patients with cUTI or acute pyelonephritis (NCT01505634), relebactam plus imipenem/cilastatin was non-inferior to imipenem/cilastatin alone in the proportion of microbiologically evaluable patients with a favorable microbiological outcome at the end of IV infusion. A phase 3 trial of relebactam with imipenem/cilastatin/relebactam is being compared to colistin in combination with imipenem/cilastatin for the treatment of resistant bacterial infections, including those caused by Pseudomonas aeruginosa and KPC-producing organisms (NCT02452047). A second phase 3 study is also enrolling patients, in which a fixed-dose combination of imipenem/relebactam/cilastatin is being compared to piperacillin/tazobactam in patients with HAP/VAP (NCT02493764).

Another combination, avibactam with aztreonam (AstraZeneca plc. and its U.S. partner Allergan plc., formerly Actavis), another generic antibiotic, is being developed for the treatment of IAIs along with metallo-β-lactamase-producing Gram-negative infections [22]. It is currently in Phase 2 clinical development but with the precedence of avibactam and aztreonam both being approved drugs, the combinations may receive regulatory approval without additional trials. (A phase 2 trial to determine the PK, safety, and tolerability of aztreonam-avibactam (ATM-AVI) in the treatment of hospitalized patients with cIAI is currently recruiting patients; NCT026555419). This could be similar to an “Intel inside” model, where avibactam could be used in combination with other penicillins, monobactams, cephems and cephalosporins giving new life to old beta-lactams.

Other beta-lactamase inhibitors are in development but no other combinations are in late clinical development capable of addressing new beta-lactamases that are likely to evolve but entering a crowded antibiotic market.

5. New cephalosporins and beta-lactams that have activity against beta-lactamase and carbapenemase-producing bacteria

A new cephalosporin, which is not being used in combination with a beta-lactamase inhibitor but does have activity against beta-lactamase and carbapenemase-producing pathogens, is S-649266 [23]. S649266 (Shionogi Inc.) is a novel, siderophore cephalosporin (5). It is an injectable cephalosporin in Phase 3 development, which is highly active against Gram-negative pathogens including multidrug-resistant Gram-negative bacteria known to cause bloodstream infections, HAP, VAP, and cUTI. It was shown to be effective in a Phase 2 trial in cUTI (NCT02321800) and is currently being evaluated in a Phase 3 study (CREDIBLE) for treatment of severe infections caused by carbapenem-resistant Gram-negative pathogens (NCT02714595).

Fig. 2. Structures of compounds targeting new beta-lactamase producing enteric pathogens: i) beta-lactamases: Beta-lactam–beta-lactamase inhibitors. Only the chemical structures of new members of each combination are shown: 1) Avibactam; 2) Ceftolozane; 3) Vaborbactam (RPX7009); 4) Relebactam; ii) Siderophore-containing beta lactams: 5) S649266.
Although BAL30072 [24] (Basilea Pharmaceutica Ltd.) is in earlier clinical development, it is mentioned here as it is a new siderophore monosulfaflactam antibiotic (6) with activity against multidrug-resistant Gram-negative bacteria. It also utilizes natural iron uptake systems to gain access to its target. The siderophore side chain also contributes directly to its antibacterial activity against clinically increasingly problematic multidrug-resistant Gram-negative bacteria such as Pseudomonas spp. and Klebsiella spp. Furthermore, there is new evidence that an accelerated uptake of BAL30072, facilitated by the compound’s siderophore side chain, potentiates its in vitro activity against Acinetobacterbaumannii, a pathogen that can cause severe pneumonia, infections of the urinary tract, and bacteremia.

