On Score Sequences of \boldsymbol{k}-Hypertournaments ${ }^{\dagger}$

Zhou Guofei, Yao Tianxing and Zhang Kemin

Abstract

Given two nonnegative integers n and k with $n \geq k>1$, a k-hypertournament on n vertices is a pair (V, A), where V is a set of vertices with $|V|=n$ and A is a set of k-tuples of vertices, called arcs, such that for any k-subset S of V, A contains exactly one of the $k!k$-tuples whose entries belong to S. We show that a nondecreasing sequence $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ of nonnegative integers is a losing score sequence of a k-hypertournament if and only if for each $j(1 \leq j \leq n)$, $$
\sum_{i=1}^{j} r_{i} \geq\binom{ j}{k}
$$ with equality holding when $j=n$. We also show that a nondecreasing sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of nonnegative integers is a score sequence of some k-hypertournament if and only if for each j $(1 \leq j \leq n)$, $$
\sum_{i=1}^{j} s_{i} \geq j\binom{n-1}{k-1}+\binom{n-j}{k}-\binom{n}{k}
$$ with equality holding when $j=n$. Furthermore, we obtain a necessary and sufficient condition for a score sequence of a strong k hypertournament. The above results generalize the corresponding theorems on tournaments.

(C) 2000 Academic Press

1. Introduction

Hypertournaments have been studied by a number of authors (cf. Assous [1], Barbut and Bialostocki [2], Frankl [3], Gutin and Yeo [4]). These authors raise the problem of extending the most important results on tournaments to hypertournaments.
Given two nonnegative integers n and k with $n \geq k>1$, a k-hypertournament on n vertices is a pair (V, A), where V is a set of vertices with $|V|=n$ and A is a set of k-tuples of vertices, called arcs, such that for any k-subset S of V, A contains exactly one of the k ! k-tuples whose entries belong to S. Note that if $n<k$, then $A=\emptyset$; we call this kind of hypertournament a null-hypertournament and the values of its scores are all equal to 0 . Clearly a 2-hypertournament is merely a tournament.

Let $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ be an integer sequence. For $1 \leq i<j \leq n$, we denote $R\left(r_{i}^{+}, r_{j}^{-}\right)$ $=\left(r_{1}, r_{2}, \ldots, r_{i}+1, \ldots, r_{j}-1, r_{n}\right) ; R^{+}\left(r_{i}^{+}, r_{j}^{-}\right)=\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{n}^{\prime}\right)$ will denote a permutation of $R\left(r_{i}^{+}, r_{j}^{-}\right)$such that $r_{1}^{\prime} \leq r_{2}^{\prime} \leq \cdots \leq r_{n}^{\prime}$.
Let $H=(V, A)$ denote a k-hypertournament on n vertices. The vertices and arcs of H will be denoted by $V(H)$ and $A(H)$, respectively. An (x, y)-path in H is a sequence $(x=) v_{1} e_{1} v_{2} e_{2} v_{3} \cdots v_{t-1} e_{t-1} v_{t}(=y)$ of distinct vertices $v_{1}, v_{2}, \ldots, v_{t}, t \geq 1$, and distinct arcs e_{1}, \ldots, e_{t-1} such that v_{i+1} lies on the last entry in $e_{i}, 1 \leq i \leq t-1$. Let $e=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ be an arc in H and $i<j \leq k$, we denote $e\left(v_{i}, v_{j}\right)=\left(v_{1}, \ldots, v_{i-1}\right.$, $\left.v_{j}, v_{i+1}, \ldots, v_{j-1}, v_{i}, v_{j}, \ldots, v_{k}\right)$, that is, the new arc obtained from e by exchanging v_{i} and v_{j} in e. Let S be a subset of V, we denote $H\langle S\rangle$ to be the subhypertournament induced by S, that is, an arc is kept in $H\langle S\rangle$ if and only if all the vertices belonging to this arc belong to S. A k-hypertournament H is strong if for any two vertices $x \in V$ and $y \in V, H$ contains both an (x, y)-path and a (y, x)-path. A strong component of a k-hypertournament H is a maximal strong subhypertournament of H. For a pair of distinct vertices x and y in $H, A(x, y)$ denotes

[^0]the set of all arcs of H in which x precedes y. For a given vertex $v \in V$, the score $d_{H}^{+}(v)$ (or simply $\left.d^{+}(v)\right)$ of v is denoted by $d_{H}^{+}(v)=\left|\bigcup_{u \in V} A(v, u)\right| \mid$, that is, the number of arcs containing v and in which v is not the last element. Similarly, we define the losing score $d_{H}^{-}(v)$ (or simply $d^{-}(v)$) as the number of arcs containing v and in which v is the last element. The score sequence of a k-hypertournament is a nondecreasing sequence of nonnegative integers $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, where s_{i} is a score of some vertex in H. Let p, q be two integers, we denote $\binom{p}{q}=\frac{p!}{q!(p-q)!}$, with $\binom{p}{q}=0$ if $p<q$.

