The spectrum of α-resolvable block designs with block size 3

D. Jungnickel, R.C. Mullin and S.A. Vanstone

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

Received 7 March 1990

In memory of Egmont Köhler.

Abstract

A balanced incomplete block design $D(v, k, \lambda)$ is α-resolvable if its blocks can be partitioned into classes such that each point of the design lies in exactly α blocks in each class. Necessary conditions on the parameters of such designs are those required for balanced incomplete block designs (that is, $vb = rk$, $\lambda(v-1) = r(k-1)$) together with the conditions $k \mid av$, and $\alpha \mid r$. It is shown here that if $k = 3$ then these conditions are also sufficient for the existence provided that $v \neq 6, \alpha \neq 1$.

1. Introduction

A balanced incomplete block design (BIBD) or order v, block size k, and index λ, where v, k, and λ are integers satisfying the relations $v > k \geq 2$ and $\lambda > 0$, is a pair (V, \mathcal{F}) where V is a v-set and \mathcal{F} is a family of k-subsets of V, called blocks, which have the property that every pair of distinct points of V occurs in precisely λ blocks. It is trivial to show that in such a design, every point occurs in r blocks, where r is independent of the point chosen, and if b is the number of blocks in \mathcal{F}, then the relations

\[bk = rv, \]

\[\lambda(v-1) = r(k-1) \] \hspace{1cm} (2)

and therefore

\[\lambda(v-1) \equiv 0 \pmod{k-1}, \] \hspace{1cm} (3)

\[\lambda v(v-1) \equiv 0 \pmod{k(k-1)} \] \hspace{1cm} (4)

0012-365X/91/$03.50 \copyright 1991 - Elsevier Science Publishers B.V. All rights reserved
must hold. A BIBD is said to be α-resolvable if its blocks are partitioned into classes (called α-resolution classes) such that each point of the design occurs in precisely α blocks in each class. Clearly, in such a design, the additional conditions

$$k \mid \alpha v \quad (5)$$

and

$$\alpha \mid r \quad (6)$$

must hold.

It is our purpose here to show that if $k = 3$, and $v \neq 6$, then conditions (3)–(6) are sufficient for the existence of an α-resolvable BIBD.

2. A few special cases

A BIBD $(v, 3, \lambda)$ is called a λ-fold triple system and is denoted $TS(v, \lambda)$. For such systems, condition (5) becomes $3 \mid \alpha v$. For $v \equiv 0 \pmod{3}$, this places no condition on α, while for $v \not\equiv 0 \pmod{3}$, this yields the condition $3 \mid \alpha$. Let us first consider the case in which $v \equiv 0 \pmod{3}$.

It is well known, see [2], that for positive $v \equiv 0 \pmod{3}$, $v \neq 6$, the conditions (1) and (2) imply the existence of a 1-resolvable (or simply, resolvable) triple system. If there are r resolution classes, and if $r = \alpha t$, then one can collect t larger classes each consisting of α different 1-resolution classes to obtain an α-resolvable design. The case of six points presents special problems. Fortunately this case can be handled using the results of Hartman [7–8].

Lemma 2.1. The necessary conditions (3)–(6) are sufficient for the existence of an α-resolvable $(6, 3, \lambda)$ design if $\alpha > 1$. A necessary and sufficient condition for the existence of a 1-resolvable $(6, 3, \lambda)$ design is $\lambda \equiv 0 \pmod{4}$.

Proof. Hartman has shown (see [7]) that a necessary and sufficient condition for the existence of a 1-resolvable $(6, 3, \lambda)$ is $\lambda \equiv 0 \pmod{4}$. So in this case, unions of α parallel classes will give an α-resolvable $(6, 3, \lambda)$ design for only $\alpha \geq 1$ which satisfies (6). When $\lambda \equiv 2 \pmod{4}$ we have, by (6), that $\alpha \mid (5\lambda/2)$, hence α is odd, and consequently $\alpha \geq 3$. The unique $(6, 3, 2)$ design can be partitioned, as follows, into a 2-resolution class $P_2 = \{012, 034, 145, 235\}$ and a 3-resolution class $P_3 = \{015, 024, 123, 035, 134, 245\}$. The remaining blocks of a $(6, 3, 4n + 2)$ design may be constructed by taking n copies of the set of all 3-subsets. The α-resolution classes are constructed by adding $\alpha - 2$ parallel classes to P_2, $\alpha - 3$ parallel classes to P_3, and unions of α parallel classes for the rest. (The only case not covered by this construction is the trivial $\alpha = 5\lambda/2$ resolution with only one α-resolution class.)
3. Triple systems with a point-regular group

A triple system is said to have a point regular group G if (i) G is a subgroup of the full automorphism group and (ii) for distinct points x and y there is precisely one element of G mapping a to b.

