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a b s t r a c t

The cDNA-amplified fragment length polymorphism technique was applied to isolate the differentially
expressed genes during Bamboo mosaic virus (BaMV) infection on Nicotiana benthamiana plants. One of
the upregulated genes was cloned and predicted to contain a TBC domain designated as NbRabGAP1 (Rab
GTPase activation protein 1). No significant difference was observed in BaMV accumulation in the
NbRabGAP1-knockdown and the control protoplasts. However, BaMV accumulation was 50% and 2% in
the inoculated and systemic leaves, respectively, of the knockdown plants to those of the control plants.
By measuring the spreading area of BaMV infection foci in the inoculated leaves, we found that BaMV
moved less efficiently in the NbRabGAP1-knockdown plants than in the control plants. Transient
expression of the wild type NbRabGAP1 significantly increases BaMV accumulation in N. benthamiana.
These results suggest that NbRabGAP1 with a functional Rab-GAP activity is involved in virus movement.

& 2013 Elsevier Inc. All rights reserved.

Introduction

Plant viruses need to undergo cell-to-cell movement in the form of
virion or viral ribonucleoprotein complex (vRNP) via the plasmodes-
mata (PD) in order to spread within a plant (Hofmann et al., 2007).
The viral-encoded proteins responsible for this process include both
classically-defined movement proteins (MPs) and additional non-
classical ancillary viral proteins such as the replicase of Tobacco mosaic
virus (TMV) (Hirashima and Watanabe, 2001, 2003) and the VPg of
potyvirus (Dunoyer et al., 2004). In addition, involvement of host
factors and subcellular structures are required for virus movement
(Benitez-Alfonso et al., 2010; Niehl and Heinlein, 2011; Schoelz et al.,
2011; Scholthof, 2005; Taliansky et al., 2008). Host proteins of diverse
functions have been identified as viral intercellular trafficking factors
that interact with the MP and/or the PD (Harries et al., 2010; Niehl and
Heinlein, 2011; Yoshii et al., 2008; Zavaliev et al., 2010). The cytoske-
leton system, including the associated motors, has been shown to be
involved in transporting the viral components to the PD, although
conflicting conclusions have been reached for some viruses (Avisar
et al., 2008; Liu and Nelson, 2013; Prokhnevsky et al., 2005).
Additionally, the endomembrane system has been reported to play

roles directly or indirectly in viral trafficking (Pena and Heinlein, 2012;
Tilsner et al., 2012). The formation of the MP-containing tubules that
relies on the secretory pathway was shown in cells infected with
Grapevine fanleaf virus (Laporte et al., 2003). TheMPs of Potato mop-top
virus (PMTV), TGBp2 and TGBp3, were shuttled back to the secretory
pathway via endocytosis after they increased the size-exclusion limit
of PD (Haupt et al., 2005).

The best-known regulators for the formation of endomem-
brane vesicles are Rabs, a family of small guanosine triphospha-
tases (GTPases), and their regulator proteins, the Rab-GTPase
activating proteins (Rab-GAPs). Rabs, found in all eukaryotes, are
known to participate in all aspects of intracellular vesicle traffick-
ing including vesicle budding, targeting, docking, and fusion
(Cherfils and Zeghouf, 2013; Johansen et al., 2009; Mizuno-
Yamasaki et al., 2012). In the GTP-bound form, Rabs are active
and are able to trigger downstream vesicle trafficking pathways
through their effectors. Subsequently, Rabs, the GTP-bound active
form, are modified to the GDP-bound inactive form, and are then
ready for the next cycle. The GTPases need the assistance of Rab-
GAPs to become fully inactive (Cherfils and Zeghouf, 2013). Rab-
GAPs contain a catalytic domain called the TBC (derived from Tre-2,
Bub2, and Cdc16) domain that accelerates the GTP hydrolysis
reaction by Rabs/GTP, which turns off the activity of Rab after the
completion of vesicle trafficking (Cherfils and Zeghouf, 2013).

