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Abstract

In this Letter, we extend the known results for the QCD potential between a static quark and its antiquark by compu
two-loop corrections to the colour-octet state.
 2004 Elsevier B.V.
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The QCD potential between a static quark and
antiquark has for a long time been used as a prob
the fundamental properties of the strong interacti
such as asymptotic freedom and confinement[1]. His-
torically, the potential for a quark–antiquark pair
the colour-singlet state attracted the most attention
cause it is a basic ingredient in the theory of hea
quarkonium and, therefore, of primary phenome
logical interest. Nowadays, however, there is gro
ing interest in its colour-octet counterpart. The lat
naturally appears in effective-theory calculations
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high-order corrections to the heavy-quarkonium sp
trum and decay rates through the so-called ultra
contribution[2]. Moreover, it determines the prope
ties of glueballinos and is necessary for the ana
sis of gluino–antigluino threshold production[3,4]. It
is also used in lattice QCD for studying the beh
ior of strong interactions at long distances and
interplay between perturbative and non-perturba
physics [3]. This requires knowledge of the corr
sponding perturbative corrections which, in contr
to the colour-singlet case, are not available beyond
loop. In the present Letter, we fill this gap and comp
theO(α2

s ) correction to the colour-octet static pote
tial.
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The perturbative expansion of the colour-sing
potential reads

V
(|q|) = −4πCFαs(|q|)

q2

×
[
1+ αs(|q|)

4π
a1 +

(
αs(|q|)

4π

)2

a2

(1)

+
(

αs(|q|)
4π

)3(
a3 + 8π2C3

A ln
µ2

q2

)
+ · · ·

]

where the first term corresponds to the Coulomb
tential. The one-loop coefficient,

(2)a1 = 31

9
CA − 20

9
TF nl,

has been known for a long time[5,6], while the two-
loop coefficient,a2, has only recently been found[7–
9]. In Ref.[9], the result of Ref.[8] was confirmed,

a2 =
[

4343

162
+ 4π2 − π4

4
+ 22

3
ζ(3)

]
C2

A

−
[

1798

81
+ 56

3
ζ(3)

]
CATFnl

(3)−
[

55

3
− 16ζ(3)

]
CF TF nl +

(
20

9
TF nl

)2

,

whereζ is Riemann’s zeta function, with valueζ(3) =
1.202057. . . . Here,CA = N andCF = (N2−1)/(2N)

are the eigenvalues of the quadratic Casimir opera
of the adjoint and fundamental representations of
SU(N) colour gauge group, respectively,TF = 1/2
is the index of the fundamental representation,
nl is the number of light-quark flavours. The mod
fied minimal-subtraction (MS) scheme for the renor
malization ofαs is implied. The logarithmic term o
O(α3

s ) in Eq. (1) reflects the infrared divergence
the static potential[10]. The particular form of the
logarithmic term corresponds to dimensional re
larization [11]. The corresponding infrared-diverge
term is cancelled against the ultraviolet-divergent o
of the ultra-soft contribution[2] in the calculation of
the physical heavy-quarkonium spectrum[11,12]. The
non-logarithmic third-order term,a3, is still unknown.

The perturbative expansion of the potential for
colour-octet state can be cast in the form
V o
(|q|) = 4παs(|q|)

q2

(
CA

2
− CF

)

×
[
1+ αs(|q|)

4π
ao

1 +
(

αs(|q|)
4π

)2

ao
2

+
(

αs(|q|)
4π

)3

(4)×
(

ao
3 + 8π2C3

A ln
µ2

q2

)
+ · · ·

]
,

where the one-loop coefficient is the same as in
colour-singlet case,ao

1 = a1. The two-loop coeffi-
cient, however, differs by a finite renormalizatio
independent term,

(5)ao
2 = a2 + δa2.

Our result is

δa2 = C2
A

3d − 11

d − 5

×
[

− 3(d − 4)(d − 1)

d − 5

]

(6)= (
π4 − 12π2)C2

A +O(d − 4),

whered is the space–time dimension, and we ha
introduced a graphical notation for the two mas
two-point integrals, where single and double lines r
resent the propagators 1/(k2 + iε) and 1/(k0 + iε), re-
spectively. The non-logarithmic part of the three-lo
coefficient,ao

3, is still unknown. It is instructive to look
at the numerical size of the corrections. ForN = 3 one
obtainsδa2 = −189.2. At the same time, we havea2 =
155.8(211.1,268.8) anda1 = 4.778(5.889,7.000) for
nl = 5(4,3). Thus, in the colour-octet case, the tw
loop correction is significantly smaller than for th
colour-singlet configuration. Depending onnl , it even
changes sign.