6. New aminoglycosides

Streptomycin was the first aminoglycoside discovered in 1943 and is known for being one of the early drugs used to treat tuberculosis. Gentamicin, also a natural product is an aminoglycoside that was introduced in the 1960s to treat P. aeruginosa infections. This was followed by newer aminoglycosides, the most successful being tobramycin and in the 1980s, amikacin. Resistance to the older aminoglycosides, such as gentamicin and tobramycin is now widespread. There are three main mechanisms of aminoglycoside resistance that are known: decreased cell permeability; alterations at the ribosomal binding sites; and production of aminoglycoside modifying enzymes. Permeability mutants have low-level resistance. While resistance caused by ribosomal mutations that interfere with binding to the 30S subunit is rare and occurs primarily with streptomycin, the newer aminoglycosides have multiple binding sites and therefore resistance cannot be selected by a single step mutation. There are over 50 different bacterial antibiotic resistance-modifying enzymes, with some isolates carrying more than one enzyme, making this the most common type of aminoglycoside resistance. Enzymatic modification results in high-level resistance. There are three types of aminoglycoside modifying enzymes: N-Acetyltransferases, O-Adenyltransferases and O-Phosphotransferases. Amikacin is currently the most potent aminoglycoside, but resistance to this drug has been observed. Aminoglycosides were introduced as intravenous therapies for serious Gram-negative infections but their use is secondary to the cephalosporins and carbapenems due to the need to monitor aminoglycoside blood concentration to avoid aminoglycoside-related ototoxicity and nephrotoxicity. Newer aminoglycosides share the same narrow therapeutic window with the older aminoglycosides. More recently, the site of interaction that results in ototoxicity has been characterized [25] and may provide a tool for screening these compounds in the future.

Plazomicin (7) (Achaogen, Inc.) is a new aminoglycoside that is in Phase 3 development for the treatment of serious bacterial infections due to MDR Enterobacteriaceae, including CRE [26]. Two Phase 3 trials are currently underway. The first trial (EPIC), with a planned enrollment of 530 patients, is a pivotal marketing registrational study to evaluate plazomicin treatment of cUTI, including acute pyelonephritis (NCT02486627). The second trial (CARE), with a planned enrollment of 100 patients, is a supportive study to evaluate plazomicin treatment of serious CRE infections (NCT01970317).

7. New pleuromutilins

Pleuromutilin is a natural product of the fungi Pleurotus mutilus (now called Citophilus scrophoides) that inhibits bacterial protein synthesis by binding to the peptidyl transferase site on 23S RNA of the 50S ribosome. Many analogs have been made to enhance activity and bioavailability as this molecule is metabolized extensively. The structure consists of a common tricyclic mutilin core, a C21 keto group, essential for antimicrobial activity, and various diverse chemical extensions at C14. During the early 1980s, extensive effort was devoted to formulate azamulin [27] but because of potent inhibition of cytochrome P450, its development was subsequently discontinued. Another member of this class, retapamulin, was approved by the FDA in 2006 for topical use to treat impetigo. Another pleuromutilin, tiamulin, has been used as a veterinary drug in Europe and Canada.

Lefamulin (BC-3781) (8) (Nabriva Therapeutics AG), which was discovered at Roche, is a semi-synthetic compound that inhibits bacterial protein synthesis [28,29]. However, during a brief period of out-license in the US to Forest laboratories, it was tested in a Phase 2 trial for ABSSSI against vancomycin (NCT01119105). Lefamulin has a spectrum of activity that includes multi-drug resistant Gram-positive strains. In the completed Phase 2 trial in ABSSSI that was conducted by Forest Laboratories (NCT01119105), intravenous lefamulin achieved a high cure rate against multi-drug resistant Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). It also achieves high drug concentrations in the lung tissue and is expected to be available in both IV and oral formulations. A Phase 3 trial in CABP using intravenous and oral lefamulin (NCT02539310) was initiated in September 2015 and a second Phase 3 trial in CABP (NCT02813694) using oral lefamulin was initiated in April 2016. If these trials are successful and lefamulin is approved, it would be the first pleuromutilin antibiotic available for systemic human infections.