The following theorem is important in the case in which the order of a triple system is not divisible by three.

Theorem 3.1. A triple system $TS(v, \lambda)$ with a point-regular group G exists if and only if one of the following holds:

1. $v = 1$ or $3 \pmod{6}$ for $\lambda = 1, 5, 7$ or $11 \pmod{12}$;
2. $v = 0, 1, 3, 4, 7$ or $9 \pmod{12}$ for $\lambda = 2$ or $10 \pmod{12}$;
3. $v = 1 \pmod{2}$ for $\lambda = 3$ or $9 \pmod{12}$;
4. $v = 0$ or $1 \pmod{3}$ for $\lambda = 4$ or $8 \pmod{12}$;
5. $v = 0$ or $3 \pmod{4}$ for $\lambda = 6 \pmod{12}$;
6. $v \geq 3$ for $\lambda = 0 \pmod{12}$.

Proof. By the results of Colbourn and Colbourn [4], the above conditions are sufficient for the existence of a cyclic triple system, with the two exceptions $v = 9$ and $\lambda = 1$ or 2. Clearly these cases can be realised by the elementary group $G = EA(9)$. It remains to show that (1)–(6) are necessary. Note that these conditions are equivalent to the necessary existence conditions for $TS(v, \lambda)$ together with the additional condition

$$v = 2 \pmod{4} \implies \lambda = 0 \pmod{4}.$$ \hfill (*)

It remains to derive the necessity of (*). Assume $v = 2 \pmod{4}$. Then G may be written as the semidirect product of $\mathbb{Z}_2 = \{0, 1\}$ with a group H of (odd) order $v/2$. Assume first that v is not a multiple of 3 (so that D may be represented by a $(v, 3, \lambda)$-difference family in G). Then every base block yields either 0 or 4 differences with first coordinate 1. Writing $v = 4m + 2$ we need $\lambda(2m + 1)$ such differences and therefore 4 divides λ. Finally assume $v = 0 \pmod{3}$, say $v = 12m + 6$. Then any subgroup U of G of order 3 can only contain elements with first coordinate 0 (since the intersection of U with H cannot have size 1), and we get $\lambda = 0 \pmod{4}$ as before. \hfill \square

Corollary 3.1.1. A $(v, 3, \lambda)$-difference family exists if and only if the following conditions hold:

1. $\lambda(v - 1) = 0 \pmod{6}$;
2. $v = 2 \pmod{4}$ implies $\lambda = 0 \pmod{4}$.

\vspace{1cm}
4. \(\alpha \)-Resolvable triple systems with \((v, 3) = 1 \)

It remains to discuss the case of \(\alpha \)-resolvable triple systems in the case where 3 and \(v \) are relatively prime. In these cases, the condition \(k \mid \alpha v \) yields \(3 \mid \alpha \), and a solution for the case \(\alpha = 3 \) will also provide solutions for all \(\alpha \) such that \(3 \mid \alpha \) and \(\alpha \mid r \). In the event that there exists a triple system which admits a point regular group, then this system is clearly 3-resolvable. In view of the foregoing, we consider the following cases to show that the necessary conditions for an \(\alpha \)-resolvable design in the case \(k = 3 \) are also sufficient, provided that \(v \neq 6 \).

Case 1: \(\lambda = 1 \) or \(5 \) (mod 6).

Here \(v = 3 \) (mod 6) and the assertion follows by the result of Ray-Chaudhuri and Wilson [9] on Kirkman triple systems; or \(v = 1 \) (mod 6), and we may use a \((v, 3, \lambda) \)-difference family which exists by Theorem 3.1.

Case 2: \(\lambda = 2 \) or \(4 \) (mod 6).

Then either \(v = 0 \) (mod 3) and the assertion follows from the results of Hanani [5] who provided the case \(\alpha = 1 \). Or \(v = 1 \) (mod 3), and the assertion follows from Theorem 3.1 unless \(v = 10 \) (mod 12) and \(\lambda = 2 \) or 10 (mod 12).

Case 3: \(\lambda = 3 \) (mod 6).

Then \(v \) is necessarily odd, and the assertion follows from Theorem 3.1.