In the remaining part of this Letter, we wish
describe two independent ways that have been u
to evaluateδa2. The first method proceeds along t
lines of the analysis[9,11] based on the threshold e
pansion[13]. In general, the threshold expansion
the proper framework for performing calculations
volving a heavy quark–antiquark system. It provid
rigorous power-counting rules and natural definitio
of the formal expressions obtained in the perturba
analysis of the non-relativistic effective theory. T
corrections to the static potential only arise from
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soft regions of the loop integrals, which are char
terized by the following scaling of the loop momen
l0 ∼ |l| ∼ |q|. Thus, the calculation of the coefficien
ai and ao

i can be performed in the static limit o
NRQCD,mq → ∞.

Due to the exponentiation of the static potential[5],
the coefficientsai of the colour-singlet state only re
ceive contributions from the maximally non-Abelia
parts, leaving aside the terms involvingnl . The se-
lection of these parts effectively retains the contri-
butions of the soft region, as the appearance of
Abelian colour factorCF indicates the presence
a Coulomb pinch and thus implies that at least o
loop momentum is potential. The latter contributio
just represent iterations of the lower-order poten
and, therefore, should be excluded from the pot
tial itself. In the non-relativistic effective theory, the
iterations are taken into account in the perturbative
lution of the Schrödinger equation about the Coulo
approximation. These contributions refer to dynam
rather than static heavy-quark and -antiquark fie
and the Coulomb pinch singularities we encounte
the static-limit calculations are resolved by keepin
finite mass in the non-relativistic heavy-quark prop
gator.

The analysis of the colour-octet state is more
volved, since, in this case,the Coulomb pinches com
with all possible colour factors and cannot be remo
by selecting the maximum non-Abelian ones. Th
the separation of the Coulomb pinches should be
formed explicitly. They appear in the Feynman
agrams involving the product of the non-relativis
quark and antiquark propagators,

(7)
1

k0 − k2/(2mq) + iε

1

k0 + k2/(2mq) − iε
.

In this case, after expanding the quark propagato
1/mq , one obtains ill-defined products like

(8)
1

(k0 + iε)m

1

(k0 − iε)n
.

Thus, separating the soft and potential regions is
avoidable.1 In the soft region, the pole contribution

1 Note that, for the diagrams without Coulomb pinches, the se
ration of the soft and potential regions is ambiguous and even g
dependent. In such diagrams, thenon-relativistic quark and anti
quark propagators can be safely expanded in 1/mq .
of the quark and antiquark propagators have to be
cluded, and the product in Eq.(8) should actually be
defined to be its principal value,

(9)
1

2

[
1

(k0 + iε)m+n
+ 1

(k0 − iε)m+n

]
.

In the potential region, the quark and antiquark pro
gator poles produce contributions of the form

(10)

−iπ
mq

k2 − iε

[
δ

(
k0 − k2

2mq

)
+ δ

(
k0 + k2

2mq

)]
,

where the 1/v Coulomb singularity shows up explic
itly. After integration overk0, Eq. (10) yields the
non-relativistic Green function of the free Schröding
equation. Only Eq.(9) should be taken into account
the calculation of the static potential.

At one loop, there is only one diagram involving
Coulomb pinch, namely, the planar box, which has
colour factorC2

F for the colour-singlet state. Pickin
up the soft contribution, i.e., using the principal-va
prescription of Eq.(9) to define Eq.(8), we find the
planar box to cancel theC2

F part of the non-plana
box, which in total is proportional toC2

F − CF CA/2.
This explicitly demonstrates the exponentiation of th
one-loop colour-singlet static potential in momentu
space. However, we can also turn things around
express the planar box with Coulomb pinches thro
the well-defined non-planar box by actually requiri
the cancellation of theC2

F terms in the sum of al
one-loop diagrams, as is dictated by the exponen
tion. The result forao

1 as given above is then obtaine
by simply replacing the colour-singlet colour factor
the colour-octet one.