8. New tetracyclines

The tetracyclines are another old class of natural product antibiotics, discovered in the 1940s. Initially, they were used topically but after the development of doxycycline, they were used to treat a variety of infections including respiratory tract and skin infections. Tetracyclines also inhibit protein synthesis by inhibiting acyl-tRNA transfer on the 30S ribosome. Tetracyclines have a fused linear tetracyclic structure and form chelation complexes with divalent cations. Analogs that reduce chelation also have lower activity. Tetracyclines have broad-spectrum activity, including against Gram-positive and Gram-negative bacteria as well as anaerobic bacteria. Their use has been limited to adults because of their calcium complexing properties, but even in adults, their use has been limited by gastrointestinal side effects, especially nausea. They are a useful antibiotic class for patients who are intolerant of macrolides and for treating infections due to macrolide-resistant pathogens. Resistance to tetracyclines results from small proteins that block the tetracycline-binding site on the ribosome or by the expression of efflux proteins [30]. Tigecycline is a semi-synthetic tetracycline, called a glycyllcycline, that is administered intravenously for treating serious infections caused by resistant S. aureus, A. baumannii, and E. coli. The major side effects are nausea, vomiting, and diarrhea. There is also a small but significant (0.6%, with a corresponding 95% confidence interval (0.0%, 1.2%) unexplained increase in mortality that resulted in an FDA required black box warning. Omadacycline (9) (Paratek Pharmaceuticals Inc.) was developed with the goal of finding potent tetracycline molecules with activity against resistant pathogens and that could be administered intravenously and orally. It is semi-synthetically derived from tetracycline in a subclass called the aminomethylcyclines. It has a broad-spectrum of activity, for Gram-positive, Gram-negative, aerobes, anaerobes, and atypical bacteria. It is being developed for the treatment of ABSSSI and CABP, and is expected to be available in intravenous and oral formulations for use in the hospital and outpatient settings [31]. In the first Phase 3 trial (NCT02378400), a
comparison of intravenous and oral omadacycline to linezolid for treatment of ABSSSI (OASIS), the primary and secondary endpoints were achieved for both oral and IV omadacycline. A second Phase 3 trial comparing omadacycline to moxifloxacin for CABP is currently enrolling (NCT02531438) (Fig. 3).

Natural products are complex molecules. Semi-synthetic analogs can be made but access using synthetic chemistry to some of the sites on the core molecule is limited. Myers et al. [7,8] were able to synthesize tetracyclines synthetically and this led to further exploration of the structure to make analogs. One analog that was derived from this new chemistry is eravacycline (Tetraphase Pharmaceuticals) (10), a broad-spectrum, potent tetracycline against multidrug-resistant (MDR) Gram-negative bacteria, being developed for treatment of IAI and cUTI [32]. In the first Phase 3 trial (NCT01844856), a comparative study in cIAI (IGNITE1), eravacycline met the primary endpoint of non-inferiority of the clinical response rate. In the second Phase 3 trial (NCT01978938), a study of intravenous to oral eravacycline compared to levofloxacin in cUTI (IGNITE2), eravacycline did not achieve the primary endpoint. Eravacycline’s path to regulatory approval is likely through a second IAI trial but its commercial potential has been decreased with the failure of the oral formulation.