Bamboo mosaic virus (BaMV) is a flexuous-rod, positive-sense
RNA virus belonging to the Potexvirus genus of the Flexiviridae
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family. The RNA genome of approximately 6.4 kb contains five
open reading frames (ORF1–ORF5). ORF1 encodes a 155-kDa
replicase for RNA synthesis (Li et al., 1998). ORF2 to ORF4
organized as a triple gene block (TGB) in the genome, which
participate in intra- and intercellular movements of the virus (Lin
et al., 2004, 2006). All the three TGB proteins and coat protein are
essential for BaMV cell-to-cell movement. TGBp1 was further
discovered to have the RNA-binding and NTPase activities (Hsu
et al., 2004; Lin et al., 2004). TGBp2 localized at the endoplasmic
reticulum (ER) membrane was critical for both cell-to-cell move-
ment and systemic movement (Tseng et al., 2009). TGBp3 was
suggested to have a sorting signal for targeting to the ER tubules,
which was required for cell-to-cell spread (Wu et al., 2011). ORF5
encodes the coat protein for viral assembly.

In the present study, we have identified a TBC domain contain-
ing gene from N. benthamiana, suggesting that it functions as a
Rab-GAP and designated as NbRabGAP1. The functional GAP
activity is necessary to support the efficient movement of BaMV
in N. benthamiana plants.

Results

An upregulated gene after BaMV infection encodes a TBC
domain-containing protein

One of the upregulated cDNA fragments (194-nt) identified by
the cDNA-AFLP technique (Cheng et al., 2010) was cloned and
sequenced. The full-length gene was then obtained by 5′ and 3′
rapid amplifications of cDNA ends (RACE). The 3204-nt cDNA
consists of a 2442-nt coding region, a 553-nt 5′-untranslated
region (UTR) and a 209-nt 3′ UTR. It was predicted to encode a
polypeptide (813-amino acids) of approximately 90 kDa (Fig. 1A).
The expression profiles of the gene were further confirmed by
quantitative real-time RT-PCR with the mRNA derived from at
least three independent experiments (Fig. 1B). The results showed
that the gene was significantly upregulated at 7 day post inocula-
tion (dpi); the expression level of this gene in BaMV-inoculated
plants was approximately a 4-fold higher than that in mock-
inoculated plants (Fig. 1B).

Blastx alignment analysis of this gene showed a 51% identity
and a 63% similarity in amino acid sequence to that of a 75-kDa
putative microtubule-associated protein (MAP) of Arabidopsis
(Weerakoon and Marc, 1999) (Fig. S1). This gene from N. benthami-
ana was predicted to contain a TBC domain in the N-terminal
region (Figs. S1 and S2) that is commonly present in Rab-GTPase
activation proteins (Rab-GAPs) (Pfeffer and Aivazian, 2004; Segev,
2001), suggesting that this gene may play a role in intracellular
membrane trafficking. Additionally, in our analysis the TBC domain
also appeared in the 75-kDa Arabidopsis putative MAP, indicating
the functional similarity between these two proteins (Fig. S1).
Since this protein contains the complete TBC domain, we then
designated this protein as a N. benthamiana RabGTPase-activation
protein 1 (NbRabGAP1).

Interestingly, this gene has a long 5′ UTR (553 nts) that contains
three short open-reading frames (uORFs) located just upstream of
the start codon (Fig. 1C), implying that translational control is
involved in the regulation of gene expression (Kozak, 2001).
Similar characteristics, including a long 5′ UTR and/or uORFs, have
been found in the homologous genes of Arabidopsis (the two
homologous genes were shown to have the complete 5′ UTR
sequence, whereas the 5′ UTR of AtMAP75 has not been defined
yet), rice (Oryza sativa), and a hybrid populus (Populus trichocarpa
� Populus deltoids) (Fig. 1C) that were also predicted to contain
TBC domains. Overall, these results suggested that the gene with a
potential Rab-GAP function from N. benthamiana was isolated.

Reducing the expression of NbRabGAP1 decreases the accumulation
of several RNA viruses in plants

To investigate the possible functions of NbRabGAP1 during
BaMV infection, Tobacco rattle virus (TRV)-based virus-induced
gene silencing (VIGS) system (Ruiz et al., 1998) was used to knock
down the expression of NbRabGAP1 in plants. The cDNA fragment
chosen for VIGS (Fig. 1A) contains the entire 3′ UTR and a small
portion of the C-terminus coding sequence of NbRabGAP1.
We have blasted this cDNA fragment to the draft genome of
N. benthamiana (Bombarely et al., 2012; Nakasugi et al., 2013) and
found only single matched site. We have also used the pssRNAit
(Dai and Zhao, 2011) to screen the potential siRNA targets and
shown no off-target site of the N. benthamiana genome. These
results suggest that the knockdown (KD) is specific to target the
NbRabGAP1 gene. The effect on the NbRabGAP1 reduction was
evaluated by measuring the accumulation of viral coat protein.

