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a b s t r a c t

In this article, a variational iteration method (VIM) is performed to give approximate and
analytical solutions of nonlinear ordinary differential equation systems such as a model
for HIV infection of CD4+ T cells. A modified VIM (MVIM), based on the use of Padé
approximants is proposed. Some plots are presented to show the reliability and simplicity
of the methods.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamics of a model for HIV infection of CD4+ T cells is examined [1] at the study. The components of the basic three-
component model are the concentration of susceptible CD4+ T cells, CD4+ T cells infected by the HIV viruses and free HIV
virus particles in the blood are denoted, respectively, by T (t), I(t) and V (t). CD4+ T cells are also named as leukocytes or T
helper cells. These with order cells in human immunity systems fight against diseases. HIV use cells in order to propagate.
The number of CD4+ T cells in a healthy person is 800

1200 mm3. These quantities satisfy

dT
dt

= q − αT + γ T

1 −

T + 1
Tmax


− kVT

dI
dt

= kVT − βI (1)

dV
dt

= NβI − γ V

with the initial conditions: T (0) = r1, I(0) = r2 and V (0) = r3. Throughout this paper, we set q = 0.1, α = 0.02, β =

0.3, r = 3, γ = 2.4, k = 0.0027,N = 10, Tmax = 1500. The logistic growth of the healthy CD4+ T cells is now described
by (1 −

T+I
Tmax

), and proliferation of infected CD4+ T cells is neglected. The term KVT describes the incidence of HIV infection
of healthy CD4+ T cells, where k > 0 is the infection rate. Each infected CD4+ T cell is assumed to produce N virus particles
during its lifetime, including any of its daughter cells. The body is believed to produce CD4+ T cells from precursors in the
bone marrow and thymus at a constant rate q. When stimulated by antigen or mitogen, T cells multiply through mitosis
with a rate r . Tmax is the maximum level of CD4+ T cell concentration in the body [2–5].
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The motivation of this paper is to extend the application of the analytic variational iteration method [6–9] to solve
a model for HIV infection of CD4+ T cells (1). The variational iteration method (VIM) was first proposed by the Chinese
mathematician He [8]. The first connection between series solution methods such as an Adomian decomposition method
and Padé approximants was established in [10]. The transmission and dynamics of HTLV-I feature several biological
characteristics that are of interest to epidemiologists, mathematicians, and biologists; see, for example [11–14], etc. Like
HIV, HTLV-I targets CD4+ T cells, the most abundant white cells in the immune system, decreasing the body’s ability to fight
infection. Several approximate analytical methods have proposed to solve this system. Some commonly used techniques are
the homotopy perturbation method [15–17] and the Adomian decomposition method [18]. We will use Laplace transform
and Padé approximant to deal with the truncated series.

2. Padé approximation

A rational approximation to f (x) on [a, b] is the quotient of two polynomials PN(x) and QM(x) of degrees N and M ,
respectively. We use the notation RN,M(x) to denote this quotient. The RN,M(x) Padé approximations to a function f (x) are
given by [10]

RN,M(x) =
PN(x)
QM(x)

for a ≤ x ≤ b. (2)

The method of Padé requires that f (x) and its derivative be continuous at x = 0. The polynomials used in (2) are

PN(x) = po + p1x + p2x2 + · · · + pN(x) (3)

QM(x) = qo + q1x + q2x2 + · · · + qM(x). (4)

The polynomials in (2) and (3) are constructed so that f (x) and RN,M(x) agree at x = 0 and their derivatives up to N + M
agree at x = 0. In the case Q0(x) = 1, the approximation is just the Maclaurin expansion for f (x). For a fixed value of N +M
the error is smallest when PN(x) and QM(x) have the same degree or when PN(x) has degree one higher than QM(x).