9. New macrolides

Erythromycin was the first member of the macrolide class that was developed for clinical use in the 1950s. In the 1980s, two acid-stable analogs, clarithromycin and azithromycin, were developed. Macrolides are frequently used for respiratory tract infections as they have targeted activity against respiratory pathogens. Macrolide antibiotics achieve high tissue and intracellular concentrations, which helps to address bacteria that are intracellular. In addition, they have strong anti-inflammatory properties. Macrolides inhibit protein synthesis by binding to the 23S RNA of the 50S ribosomal subunit at the exit of the peptide synthesis tunnel. Resistance to the approved macrolides is caused by methylases that
di-methylate the erythromycin binding site on the 23S RNA. Low
level resistance is a result of expression of efflux proteins and both
methylases and efflux proteins can be expressed in the same strain.
In 2001, a new macrolide, telithromycin, belonging to a new sub-
class called ketolide, received marketing approval. Ketolides are
macrolides in which a keto group replaces the cladinose sugar in
the older macrolides. In addition, there is an alkyl-aryl side chain
at the 11–12 position. The side chain allows telithromycin to inter-
act at additional sites on the 23S RNA of the bacterial ribosome and
this confers activity against strains that are resistant to the older
macrolides [33,34]. Following telithromycin’s approval in the US
in 2003, a series of serious adverse events that included hepatoto-
icity, visual disturbance, syncope and exacerbation of myasthenia
gravis were reported, which led to changes in the labeled indica-
tion. Although still approved for the treatment of CAbP, it is no
longer used because of the serious adverse events. Cethromycin,
another ketolide, was developed for respiratory tract infections
but not approved based on lack of efficacy. Solithromycin is a flu-
roketolide, with a fluorine at the 2-position of the macrolactone
ring (11) and an alkyl-aryl side chain at the 11–12 position of the
macrolactone ring. It is the next generation macrolide/ketolide as
it has activity against telithromycin-resistant bacteria [34]. Work-
ing with experts in the nicotinic acetylcholine receptor area, Cem-
pra Inc., conducted extensive work to show that the pyridine on
the side chain of telithromycin inhibits the nACh receptors in the
eye, neuromuscular junction, liver and brain. Inhibition of these
receptors is known to cause the same effects as was observed with
telithromycin. Having determined the reasons for the adverse
events of telithromycin, Cempra was able to continue the develop-
ment of solithromycin. Cempra has completed two Phase 3 trials
(Solitaire trials) in CAbP where solithromycin was shown to be
non-inferior to the comparator fluoroquinolone, moxifloxacin. The
first Phase 3 trial (NCT01756339) tested oral capsules of solithro-
mycin while the second Phase 3 trial (NCT01968733) tested the
intravenous formulation, allowing a switch to the oral capsules of
solithromycin. The results of these two trials have been published
[35,36]. Solithromycin has good oral bioavailability, is stable in
solution, does not prolong cardiac QT interval, and has demon-
strated activity against azithromycin-resistant and telithromycin-
resistant strains both in vivo and in vitro. New drug applications
have been submitted to the FDA and an MAA has been submitted
in the European Union. Toyama/Fujifilm, who have licensed soli-
thromycin for use in Japan, have completed a successful Phase 2
trial in CAbP where solithromycin was comparable to levofloxacin.
Marketing authorization in the US is expected at the end of 2016.
Following successful treatment of urogenital gonorrhea in a com-
parative Phase 2 trial (NCT01591447) [37], solithromycin is now
being tested in a Phase 3 trial (NCT02210325). Solithromycin is also
being tested in pediatrics and a Phase 2/3 pivotal trial (NCT02605122)
in pediatric patients (2 months to 17 years of age) with CAbP has been initiated. In addition to the oral capsules and
intravenous formulation, a suspension formulation has been devel-
oped to provide dosing flexibility for treating children. Finally,
non-clinical studies have demonstrated the potential utility of
solithromycin for the treatment of infections in pregnancy [38].

10. New fluoroquinolones and DNA gyrase inhibitors

Nalidixic acid was the first quinolone antibacterial agent, which
although not of microbial origin also originated indirectly from a
natural product, the by-product of chloroquine synthesis, which
itself is an analog of quinine extracted from the bark of the Cin-
chona tree. Nalidixic acid was named Negram, because its activity
was limited to Gram-negative bacteria. It had high plasma protein
binding and was used in simple urinary tract infections. The
pharmacokinetics and spectrum of activity were improved by the
addition of a fluorine in mefloquine and later by the additional aryl
rings to make ciprofloxacin followed by levofloxacin, moxifloxacin,
and a host of other fluoroquinolones with potent broad-spectrum
activity [39]. Resistance to ciprofloxacin and levofloxacin are now
a concern and newer fluoroquinolones that inhibit bacterial DNA
gyrase and topoisomerase IV (gyrA and parC) have been developed.
Delafloxacin (Melinta Therapeutics Inc.) (12), also known as Bax-
dela, was initially synthesized at Abbott Laboratories. Delafloxacin
has potent coverage of key ABSSSI bacterial pathogens, including
MRSA, and is formulated for intravenous and oral administration.
It has completed two Phase 3 trials (known as PROCEED), in which
the active comparator was vancomycin + aztreonam. The first trial
was IV only (NCT01811732) while the second ABSSSI trial was IV/
oral (NCT01984684). Both trials met the primary endpoints
demonstrating delafloxacin was non-inferior to the comparator.
Diarrhea and nausea were the most frequent treatment-related
adverse events reported. Melinta has also initiated a Phase 3 pro-
gram in hospital-treated CAbP (NCT02679573), and plans to
develop additional indications such as treatment of cUTI.