2. Main Results

The main results of this paper are the following theorems.
THEOREM 1. Given two nonnegative integers n and k with $n \geq k>1$, a nondecreasing sequence $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ of nonnegative integers is a losing score sequence of some k -hypertournament if and only if for each $j(k \leq j \leq n)$,

$$
\begin{equation*}
\sum_{i=1}^{j} r_{i} \geq\binom{ j}{k} \tag{1}
\end{equation*}
$$

with equality holding when $j=n$.
THEOREM 2. Given two nonnegative integers n and k with $n \geq k>1$, a nondecreasing sequence $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of nonnegative integers is a score sequence of some k hypertournament if and only if for each $j(k \leq j \leq n)$,

$$
\begin{equation*}
\sum_{i=1}^{j} s_{i} \geq j\binom{n-1}{k-1}+\binom{n-j}{k}-\binom{n}{k} \tag{2}
\end{equation*}
$$

with equality holding when $j=n$.
In order to prove Theorems 1 and 2, we need the following lemmas. Note that there are $\binom{n}{k}$ arcs in a k-hypertournament H of order $n \geq k$, and in each arc of H, only one vertex can be on the last entry; so we have $\sum_{i=1}^{n} d_{H}^{-}\left(v_{i}\right)=\binom{n}{k}$.

Lemma 1. Let H be a k-hypertournament of order n with $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ as its score sequence. Then

$$
\sum_{i=1}^{n} s_{i}=(k-1)\binom{n}{k}
$$

Proof. If $n<k$, then $s_{1}=s_{2}=\cdots=s_{n}=0$, hence the lemma holds; so we assume that $n \geq k$. Let t_{i} denote the losing score of v_{i}. Then $\sum_{i=1}^{n} t_{i}=\binom{n}{k}$. On the other hand, there are $\binom{n-1}{k-1}$ arcs containing a given vertex. Hence we have

$$
\sum_{i=1}^{n} s_{i}=\sum_{i=1}^{n}\left[\binom{n-1}{k-1}-t_{i}\right]=n\binom{n-1}{k-1}-\binom{n}{k}=(k-1)\binom{n}{k}
$$

LEMMA 2. Let $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ be a losing score sequence of a k-hypertournament H. If $r_{i}<r_{j}$, then $R^{+}\left(r_{i}^{+}, r_{j}^{-}\right)$is a losing score sequence of a k-hypertournament H^{\prime}.

Proof. Let $u \in V(H)$ and $v \in V(H)$, such that $d^{-}(u)=r_{i}$ and $d^{-}(v)=r_{j}$, respectively. If there is an arc e containing both u and v with v as the last element in e, then let $e^{\prime}=e(u, v)$ and $H^{\prime}=(H-e) \cup e^{\prime}$. It is clear that $R^{\prime}\left(r_{i}^{+}, r_{j}^{-}\right)$is the losing score sequence of H^{\prime}. Thus, in the following, we assume that for every $\operatorname{arc} e$ containing both u and v, v is not the last element in e.
Since $r_{i}<r_{j}$, there must exist two arcs e_{1} and e_{2} such that $e_{1}=\left(w_{1}, w_{2}, \ldots, w_{l-1, u} u, w_{l}\right.$, $\left.\ldots, w_{k-1}\right)$ and $e_{2}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{k-1}^{\prime}, v\right)$, where $\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{k-1}^{\prime}\right)$ is a permutation of $\left(w_{1}, w_{2}, \ldots, w_{k-1}\right), u \notin\left\{w_{1}, w_{2}, \ldots, w_{k-1}\right\}$ and $v \notin\left\{w_{1}, w_{2}, \cdots, w_{k-1}\right\}$. Let i_{0} be the integer such that $w_{i_{0}}^{\prime}=w_{k-1}$, and let $e_{1}^{\prime}=e_{1}\left(u, w_{k-1}\right), e_{2}^{\prime}=e_{2}\left(v, w_{i_{0}}^{\prime}\right)$. Now we can construct $H^{\prime}=\left(H-\left(e_{1} \cup e_{2}\right)\right) \cup\left(e_{1}^{\prime} \cup e_{2}^{\prime}\right)$. It is easy to check that $R^{+}\left(r_{i}^{+}, r_{j}^{-}\right)$is the losing score sequence of H^{\prime}.