Notice that the constant coefficient of QM is q0 −1. This is permissible, because it can be noted that 0 and RN,M(x) are not
changed when both PN(x) and QM(x) are divided by the same constant. Hence the rational function RN,M(x) has N + M + 1
unknown coefficients. Assume that f (x) is analytic and has the Maclaurin expansion

f (x) = a0 + a1x + a2x2 + · · · + akxk + · · · . (5)

And from the difference f (x)QM(x) − PN(x) = Z(x):
∞−
i=0

aixi


M−
i=0

qixi


−


N−
i=0

pixi


=


∞−

i=N+M+1

cixi


. (6)

The lower index j = N + M + 1 in the summation on the right side of (6) is chosen because the first N + M derivatives of
f (x) and RN,M(x) should agree at x = 0.

When the left side of (6) is multiplied out and the coefficients of the powers of xi are set equal to zero for k =

0, 1, 2, . . . ,N + M , the result is a system of N + M + 1 linear equations:

a0 − p0 = 0
q1a0 + a1 − p1 = 0
q2a0 + q1a1 + a2 − p2 = 0 (7)
q3a0 + q2a1 + q1a2 + a2 − p3 = 0
qMaN−M | qM−1aN−M−1 | aN − pN = 0

and

qMaN−M+1 + qM−1aN−M+2 + · · · + q1aN + aN+2 = 0
qMaN−M+2 + qM−1aN−M+3 + · · · + q1aN+1 + aN+3 = 0
...

qMaN + qM−1aN+1 + · · · + q1aN+M+1 + aN+M = 0.

(8)

Notice that in each equation the sum of the subscripts on the factors of each product is the same, and this sum increases
consecutively from 0 to N + M . The M equations in (8) involve only the unknowns q1, q2, . . . , qM and must be solved first.
Then the equations in (7) are used successively to find p1, p2, . . . , pN [10].
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3. Variational iteration method

According to the variational iteration method [4], we consider the following differential equation:
Lu + N(u) = g(t) (9)

where L is a linear operator, N is a nonlinear operator, and g(t) is an inhomogeneous term. Then, we can construct a correct
functional as follows:

un+1(t) = un(t) +

∫ t

0
λ{Lun(s) + Nũn(s) − g(s)}ds (10)

where λ is a general Lagrangian multiplier [2–5], which can be identified optimally via variational theory. The second term
on the right is called the correction and ũn is considered as a restricted variation, i.e., δũn = 0.

4. Applications

In this section, we will apply the variational iteration method to nonlinear ordinary differential systems (1).
According to the variational iteration method, we derive a correct functional as follows:

Tn+1(t) = Tn(t) +

∫ t

0
λ


T ′

n(ξ) − q + αT̃n − rT̃n


1 −

T̃n + Ĩn
Tmax


+ kT̃nṼn


dξ

ln+1(t) = Tn(t) +

∫ t

0
λ{I ′n(ξ) − kT̃nṼn + β Ĩn}dξ (11)

Vn+1(t) = Vn(t) +

∫ t

0
λ{V ′

n(ξ) − Nβ Ĩn + γ Ṽn}dξ

where λ1, λ2 and λ3 are general Lagrange multipliers, T̃n(ξ), Ĩn(ξ) and Ṽn(ξ) denote restricted variations, i.e. δT̃n(ξ) =

δ Ĩn(ξ) = δṼn(ξ) = 0.
Making the above correction functional stationary, we can obtain following stationary conditions:

λ′

1(ξ) = 0,
1 + λ1(ξ) |ξ=t = 0,

λ′

2(ξ) = 0,
1 + λ2(ξ) |ξ=t = 0,

λ′

3(ξ) = 0,
1 + λ3(ξ) |ξ=t = 0.