Another fluoroquinolone in Phase 3 clinical development is Zabo-
floxacin (13) (Dong Wha Pharmaceutical Co. Ltd.) Like delafloxacin,
it is a potent inhibitor of the essential bacterial DNA gyrase and
topoisomerase IV. It is highly active against respiratory tract patho-
gens (S. pneumoniae, S. aureus, Streptococcus pyogenes, and Moraxella
catarrhalis) and is being developed in both intravenous and oral for-
mulations to treat CAbP. Finaflexcin (MerLion Pharmaceuticals Pte
Ld.) is another fluoroquinolone that is currently in development. It
is approved in the US for treatment of acute otitis externa (swim-
mer’s ear) caused by P. aeruginosa and S. aureus. It is being developed
for cUTI, acute pyelonephritis, cIAI, ABSSSI, diabetic foot infection,
and tuberculosis. Other potential applications of finafloxacin are
treatment of infections in chronic obstructive pulmonary disease
(COPD) patients and Helicobacter pylori-related gastritis.

Neminoxacin (TaiGen Biotechnology Co. Ltd.) is a non-
fluorinated quinolone (14) that is being developed as once–a-day
dosing in both oral and intravenous formulations. It has a broad-
spectrum of activity against Gram-positive, Gram-negative, anaero-
bic, and atypical pathogens and is also active against drug-resistant
pathogens, such as MRSA and quinolone-resistant MRSA. Unlike the
fluoroquinolones, it has reduced propensity for resistance develop-
ment, requiring mutations in three different bacterial genes. It has
completed Phase 2 clinical trials for treating CAbP and diabetic foot
infections (NCT01944774, NCT00685698).

The fluoroquinolones were discussed at an Advisory committee
meeting convened by the US FDA in November 2015 when a num-
ber of serious side effects such as tendonitis, including Achilles ten-
don rupture, peripheral neuritis and C. difficile colitis were
discussed. These adverse events led to changes, including black
box warnings, which were made to the labeled indications for
the approved fluoroquinolones including ciprofloxacin, levofloxacin,
and moxifloxacin. The impact of label changes for the older flu-
oroquinolones on new antibacterials in this class will not be known
until their regulatory approval.

DNA gyrase is a proven, selective target for antibacterial product
development as shown by the fluoroquinolones. Coumermycin is an
old natural product antibiotic that inhibits the B subunit of DNA gyr-
ase unlike the fluoroquinolones, that inhibit the A subunit of DNA
gyrase. It is active against Gram-positive bacteria but had unaccept-
able toxicities and is therefore not used clinically. The B subunit
of DNA gyrase has also been the target of more recent drug discovery
efforts [40]. Gepotidacin (GSK2140944; GlaxoSmithKline plc.) (15)
is a triazaacenaphthylene DNA gyrase B subunit inhibitor that inhib-
bits bacterial DNA replication [41]. It is being developed for the
therapy of CAbP, uncomplicated urogenital gonorrhea, and CAbP.
Zolllodacin (ETX0914/AZD0914; Entasis/Astra Zeneca plc.) (16) is

Please cite this article in press as: P. Fernandes, E. Martens, Antibiotics in late clinical development, Biochem. Pharmacol. (2016), http://dx.doi.org/10.1016/j.bcp.2016.09.025
a spiropyrimidinetrione [42] that inhibits DNA gyrase (B subunit). It is being tested in a Phase 2, randomized, open-label study in gonorrhea [43] (NCT02257918) (Fig. 4).