Case 4: \(\lambda = 0 \) (mod 6) (and \(v \geq 3 \)).

The assertion follows from Theorem 3.1, unless \(v = 2 \) (mod 4) and \(\lambda = 6 \) (mod 12). Note that \(v = 6 \) (mod 12) is covered by Case 2.

The remaining cases can be disposed of by proving the assertion for the cases
(1) \(v = 10 \) (mod 12) and \(\lambda = 2 \); and
(2) \(v = 2 \) (mod 12) and \(\lambda = 6 \).

5. \(\alpha \)-Resolvable frames

The notion of a resolvable frame was introduced by Hanani [4] to investigate resolvable subsystems of resolvable triple systems of index \(\lambda = 1 \). The following version of this notion is useful here. Let \(V \) be a finite set of cardinality \(v \). Let \(k \) be any integer satisfying \(2 < k < v \). Then a block is any subset of \(V \) which has cardinality \(k \). An \(\alpha \)-resolution class is a collection of blocks such that each point of \(V \) occurs in precisely \(\alpha \) blocks. A partial \(\alpha \)-resolution class is a collection of blocks in which each point of \(V \) occurs either \(\alpha \) or zero blocks. The set of points not occurring in a partial parallel class is called the complement of the class. Let \(G \) be a partition of \(V \) (the members of \(G \) are called groups). Then a \((\lambda, \alpha) \) frame is the triple \((V, G, P) \) where \(P \) is a collection of \(\alpha \)-partial resolution classes of the non-empty set \(V \), whose blocks are of cardinality 3, which satisfies the following conditions:

(1) The complement of each partial \(\alpha \)-resolution class \(P \) of \(P \) is a group \(G \) of \(G \);
(2) Each unordered pair of \(V \) which does not lie in some group of \(\mathcal{G} \) lies in precisely \(\lambda \) blocks of \(\mathcal{G} \), no unordered pair of elements which lie in some group of \(\mathcal{G} \) also lies in a block of \(\mathcal{P} \).

The type of the \((\lambda, \alpha)\) frame is the multiset \(\{|G|: G \in \mathcal{G}\} \). If the multiset contains \(u_1 \) 1's, \(u_2 \) 2's, etc., then the notation \(1^{u_1}2^{u_2}\cdots \) is used to describe it.

For the definition of pairwise balanced design (PBD), group divisible design (GDD), and transversal design (TD), see [10].

The following construction for \((\lambda, \alpha)\) frames is that of [10, Construction 3.1].

Lemma 5.1. Let \((V, \mathcal{G}, \mathcal{A})\) be a GDD, and let \(w: X \rightarrow \mathbb{Z}^+ \cup \{0\} \). For each \(A \) in \(\mathcal{A} \), suppose that there is a \((\lambda, \alpha)\) frame of type \(\{w(x): x \in A\} \). Then there is a \((\lambda, \alpha)\) frame of type \(\{C_{xtc}w(x): G \in \mathcal{G}\} \).

6. Frames and \(\alpha \)-resolvable designs

A \((\lambda, \alpha)\) frame of type \(t^\alpha \) is said to be uniform. Let \(T = \{u: \) there exists a \((\lambda, \alpha)\) frame of type \(t^\alpha\}\}. Then it is easily shown that Lemma 5.1 implies that \(T \) is \(\text{PBD-closed} \).

Lemma 6.1. Let \(S = \{u: \) there exists a \((2, 3)\) frame of type \(3^u\}\}. Then \(S = \{u: u \in \mathbb{Z}, u \geq 1, u \neq 2, 3\} \).

Proof. Assaf and Hartman [1] have given necessary and sufficient conditions for the existence of uniform \((\lambda, 1)\) frames with block size 3. This result implies the existence of \((2, 1)\) frames of type \(3^u \) for all positive \(u \neq 2, 3 \). By amalgamating parallel classes, the required \((2, 3)\) frames are constructed. \(\square \)

Corollary 6.1. Let \(v = 3u + 1 \), where \(u \) is a positive integer, and let \(b, r, \lambda \) be positive integers such that conditions (3)-(6) of Section 1 hold. Then there exists an \(\alpha \)-resolvable \(\lambda \)-fold triple system of order \(v \).

Proof. If \(u \) is even, the result follows from Corollary 3.1.1. Suppose that \(u \) is odd. Then \(\lambda \) must be even, and the condition \(3 \mid \alpha \) must hold. Therefore for specified \(v \) and \(\lambda \), such an \(\alpha \)-resolvable triple system exists provided that there exists a 3-resolvable, 2-fold triple system of order \(v \). If there exists a \((2, 3)\) frame of type \(3^u \), then the required 2-fold triple system can be constructed as follows.