(12)

The Lagrange multipliers, therefore, can be identified as
λ1 = λ2 = λ3 = −1. (13)

Substituting Eq. (13) into the correction functional equation (11) results in the following iteration formula:

Tn+1(t) = Tn(t) −

∫ t

0


T ′

n(ξ) − q + αT̃n − rT̃n


1 −

T̃n + Ĩn
Tmax


+ kT̃nṼn


dξ

In+1(t) = In(t) −

∫ t

0
{I ′n(ξ) − kT̃nṼn + β Ĩn}dξ (14)

Vn+1(t) = Vn(t)
∫ t

0
{V ′

n(ξ) − Nβ Ĩn + γ Ṽn}dξ .

We start with initial approximations T0(t) = N1, I0(t) = N2, V0(t) = N3. By the above iteration formula, we can obtain a
few first terms being calculated:

T1(t) = N1 (15)
I1(t) = N2

V1(t) = N3

T2(t) = N1 (16)
I2(t) = N2

V2(t) = N3

....
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Continuing in this manner, we can find the rest of components. The first n terms approximation to the solutions are
considered

T (t) ≈ Tn
I(t) ≈ In (17)
V (t) ≈ Vn.

This was done with the standard parameter values given above and initial values N1 = 0.05,N2 = 0.1,N3 = 0.5 for the
three-component model.

A few first approximations for T (t), I(t) and V (t) are calculated and presented below:
T (t) ≈ Tn (18)
I(t) ≈ In
V (t) ≈ Vn

T1(t) = 0.1 + 0.397953t (19)
I1(t) = 0.27e−4t
V (t) = 0.1 − 0.24t

T2(t) = 0.1 + 0.397953t + 0.592849053t2 − 0.1962704196e−4t2 (20)
I2(t) = 0.27e−4t + 0.17273655e−4t2 − 0.85957848e−4t3

V2(t) = 0.1 − 0.24t + 0.2880405t2

T3(t) = 0.1 + 0.397953t + 0.592849053t2 − 0.1962704196e−4t3 − 0.2318834562e−3t4

− 0.2327875585e−3t5 + 0.2728806044e−7t6 − 0.5920911616e−12t7 (21)

I3(t) = 0.27e−4t + 0.17273655e−4t2 − 0.85957848e−4t3 − 0.1222309057e−4t4

+ 0.9221539400e−4t5 − 0.2544022341e−5t6

V3(t) = 0.1 − 0.24t + 0.2880405t2 − 0.2304151263t3 − 0.6446838600e−4t4

T4(t) = 0.1 + 0.397953t + 0.592849053t2 − 0.1962704196e−4t3 − 0.2318834562e−3t4

− 0.2327875585e−3t5 + 0.2728806044e−7t6 − 0.5920911616e−12t7

+ 0.4674292582e−28t15 + 0.4401106523e−23t14 − 0.1378891999e−18t13

+ 0.1599285430e−14t12 − 0.5946938932e−11t11 − 0.2636484877e−10t10

+ 0.3272726240e−7t9 + 0.1427969646e−6t8 (22)

I4(t) = 0.27e−4t + 0.17273655e−4t2 − 0.85957848e−4t3 − 0.1222309057e−4t4

+ 0.9221539400e−4t5 − 0.2544022341e−8t6 + 0.8588511349e−20t12

− 0.3983212932e−15t11 + 0.2354315149e−11t10 + 0.1609817522e−7t9

− 0.1740929189e−7t8 − 0.5234087602e−4t7

V4(t) = 0.1 − 0.24t + 0.2880405t2 − 0.2304151263t3 − 0.6446838600e−4t4

− 0.1090295289e−8t7 + 0.4610769700e−4t6 + 0.2361097094e−4t5.
For large t , VIM is not a good result to approximate solutions of some differential equations of this system. To guarantee

the validity of approximation solution for large t , the series solutions are obtained from VIM applied Pade approximation
and Laplace transformation. This approach is called the modified variational iteration method (MVIM).