Lemma 3. Let $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ with $r_{1} \leq r_{2} \leq \cdots \leq r_{n}$ be a nonnegative integer sequence which satisfies (1). If $r_{n}<\binom{n-1}{k-1}$, then there exists $\bar{p}(1 \leq p \leq n-1)$ such that $R\left(r_{n}^{+}, r_{p}^{-}\right)$is nondecreasing and satisfies (1).

Proof. Let p be the maximum integer such that $r_{p-1}<r_{p}=r_{p+1}=\cdots=r_{n-1}$ with $r_{0}=0$ if $p=1$. We shall show that $R\left(r_{n}^{+}, r_{p}^{-}\right)$satisfies (1). In fact, we only need to show that for each $j(p \leq j \leq n-1)$,

$$
\begin{equation*}
\sum_{i=1}^{j} r_{i}>\binom{j}{k} \tag{3}
\end{equation*}
$$

Since $r_{n}<\binom{n-1}{k-1}$,

$$
\sum_{i=1}^{n-1} r_{i}=\binom{n}{k}-r_{n}>\binom{n}{k}-\binom{n-1}{k-1}=\binom{n-1}{k}
$$

Hence if $p=n-1$, (3) holds. In the following, we assume that $p \leq n-2$; then (3) holds for $j=n-1$. If there exists $j_{0}\left(p \leq j_{0} \leq n-2\right)$ such that

$$
\sum_{i=1}^{j_{0}} r_{i}=\binom{j_{0}}{k}
$$

we choose j_{0} as large as possible. Since

$$
\begin{aligned}
\sum_{i=1}^{j_{0}+1} r_{i} & >\binom{j_{0}+1}{k}, \\
r_{j_{0}} & =r_{j_{0}+1}=\sum_{i=1}^{j_{0}+1} r_{i}-\sum_{i=1}^{j_{0}} r_{i}>\binom{j_{0}+1}{k}-\binom{j_{0}}{k}=\binom{j_{0}}{k-1} .
\end{aligned}
$$

It follows that

$$
\sum_{i=1}^{j_{0}-1} r_{i}=\sum_{i=1}^{j_{0}} r_{i}-r_{j_{0}}<\binom{j_{0}}{k}-\binom{j_{0}}{k-1}
$$

$$
\begin{aligned}
& \Longrightarrow \sum_{i=1}^{j_{0}-1} r_{i}<\binom{j_{0}-1}{k}+\binom{j_{0}-1}{k-1}-\binom{j_{0}}{k-1} \\
& \Longrightarrow \sum_{i=1}^{j_{0}-1} r_{i}<\binom{j_{0}-1}{k}-\binom{j_{0}-1}{k-2} \\
& \Longrightarrow \sum_{i=1}^{j_{0}-1} r_{i}<\binom{j_{0}-1}{k},
\end{aligned}
$$

a contradiction with the hypothesis on R. Hence (3) holds.
This completes the proof of this Lemma.
Lemma 4. Let $H=(V, A)$ be a k-hypertournament of order n. Let $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$ $\subset V$ and $V_{2}=V-V_{1}$.
(a) Iffor every arc e containing vertices from both V_{1} and V_{2} no vertex of V_{2} in e is on the last entry, then

$$
\sum_{i=1}^{j} d_{H}^{+}\left(v_{i}\right)=(k-1)\binom{j}{k}+\sum_{i=1}^{k-1}(i-1)\binom{j}{i}\binom{n-j}{k-i}
$$

(b) If H is strong, then

$$
\sum_{i=1}^{j} d_{H}^{+}\left(v_{i}\right)>(k-1)\binom{j}{k}+\sum_{i=1}^{k-1}(i-1)\binom{j}{i}\binom{n-j}{k-i}
$$

Proof. Let $A_{1}=A\left(H\left\langle\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}\right\rangle\right)$ and let A_{2} be the set of arcs containing vertices from both V_{1} and V_{2}. For each $v \in V$ and $e \in A$, we define a function ρ as follows:

$$
\rho(v, e)= \begin{cases}1, & \text { if } v \text { is in e and } v \text { is not the last element in } e \\ 0, & \text { otherwise. }\end{cases}
$$