Trivially, there exists a 2-fold 3-resolvable triple system \((4, 3, 2)\) consisting of all 3-subsets of a 4-set. Let \(F \) be the \((2, 3)\) frame, and let \(\infty \) be a point not belonging to the point-set of the frame. To each group \(G \) of the frame, adjoin \(\infty \), then adjoin the blocks of a \((4, 3, 2)\) design defined on \(G \cup \{\infty\} \) to the blocks of the frame in such a way that these blocks are adjoined to the partial 3-resolution class whose complement is \(G \). The result is a 3-resolvable 2-fold triple system.
By the above lemma, this covers all cases except for \(v = 10 \) (recall that \(v = 7 \) is covered by Corollary 3.1.1). A 3-resolvable two-fold triple system of order 10, found by Royle, is exhibited in Table 1. (Royle also showed that each of the 960 two-fold triple systems of order 10 is 3-resolvable.) □

It remains to dispose of the case where \(v \) is congruent to 2 (mod 12). An orthogonal array \(OA(k, n) \) is an \(n^2 \times k \) array of the symbols \(N = \{1, 2, \ldots, n\} \) such that each of the ordered pairs \(\{i, j\}, i, j \in N \), occurs precisely once in any two specified columns of the array. Such an array is idempotent if the sub-arrays \((1, 1, \ldots, 1), (2, 2, \ldots, 2), \ldots, (n, n, \ldots, n) \) appear as rows of the array. It is well known that a set of \(k - 2 \) mutually orthogonally latin squares of order \(n \) which contain a common transversal gives rise to an idempotent \(OA(k, n) \). In particular, since there exists a self-orthogonal latin square (i.e., a latin square orthogonal to its transpose) of order \(n \) for every positive integer \(n \) except for \(n = 2, 3 \) or 6, then there is an idempotent orthogonal array \(OA(4, n) \) for all such \(n \) except for \(n = 2, 3 \) or 6.

Lemma 6.2. Let \(n \) be a positive integer other than 2 or 3. Then there exists a (6, 3) frame of type \(1^n \).

Proof. Let \(n \) be a positive integer other than 2, 3, or 6. Then there exists an idempotent orthogonal array \(OA(4, n) = A \). For each symbol \(k, k = 1, 2, \ldots, n \), let \(T_k \) denote the set of rows of \(A \) whose fourth entry is \(k \). Let \(U_k = T_k \setminus \{(k, k, k, k)\} \). Let \(S_k = \{(a, b, c) : (a, b, c, k) \in T_k\} \). Then it is easily shown that the collection of subsets \(\bigcup_{k=1}^n S_k \) form the blocks of a (6, 3) frame of type \(1^n \) in which the set \(S_k \) is the complement of the group \(\{k\}, k = 1, 2, \ldots, n \).

For \(n = 6 \) there is a (6, 3) frame of type \(1^6 \) whose underlying design is three copies of the design \(D(6, 3, 2) \). The 3-resolution of this design is unique and is given by \(\{(0, 2, 3) (mod\ 5)\} \) and \(\{(\infty, 1, 2), (\infty, 2, 3)(\infty, 3, 4)(1, 2, 4)(1, 3, 4)\} \) (mod 5). □

Lemma 6.3. Suppose that there exists a (6, 3) frame \(F \) of type \(\Pi_{i=1}^s g^n_i \). Suppose further that for each \(g_i, i = 1, 2, \ldots, s \), there exists a 3-resolvable 6-fold triple
system of order $g_i + 1$. Then there exists a 3-resolvable 6-fold triple system of order $v = \sum_{i=1}^{g_i} + 1$.

Proof. Counting arguments again show that in a $(6, 3)$ frame, the set of partial 3-resolution classes whose complement is the group G contains precisely $|G|$ classes. Let ∞ be a point not occurring in the frame F. For each group G of F, adjoin the blocks of a 3-resolvable 6-fold triple system on the set $G \cup \{\infty\}$ to the partial resolution classes whose complement is G. Since the number of 3-resolution classes in such a triple system is $|G|$, it easily follows that the resulting set of blocks yields the desired triple system of order v. \qed

Lemma 6.4. There exists a 3-resolvable 6-fold triple system of order 14 and 26.