This strategy carries over to two loops. He
we have diagrams with zero, one, or two Coulo
pinches. For the diagrams without Coulomb pinch,
contribution toao

2 is obtained by adopting the corre
colour factor. We divide the Feynman diagrams w
Coulomb pinches into those that have two quark
two antiquark propagators (cf.Fig. 1) and the rest
The latter ones are treated directly using the princip
value prescription of Eq.(9). For the former, however
it is simpler to use the exponentiation, which requi
that the diagrams contributing to the colour fact
CAC2

F and C3
F sum up to zero in the colour-singl

case. This leads to two equations for the diagrams
fering from Coulomb pinches, namely, those shown
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(a) (b) (c)

(d) (e)

Fig. 1. Two-loop Feynman diagrams with ((a) and (b)) and without ((c)–(e)) Coulomb pinches that contribute toδa2.
es

ur
ra-

ven
l-
e

as

o
tial,
at,
of

of
k–

e,
nal
tee-
ing
in-

l
is
ee

as
an-

ion
c-

cial

the
ce

p-
r

ns

nd
ta-
m

g
ion,
r-
rst
the
e-

and
t of
loy
all)
nal
e
serv-
nal

sed

ls is
or
Fig. 1(a) and (b), which can be solved. This provid
a result in terms of the diagrams inFig. 1(c) and (d),
which are free of pinches. After adopting the colo
factors corresponding to the colour-octet configu
tion, one obtains the contributions to the results gi
in Eqs.(5) and (6). We wish to mention that the ca
culation was performed in the general covariant gaug
and that the dependence on the gauge parameter w
found to cancel out in the final result.

The second method to computeV o proceeds along
the lines of Ref.[8]. While in the above, we had t
assume exponentiation of the colour-singlet poten
we will now relax that assumption. The reason is th
although exponentiation is plausible to all orders
perturbation theory, the proof given in Ref.[5] holds
for the singlet potential inAbelian theories only.

As a starting point, we now expand the logarithm
the(T × R) Wilson loop spanned by the static quar
antiquark pair at distanceR throughO(α3

s ). Taking
the limit T → ∞ (which, in a diagrammatic sens
‘cuts’ the Wilson loop twice and restores translatio
invariance in the temporal direction, hence guaran
ing energy conservation at the vertices and lead
to simple momentum-space Feynman rules) and
sertingSU(N) generatorsT a into the purely spatia
Wilson lines to obtain the colour-octet potential to th
order (for a manifestly gauge-invariant definition, s
Ref. [14]), we now explicitly keep disconnected
well as one-particle-reducible diagrams in our exp
sion.

At this point, the general structure of the expans
involves (products of) up to two-loop four-point fun
tions of static quarks (cf.Fig. 1). After Fourier trans-
forming to momentum-space, we can choose a spe
point to evaluate these four-point functions, since
potential, of course, only knows about the distan
R of the qq̄ pair, which in a momentum-space re
resentation translates into the momentum transfe|q|
between the upper and lower lines inFig. 1. Hence,
effectively, we have to compute two-point functio
with external static quarks, external momentumq =
(0,q), and internal static quarks, gluons, ghosts a
light quarks, with the additional occurrence of a s
tic (anti-)quark–gluon two-point vertex, resulting fro
the special kinematics.

After performing the colour algebra and exploitin
symmetries of the integrals occurring in the expans
all integrals which might give rise to pinch singula
ities, and had to be treated with caution in our fi
approach, cancel exactly. Thus, we are left with
task of computing a class of two-loop two-point int
grals for which there exists a generic algorithm[8,15],
based on integration by parts (IBP)[16]. The imple-
mentation in Ref.[15] (see also Chapter 6 of Ref.[17])
is based on Ref.[18].

Having generated the relevant set of diagrams
reduced the occurring Feynman integrals to the se
two-point functions described above, we now emp
the reduction algorithm, which maps them to a (sm
set of so-called master integrals, multiplied by ratio
functions in the dimensiond . At this stage, we observ
cancellation of the gauge-parameter dependence,
ing as a check for the reduction. As an additio
strong check, we use our implementation[19] of the
strategy to solve a truncated set of IBP relations, ba
on lexicographic ordering of integrals[20].

The set of (massless, two-point) master integra
known analytically in terms of gamma functions, f
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generic dimensiond , as given, e.g., in Ref.[8]. Ex-
panding prefactors as well as master integrals ab
d = 4 − 2ε and renormalizing the gauge coupling, w
again arrive at Eq.(6).

To conclude, we have evaluated theO(α2
s ) cor-

rection to the colour-octet static potential using t
independent techniques. Both evaluations are in ag
ment, giving us confidence in our main result, Eq.(6).
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