Note that there are $\sum_{i=1}^{k-1}\binom{j}{i}\binom{n-j}{k-i}$ arcs in A_{2}, and for each $\operatorname{arc} e$ of A_{2} containing exactly i vertices of V_{1} and $k-i$ vertices of V_{2}, we have $\sum_{v \in e} \rho(v, e)=i-1$, since no vertex of V_{2} in e is on the last entry. Hence we have

$$
\begin{aligned}
\sum_{i=1}^{j} d_{H}^{+}\left(v_{i}\right) & =\sum_{i=1}^{j} \sum_{e \in A_{1} \cup A_{2}} \rho\left(v_{i}, e\right) \\
& =\sum_{e \in A_{1} \cup A_{2}} \sum_{i=1}^{j} \rho\left(v_{i}, e\right) \\
& =\sum_{e \in A_{1}} \sum_{i=1}^{j} \rho\left(v_{i}, e\right)+\sum_{e \in A_{2}} \sum_{i=1}^{j} \rho\left(v_{i}, e\right) \\
& =(k-1)\binom{j}{k}+\sum_{i=1}^{k-1}(i-1)\binom{j}{i}\binom{n-j}{k-i}
\end{aligned}
$$

Thus (a) holds. To prove (b), an analogous approach to that of (a) will follow and it is sufficient to note that there must exist an arc e containing exactly i vertices of V_{1} and $k-i$ vertices of V_{2}, such that $\sum_{v \in e} \rho(v, e)=i>i-1$. This is obvious since H is strong.

PROOF OF THEOREM 1. For any j with $k \leq j \leq n$, let $v_{1}, v_{2}, \ldots, v_{j}$ be the vertices such that $d^{-}\left(v_{i}\right)=r_{i}$ for each $1 \leq i \leq j$, and let $H_{1}=H\left\langle\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}\right\rangle$. Hence

$$
\sum_{i=1}^{j} r_{i} \geq \sum_{i=1}^{j} d_{H_{1}}^{-}\left(v_{i}\right)=\binom{j}{k}
$$

To prove the converse, we use induction on n. For $n=k$, the statement of Theorem 1 is valid, since there is only one arc and thus all the losing scores are equal to 0 except one, which is equal to 1 . Thus we assume that $n>k$. Since

$$
r_{n}=\sum_{i=1}^{n} r_{i}-\sum_{i=1}^{n-1} r_{i} \leq\binom{ n}{k}-\binom{n-1}{k}=\binom{n-1}{k-1},
$$

we consider the following two cases.
Case 1. $r_{n}=\binom{n-1}{k-1}$. Then

$$
\sum_{i=1}^{n-1} r_{i}=\sum_{i=1}^{n} r_{i}-r_{n}=\binom{n}{k}-\binom{n-1}{k-1}=\binom{n-1}{k}
$$

By induction hypothesis, $\left(r_{1}, r_{2}, \ldots, r_{n-1}\right)$ is a losing score sequence of a k-hypertournament H of order $n-1$. Now we can construct a k-hypertournament H of order n as follows. Let $V\left(H^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. Adding a new vertex v_{n}, for each k-tuple containing v_{n}, we arrange v_{n} on the last entry. Denote E_{1} to be the set of all these $\binom{n-1}{k-1} k$-tuples. Let $E(H)=$ $E\left(H^{\prime}\right) \cup E_{1}$. We can easily check that $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is the losing score sequence of H.
Case 2. $r_{n}<\binom{n-1}{k-1}$. We apply Lemma 3 repeatedly until we obtain a new nondecreasing sequence $R^{\prime}=\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{n}^{\prime}\right)$ such that $r_{n}^{\prime}=\binom{n-1}{k-1}$. By Case 1 we know that R^{\prime} is a losing score sequence of a k-hypertournament. Now we apply Lemma 2 on R^{\prime} repeatedly until we obtain the initial nondecreasing sequence $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$. By Lemma $2, R$ is a losing score sequence of a hypertournament.
This completes the proof of Theorem 1.
Proof of Theorem 2. Let $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be the score sequence of a k-hypertournament. Then there exists a k-hypertournament H with $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $d_{H}^{+}\left(v_{i}\right)=$ s_{i} for $i=1,2, \ldots, n$. Note that $d^{+}\left(v_{i}\right)+d^{-}\left(v_{i}\right)=\binom{n-1}{k-1}$. Let $r_{n+1-i}=d^{-}\left(v_{i}\right)$; then $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is the losing score sequence of H. Conversely, if $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is the losing score sequence of a k-hypertournament $H,\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is the score sequence of H. Hence it is sufficient to show that conditions (1) and (2) are equivalent provided $s_{i}+r_{n+1-i}=\binom{n-1}{k-1}$.
First, suppose that (2) holds. Then