11. New oxazolidinones

The oxazolidinones, unlike the previous classes, have no origin in natural products. This class was first discovered at DuPont but because of unacceptable toxicities, was not further developed. The first approved member of this class is linezolid, which was made at Pharmacia and later marketed by Pfizer after its acquisition of Pharmacia. It is a bacterial protein synthesis inhibitor through its binding to the peptidyl transferase site. The peptidyl transferase site in bacteria is similar to the peptidyl transferase site in mitochondrial RNA and some of the limitations of dosing with linezolid, such as myelosuppression, could be related to the effect on mitochondrial protein synthesis. Linezolid is also a monoamine oxidase inhibitor and should not be used with serotonergic drugs. Tedizolid is a newer oxazolidinone, which is more potent and is effective at a lower dose than linezolid. It has additional binding sites at the peptidyl transferase site and thus can overcome linezolid resistance.

Cadazolid (Actelion Pharmaceuticals Ltd.), a quinolonyl-oxazolidinone (17) is in Phase 3 development for the treatment of C. difficile-associated diarrhea (CDAD) [44]. Two Phase 3 trials (IMPACT) are enrolling, and will compare the efficacy and safety of cadazolid versus vancomycin (NCT01987895, NCT01983683).

MRX-1 (MicuRx Pharmaceuticals Inc.), another novel oxazolidinone, is active against multi-drug resistant (MDR) Gram-positive pathogens, including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE). It is being developed for the treatment of ABSSSI. It had comparable activity to linezolid in a Phase 2 ABSSSI trial conducted in China. A second Phase 2 study evaluating patients with ABSSSI is being conducted in the U.S. (NCT02269319). In these clinical trials, MRX-1 has not caused myelosuppression, the key limiting side effect seen with linezolid.

Sutezolid (PNU-100480) (Sequella, Inc.) is an oxazolidinone active against multi-drug resistant (MDR) Gram-positive pathogens and is being developed for the treatment of extensively drug-resistant tuberculosis. The drug was initially developed by Pfizer and successfully completed a Phase 2 study in tuberculosis (NCT01225640), but was then licensed by Sequella, Inc. in 2013.

12. New fatty acid biosynthesis inhibitors

Enzymes involved in fatty acid synthesis have been targets of antibiotic drug discovery. Triclosan is a chlorinated aromatic compound that is used in soaps and is a known FabI inhibitor (fatty}

Fig. 4. Chemical structures of the following molecules are shown: 11) Solithromycin; 12) Delafloxacin; 13) Zabofloxacin; 14) Nemonoxacin; 15) Gepotidacin; 16) Zoliflodacin. Please cite this article in press as: P. Fernandes, E. Martens, Antibiotics in late clinical development, Biochem. Pharmacol. (2016), http://dx.doi.org/10.1016/j.bcp.2016.09.025
acid biosynthesis type 1 inhibitor with the actual step in biosynthesis being Enoyl-acyl carrier protein reductase). Its use in soaps was shown to be problematic due to the fact that it induces resistance to other antibiotics by activating efflux pumps [45]. Debio 1452 (Debiopharm Group) (18), which was licensed from Affinium and is active against all staphylococcal-resistant strains tested to date, is currently in Phase 2 development. This FabI inhibitor is a staphylococcus-specific antibiotic designed from the crystal structure of the active site of the enzyme [46]. It is being developed for treatment of ABSSSI and osteomyelitis. A Phase 2 study in ABSSSI (NCT02426918) was initiated in 2015 to compare efficacy of intravenous Debio 1450, a Debio 1452 prodrug, with a switch to oral Debio 1450 compared to intravenous vancomycin with a switch to oral linezolid. Two Phase 2 studies (NCT02052388) were completed successfully in 430 subjects with ABSSSI comparing three dosing regimens of brilacidin to daptomycin for the treatment of ABSSSI. All brilacidin treatment regimens were shown to be well tolerated.