Proof. A 3-resolvable 6-fold triple system of order 14 with point set $Z_{13} \cup \{\infty\}$ is generated by developing the following 3-resolution class modulo 13:

$$(2^i, 2^4+i, 2^5+i) \quad i = 0, 1, 2, 3 \text{ twice},$$
$$(0, 1, 4), (0, 2, 8), (0, 3, 5), (\infty, 6, 12), (\infty, 7, 11), (\infty, 9, 10).$$

A 3-resolvable 6-fold triple system of order 26 with point set $GF(25) \cup \{\infty\}$ is generated by adding each member of $GF(25)$ to the following 3-resolution class:

We denote by x the root of the primitive polynomial $x^2 = x + 3$.

$$(x^i, x^8+i, x^{16+i}) \quad i = 0, 1, 2, 3 \text{ twice},$$
$$(x^4+i, x^{12+i}, x^{20+i}) \quad i = 0, 1, 2, 3 \text{ three times},$$
$$(0, x^8i+1, x^8i+3) \quad i = 0, 1, 2, (\infty, x^8i, x^8i+18) \quad i = 0, 1, 2. \quad \square$$

Let $U = \{u: \text{there exists a 3-resolvable } (u, 3, 6) \text{ design}\}$. By the foregoing results U contains the set $W = \{u: u \geq 3, u \not\equiv 2 \pmod{12}\} \cup \{14, 26\}$. Let $X = \{u: u \geq 38, u \equiv 2 \pmod{12}\}$. It only remains to show that X is contained in U, and that is the purpose of the next lemma.

Lemma 6.5. Let $u = 12s + 1$, where $s \geq 3$. Then there exists a (6, 3) frame (U, \mathcal{G}, P) where $|U| = u$, and $|G| + 1 \in W$ for each $G \in \mathcal{G}$.

Proof. First consider the case of $s \geq 6$. Then u can be written in the form $u = 4(3(s - 1)) + 13$, where $s - 1 \geq 5$. Let T be a TD$(5, 3(s - 1))$. (Such exist, since there exist 3 mutually orthogonal latin squares of order w for all $w \geq 11$.) By deleting all but 13 points from one of the groups of T, one obtains a GDD of group type $[3(s - 1)]^{13}1$ and block sizes belonging to $\{4, 5\}$. By Lemma 6.2, there exists a $(6, 3)$ frame of type 1^n for $n \in \{4, 5\}$. Therefore by Lemma 5.1, there is a $(6, 3)$ frame of type $[3(s - 1)]^{13}1$.

For \(s = 3, 4, \) and 5, consider the following group divisible designs.

Case: \(s = 3 \) (\(u = 37 \)); **Group type** \(8^45^1 \), block sizes \(\{4, 5\} \).

Delete 3 points from a \(\text{TD}(5, 8) \).

Case: \(s = 4 \) (\(u = 49 \)); **Group type** \(7^7 \), block sizes \(\{7\} \).

Use a \(\text{TD}(7, 7) \).

Case: \(s = 5 \) (\(u = 61 \)); **Group type** \(8^75^1 \), block sizes \(\{7, 8\} \).

Delete 3 points from a \(\text{TD}(8, 8) \).

In each case, an application of Lemmas 5.1 and 6.2 yields a \((6, 3)\) frame of the same type.

Corollary 6.5.2. Let \(X \) and \(U \) be defined as above. Then \(X \subseteq U \).

Proof. An application of Lemmas 6.3 and 6.4 yields the result.

The foregoing can be summarized in the following theorem.

Theorem 6.6. Let \(v \) and \(\alpha \) be integers such that \(v \geq 3 \) and \(\alpha \geq 1 \). If \((v, \alpha) \neq (6, 1) \), then there exists an \(\alpha \)-resolvable \(\lambda \)-fold triple system if and only if the conditions \(\lambda(v - 1) \equiv 0 \pmod{2} \), \(\lambda v(v - 1) \equiv 0 \pmod{6} \), \(k \mid \alpha v \), and \(\alpha \mid r \) (where \(r = \lambda(v - 1)/2 \)) hold. Further, if \((v, \alpha) = (6, 1) \) then there is a 1-resolvable design \((6, 3, \lambda)\) if and only if \(\lambda \equiv 0 \pmod{4} \).

Proof. As before, the triple systems above can be used to construct such systems for all admissible \(\alpha \) and \(\lambda \) in the case \(v = 2 \pmod{3} \).

Acknowledgement

The authors wish to thank the referee whose suggestions contribute a significant improvement to this paper.

References