$$
\begin{aligned}
\sum_{i=1}^{j} r_{i} & =\sum_{i=1}^{j}\left\{\binom{n-1}{k-1}-s_{n+1-i}\right\} \\
& =j\binom{n-1}{k-1}-\left(\sum_{i=1}^{n} s_{i}-\sum_{i=1}^{n-j} s_{i}\right) \\
& =j\binom{n-1}{k-1}-(k-1)\binom{n}{k}+\sum_{i=1}^{n-j} s_{i} \\
& \geq j\binom{n-1}{k-1}-(k-1)\binom{n}{k}+(n-j)\binom{n-1}{k-1}+\binom{j}{k}-\binom{n}{k}
\end{aligned}
$$

$$
\Longrightarrow \sum_{i=1}^{j} r_{i} \geq\binom{ j}{k}
$$

with the equality if $j=n$. Hence (1) holds.
Now suppose that (1) holds; using a similar argument as above, we can prove that (2) holds.
This completes the proof of the theorem.
Note that the statement of Theorem 1 is obvious for $j<k$, we have
Corollary 1 (LaUDAU [6]). A nondecreasing sequence ($s_{1}, s_{2}, \ldots, s_{n}$) of nonnegative integers is a score sequence of a tournament if and only if for each $1 \leq r \leq n-1$,

$$
\sum_{i=1}^{r} s_{i} \geq\binom{ r}{2}
$$

with equality holding when $j=n$.
With a slight alteration in the hypothesis of the previous theorem, we obtain a necessary and sufficient condition for a score sequence of a strong k-hypertournament. This result generalizes a theorem of Harary and Moser [5] about strong tournaments.

THEOREM 3. A nondecreasing sequence ($s_{1}, s_{2}, \ldots, s_{n}$) of nonnegative integers is a score sequence of a strong k-hypertournament with $n>k$ if and only if

$$
\sum_{i=1}^{j} s_{i}>j\binom{n-1}{k-1}+\binom{n-j}{k}-\binom{n}{k}
$$

for $k \leq j \leq n-1$ and

$$
\sum_{i=1}^{n} s_{i}=(k-1)\binom{n}{k}
$$

Proof. Let H be a strong k-hypertournament and suppose that $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is a score sequence of H with $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$. By Lemma 1, we have

$$
\sum_{i=1}^{n} s_{i}=(k-1)\binom{n}{k}
$$

For each $1 \leq i \leq n$, let v_{i} be the vertex of H with $d_{H}^{+}\left(v_{i}\right)=s_{i}$. Let $k \leq j \leq n-1$ and define $H_{1}=H\left\langle\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}\right\rangle$. Since H_{1} is a k-hypertournament of order j,

$$
\sum_{i=1}^{j} d_{H_{1}}^{+}\left(v_{i}\right)=(k-1)\binom{j}{k}
$$

Since H is a strong k-hypertournament, then, by Lemma 4(b), we have

$$
\sum_{i=1}^{j} d_{H}^{+}\left(v_{i}\right)>(k-1)\binom{j}{k}+\sum_{i=1}^{k-1}(i-1)\binom{j}{i}\binom{n-j}{k-i}
$$

it follows that

$$
\begin{aligned}
& \sum_{i=1}^{j} s_{i}=\sum_{i=1}^{j} d_{H}^{+}\left(v_{i}\right)>(k-1)\binom{j}{k}+\sum_{i=1}^{k-1} i\binom{j}{i}\binom{n-j}{k-i}-\sum_{i=1}^{k-1}\binom{j}{i}\binom{n-j}{k-i} \\
\Longrightarrow & \sum_{i=1}^{j} s_{i}>(k-1)\binom{j}{k}+j \sum_{i=1}^{k-1}\binom{j-1}{i-1}\binom{n-j}{k-i}-\sum_{i=1}^{k-1}\binom{j}{i}\binom{n-j}{k-i} \\
\Longrightarrow & \sum_{i=1}^{j} s_{i}>(k-1)\binom{j}{k}+j\left[\binom{n-1}{k-1}-\binom{j-1}{k-1}\right]-\left[\binom{n}{k}-\binom{n-j}{k}-\binom{j}{k}\right] \\
\Longrightarrow & \sum_{i=1}^{j} s_{i}>j\binom{n-1}{k-1}+\binom{n-j}{k}-\binom{n}{k} .
\end{aligned}
$$