15. Other classes

Ridinilazole (SMT19969) (Summit Therapeutics) is a selective, non-absorbable novel compound for the treatment of C. difficile infection with reduced disease recurrence [50]. It is active against all strains of C. difficile and was shown to be superior to vancomycin in a Phase 2 study (NCT02092935).

16. Old antibiotics with new dosing regimens

16.1. Ramoplanin

Ramoplanin (NTI-851) (Nanotherapeutics Inc.) is an old glycolipodepsipeptide that inhibits cell wall biosynthesis and has a bactericidal effect. It is not absorbed orally and is proposed to enter a...
Phase 2 trial to treat antibiotic associated diarrhea with C. difficile but no clinical trial is currently underway in the U.S.

16.2. Fusidane

Fusidic acid is a steroidal natural product belonging to the fusidane class of antibiotics that was discovered in the 1960s at Leo Laboratories. Fusidic acid is a protein synthesis inhibitor, and the only bacterial elongation factor inhibitor that has been developed for clinical use. Oral fusidic acid has a long history of safety and efficacy outside the U.S. against ABSSSI, including MRSA, and bone and joint infections. However, it was never granted regulatory approval in the United States. Cempra has a patented oral loading dose regimen of fusidic acid (sodium fusidate) to minimize development of bacterial resistance. This loading dose/maintenance dose regimen was tested in a Phase 2 ABSSSI trial against linezolid as a comparator (NCT00948142). It is now being tested in pivotal Phase 3 trials for treatment of ABSSSI as well as an exploratory trial for long-term oral treatment of refractory bone and joint infections [51] (NCT02570490, NCT02569541). There is no FDA guidance or approved treatment for the latter indication.

16.3. Fosfomycin

Fosfomycin (also called phosphonomycin) was originally isolated from a Streptomyces sp. but is now made synthetically. It has a broad-spectrum of activity and is bactericidal. It inhibits UDP-N-acetylglucosamine-3-enolpyruvyltransferase, also known as MurA, an enzyme that catalyzes the first committed step in cell wall biosynthesis. Fosfomycin is a phosphoenolpyruvurate phosphate (PEP) analog that inhibits MurA by alkylating an active site cysteine residue in the enzyme. Fosfomycin enters the bacterial cell through the glycerophosphatase transporter. Fosfomycin is available for oral use but not intravenous use in the US. However, it is available for intravenous use overseas [52]. It has good activity against CRE pathogens and a new intravenous dosing formulation (Zavante Therapeutics) is currently under development. A Phase 3 comparative trial has been initiated to evaluate intravenous fosfomycin (also known as ZTI-01) against piperacillin/tazobactam in the treatment of cUTI and acute pyelonephritis in hospitalized adults (NCT02753946).

17. Summary

The above sections summarize those antibiotics that are in late clinical development. The discussion of early-stage molecules, such as POL7080 (Polyphor Ltd.), a macrocycle protein epitope mimetic [53], teixobactin, a novel, cyclic depsipeptide, which inhibits cell wall synthesis by binding to lipid II and lipid III (isolated from Eleftheria terrae, a Gram-negative bacterium that had previously been uncultured) [54] and ljugdunin, a novel thiazolidine-containing cyclic peptide (produced by Staphylococcus lugdunensis) [55] that inhibits Gram-positive bacteria, are beyond the scope of this review. Early-stage molecules have significantly higher risk of failure and those that inhibit unproven targets and unproven chemical classes have an even greater risk than known classes. Despite the higher risk, the search must go on, and drug developers, government organizations and investors must take calculated risks with new approaches in order to avoid returning to the pre-penicillin era.