First, Laplace transformation is applied to the series solutions in (22) and then 1
t is written in place of s in the equation

obtained. Then, Padé approximant [3/3] is applied and 1
s is written in place of t . Finally, by using the inverse Laplace

transformation, we obtain the modified approximate solution
T (t) = −0.3352759138e−1e−0.9307708506e−3t

+ 0.1335507819e2.980494283t − 0.2319051141e − 4e5.413786559t ,

I(t) = 0.4346123862e−5e−2.395968046t
− 0.448969638e−4e−0.3062539727t

+ .4055084553e−4e0.5835463689t , (23)
V (t) = 0.9999780863e−1e−2.400133231t

+ 0.21913700e−5e3.679664095t .
These results obtained by VIM,MVIM and the fourth-order Runge–Kuttamethod for T (t), I(t) and V (t) are presented below.
In Fig. 1, the local changes of T (t), I(t) and V (t) variables are given. It is observed that, T (t), the concentration of susceptible
CD4+ T cells increases speedily, I(t), the number of CD4+ T cells infected by the HIV viruses increases quite slowly and V (t),
the number of free HIV virus particles in the blood decreases in a very short time after the onset of infection.

In Fig. 2, T − I, T − V , I − V and T − I − V phase portraits obtained using 5-term MVIM solutions are given.
In Tables 1–3, the results of LADM–Pade [18], VIM, MVIM and the fourth-order Runge–Kutta method are shown. The

results obtained from LADM–Pade and VIM slightly diverge from those for the fourth-order Runge–Kutta, but the results
obtained from MVIM are in good agreement.
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Fig. 1. Plots of approximations obtained from RK4, VIM and MVIM for a model for HIV infection of CD4+ T cells.
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Fig. 2. Phase portraits using 5-term MVIM.

5. Conclusions

In this paper, variational iteration method was used for finding approximate analytical solutions of nonlinear ordinary
differential equation systems such as amodel for HIV infection of CD4+T cells. We demonstrated the accuracy and efficiency
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Table 1
Numerical comparison for T (t).

t LADM–Pade [18] VIM MVIM Runge–Kutta

0 0.1 0.1 0.1000000000 0.1
0.2 0.2088072731 0.2088073214 0.2088080868 0.2088080833
0.4 0.4061052625 0.4061346587 0.4062407949 0.4062405393
0.6 0.7611467713 0.7624530350 0.7644287245 0.7644238890
0.8 1.3773198590 1.3978805880 1.4140941730 1.4140468310
1.0 2.3291697610 2.5067466690 2.5919210760 2.5915948020

Table 2
Numerical comparison for I(t).

t LADM–Pade [18] VIM MVIM Runge–Kutta

0 0.0 0 0.1e−13 0
0.2 0.603270728e−5 0.60326343661e−5 0.60327016510e−5 0.6032702150e−5
0.4 0.131591617e−4 0.1314878543e−4 0.13158301670e−4 0.1315834073e−4
0.6 0.212683688e−4 0.2101417193e−4 0.21223310013e−4 0.2122378506e−4
0.8 0.300691867e−4 0.2795130456e−4 0.30174509323e−4 0.3017741955e−4
1.0 0.398736542e−4 0.2431562317e−4 0.40025404050e−4 0.4003781468e−4

Table 3
Numerical comparison for V (t).

t LADM–Pade [18] VIM MVIM Runge–Kutta

0 0.1 0.1 0.1000000000 0.1
0.2 0.06187996025 0.06187995314 0.06187990876 0.06187984331
0.4 0.03831324883 0.03830820126 0.03829595768 0.03829488788
0.6 0.02439174349 0.02392029257 0.02371029480 0.02370455014
0.8 0.009967218934 0.01621704553 0.01470041902 0.01468036377
1.0 0.003305076447 0.01608418711 0.009157238735 0.009100845043

of thesemethods by solving some ordinary differential equation systems. This method solves the problemwithout any need
for discretization of the variables. We use Laplace transformation and Padé approximant to obtain an analytic solution and
to improve the accuracy of variational iteration method. The obtained solutions from The VIM, MVIM and RK4 are shown
graphically.
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