For the converse, we assume that $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is a nondecreasing sequence of nonnegative integers such that

$$
\sum_{i=1}^{j} s_{i}>j\binom{n-1}{k-1}+\binom{n-j}{k}-\binom{n}{k}
$$

for $k \leq j \leq n-1$, and

$$
\sum_{i+1}^{n} s_{i}=n\binom{n-1}{k-1}-\binom{n}{k}=(k-1)\binom{n}{k} .
$$

By Theorem 2, $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is the score sequence of a k-hypertournament. Let H be such a k-hypertournament, and we show that H is strong.
If H is not strong, then we can easily verify that $V(H)$ can be partitioned as $U \cup W$ such that for any arc e containing vertices from both U and W, no vertex of U is on the last entry of e. Thus, let $H_{1}=H\langle W\rangle$ and $j=\left|V\left(H_{1}\right)\right|$, then, by Lemma 4(a), we have

$$
\sum_{w \in W} d_{H}^{+}(w)=\sum_{w \in W} d_{H_{1}}^{+}(w)+\sum_{i=1}^{k-1}(i-1)\binom{j}{i}\binom{n-j}{k-i},
$$

it follows that

$$
\begin{aligned}
\sum_{w \in W} d_{H}^{+}(w) & =\sum_{w \in W} d_{H_{1}}^{+}(w)+j\binom{n-1}{k-1}+\binom{n-j}{k}-(k-1)\binom{j}{k}-\binom{n}{k} \\
& =j\binom{n-1}{k-1}+\binom{n-j}{k}-\binom{n}{k} .
\end{aligned}
$$

Since $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$,

$$
\sum_{i=1}^{j} s_{i} \leq \sum_{w \in W} d_{H}^{+}(w)=j\binom{n-1}{k-1}+\binom{n-j}{k}-\binom{n}{k}
$$

which contradicts the initial hypothesis.
This completes the proof of the theorem.
Using a similar argument as above, we have the following theorem.

THEOREM 4. A nondecreasing sequence $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ of nonnegative integers with $n>$ k is a losing score sequence of a strong k-hypertournament if and only if, for $k \leq j \leq n-1$,

$$
\sum_{i=1}^{j} r_{i}>\binom{j}{k}
$$

and

$$
\sum_{i=1}^{n} r_{i}=\binom{n}{k}
$$

Corollary 2 (Harary and Moser [5]). A nondecreasing sequence ($s_{1}, s_{2}, \ldots, s_{n}$) of nonnegative integers is a score sequence of a strong tournament if and only if for each $1 \leq j \leq n-1$,

$$
\sum_{i=1}^{j} s_{i}>\binom{j}{2}
$$

and

$$
\sum_{i=1}^{n} s_{i}=\binom{n}{2}
$$

AcknowLedgements

We would like to thank the referee for his comments and suggestions which improved the presentation.

References

1. R. Assous, Enchaînabilité et seuil de monomorphie des tournois n-aires, Discrete Math., 62 (1986), 119-125.
2. E. Barbut and A. Bialostocki, A generalization of rotational tournaments, Discrete Math., 76 (1989), 81-87.
3. P. Frankl, What must be contained in every oriented k-uniform hypergraph, Discrete Math., 62 (1986), 311-313.
4. G. Gutin and A. Yeo, Hamiltonian paths and cycles in hypertournaments, J. Graph Theory, 25 (1997), 277-286.
5. F. Harary and L. Moser, The theory of round robin tournament, Am. Math. Mon., 73 (1966), 231-246.
6. H. G. Laudau, On dominance relation and the structure of animal societies, III: The condition for a score structure, Bull. Math. Biophys., 15 (1953), 143-148.

Received 15 March 1999 and accepted in revised form 10 February 2000
Zhou Guofei, Yao Tianxing and Zhang Kemin
Department of Mathematics,
Nanjing University,
Nanjing,
210093, China
E-mail: gfzhou@nju.edu.cn

[^0]: ${ }^{\dagger}$ This project was supported by NSFC and NSFJS.