Most of the new antibiotics in late-stage development belong to existing classes of antibiotics. So is there “nothing new under the sun” (Ecclesiastes 1:9)? New approaches that address drug resistant pathogens could save lives but it is not correct that there is lower risk for drug resistance with novel targets and novel classes as noted with PDF inhibitors that were developed by GlaxoSmithKline [5]. Analogs of existing classes are equally difficult to develop as novel compounds against novel targets, since every chemical change in old classes of molecules do pose safety and efficacy risks. Just as new patents recognize novel molecules, new antibiotics, even those that belong to old classes, deserve the acknowledgment that they are also difficult to develop and are also creative since many of these classes have been mined for decades. Most of the new antibiotics in late-stage development originated from natural products. The lesson learned is that complex molecules with multiple sites of interaction are a higher hurdle for mutations and resistance selection among bacteria.

18. Conclusion

Even the limited investments that are being made today are mostly made to develop intravenous antibiotics for use in hospitals. This choice has been primarily driven by less price sensitivity for hospital drugs, which is equated to higher revenue. With rising outpatient antibiotic resistance in respiratory and urinary tract infections, new oral antibiotics for outpatient use are urgently needed [17,56]. Solithromycin and omadacycline are two antibiotics being developed for both outpatient and hospital use. Another important point is that most antibiotics are developed for adults with the expectation that they will be used “off-label” in children. New legislation has required the development of new antibiotics for use in children. Since most new antibiotics only have intravenous formulations, new antibiotics for pediatric use will only be used in hospitalized children. Some antibiotic classes, such as the tetracyclines and fluoroquinolones, have unacceptable side effects in children and are therefore not approved for use in this special patient population. This leaves only a few classes of antibiotics for development for oral administration in pediatrics. The macroline antibiotic class has been preferred for use in children. Solithromycin, the new fluoroketolide, belongs to the macroline class and is being developed for both outpatient and inpatient pediatric use. As in the case of drug development exclusively for pediatric use, very few drugs are developed for infections that occur during pregnancy. Safety issues are believed to be a high hurdle in this special population. Development of solithromycin is expected to be pursued to treat infections in pregnancy and has shown desirable antibacterial activities and safety in pre-clinical studies. Notably, addressing all populations will become key as resistance rates rise.

Development of new antibiotics requires large investments. It is not feasible to obtain the approximately $200MM in investments to perform the required nonclinical work, clinical trials and manufacture of the product if an antibiotic is left on the shelf for use only in times of future need. Just as governments invest in ammunition to protect our countries, governments will also need to make investments to create new antibiotics to add to our armamentarium. Stockpiling these antibiotics will also be necessary to ensure that they are available in the event of immediate need, such as during bioterrorism events. There have been several models recently proposed to increase the incentives for developing new antibiotics in order to combat the growing problem of antimicrobial resistance. The first involves the concept of antibiotic reimbursement that is delinked from sales [57]. Specifically, this would mean that the link between rewards for R&D (and innovation) and revenues of sales (price and volume) would be broken [58]. In other words, the innovation could be rewarded through prizes and/or fixed series of milestone payments, thereby encouraging companies to develop new antibiotics [57]. A second approach for creating incentives for new antibiotics is the Options Market for Antibiotics (OMA) model [59]. This model would incentivize early development yet also...
share the risks between payers and developers [59]. The OMA model further emphasizes that companies would be given subsidies at different stages in the drug’s life cycle as opposed to only at the time of marketing. The hope would be to stimulate the R&D of new antibiotics by pharmaceutical companies due to the fact that current polices have been largely inadequate. The arms race is, and will always be, an on-going battle with bacteria that are continuously evolving due to selective pressure to develop resistance to the antibiotic du jour. We can only hope to stay ahead with our pursuit of new antibiotics.

Funding

This work did not receive any specific grant(s) from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors are employees of Cempra, Inc., that is developing solithromycin and fusidic acid and have no other conflicts of interest to declare.

Acknowledgements

The authors thank Dr. Alan Carr, Senior Research Analyst, at Needham and Company, for the ability to use his report on the antibiotic R&D update. The authors also thank Linda Drake, an artist, for drawing/creating each of the figures; Dr. Gary Horwitz, an employee of Cempra, Inc. for carefully editing this review; Dr. David Pereira, an employee of Cempra, for editing the chemical structures and David Moore, also an employee of Cempra, for providing Fig. 1a and b.

References