Fig. 1. Illustration of the cDNA organization of NbRabGAP1 and its expression levels
in plants. (A) The full-length cDNA of NbRabGAP1 with open reading frame (ORF; nt
554–nt 2995) is indicated. The positions of TBC domain (TBC), the DNA fragment
cloned from cDNA-AFLP, the DNA fragment used for knocking down the expression
of NbRabGAP1 through VIGS are indicated. (B) The expression levels of NbRabGAP1
in mock-(M) and BaMV-inoculated (I) plants were measured by qRT-PCR quanti-
fication. The measurement in mock-inoculated plants at 1 dpi was set as 100%. The
numbers shown above each bar are the average of the levels of NbRabGAP1 mRNA
with the standard error derived from at least three independent experiments.
Asterisks indicate statistically significant differences between the indicated group
analyzed by the student T-test (*Po0.05). (C) Alignment of NbRabGAP1 cDNA and
its homologs from other species. The uORFs are indicated as solid gray boxes.
At: Arabidopsis thaliana; Os: Oryza sativa; and Ptxd: Populus trichocarpa� Populus
deltoids. The GenBank accession numbers are indicated.
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The NbRabGAP1-knockdown plants exhibited no morphological
difference (Fig. S3) to those of the control plants, with green
fluorescent protein gene (GFP) or luciferase gene (Luc) knock-
down, suggesting that the reduction of NbRabGAP1 expression has
no significant effect on plant development. After BaMV inocula-
tion, the expression profiles of NbRabGAP1 in the control and
knockdown plants were all upregulated (Fig. 2A). The expression
level of NbRabGAP1 in the knockdown plants was about twofold
less than that in the control plants (Fig. 2A). The accumulation
levels of the viral coat protein were reduced significantly in the
inoculated leaves of the NbRabGAP1-knockdown plant compared
to those of the control plants (approximately a twofold decrease at
7 dpi, Fig. 2B). The accumulation levels of coat protein in the
systemic leaves (the third leaf above the inoculated leaf) were
even lower (approximately a 50-fold decrease compared to the
control plants, Fig. 2C). The results indicate that the reduction of
NbRabGAP1 expression blocks the spreading of BaMV in plants
(both inoculated and systemic leaves).

To examine whether NbRabGAP1 is also involved in the infec-
tion of PVX and Cucumber mosaic virus (CMV), the control and
knockdown plants were each inoculated with both viruses. Similar
to BaMV, the expression of NbRabGAP1 was upregulated approxi-
mately twofold compared to that in the control plants at 7 dpi of

PVX inoculation (Fig. 3A). However, the expression of NbRabGAP1
in the CMV-inoculated control plants maintained similarly low
levels from day 1 to 7 post inoculation (Fig. 4A). Furthermore, at
day 7 the accumulation levels of PVX and CMV coat protein in the
NbRabGAP1-knockdown plants were reduced approximately 20%
and 30%, respectively, compared to those in the control plants
(Figs. 3B and 4B). The accumulation levels of viral coat protein in
the systemic leaves of the NbRabGAP1-knockdown plants were
reduced to 67% and 39% that in the control plants for PVX and
CMV, respectively (Figs. 3C and 4C). Although the effects on the
accumulation levels of PVX and CMV coat proteins in the knock-
down plants were not as severe as those of BaMV, the reduction of
PVX and CMV did have the statistical significance both in the
inoculated and systemic leaves. In summary, these results sug-
gested that NbRabGAP1 could be involved in a common process by
which these plant viruses accumulate.

NbRabGAP1 has a role in cell-to-cell movement of BaMV

To inspect whether the low levels of BaMV accumulation in the
NbRabGAP1-knockdown plants are due to an effect on the viral
RNA replication, BaMV RNA was transfected into the protoplasts
derived from the control or the NbRabGAP1-knockdown plants.

Fig. 2. BaMV coat protein accumulations in NbRabGAP1-knockdown (KD) plants. (A) qRT-PCR quantification of NbRabGAP1 mRNA levels in the inoculated leaves of control
(knockdown with pTRV2.GFP) and NbRabGAP1-knockdown plants after BaMV infection at the designated dpi. (B) Coat protein accumulation levels detected by Western
blotting in the leaves inoculated with viral RNA. The levels in control plants at 3 dpi were set as 100%. (C) Coat protein accumulation level quantified at 7 dpi in the 3rd leaf
above the inoculated leaf. The accumulation levels of control plant were set as 100%. Representative results are shown under the statistic results in (B) and (C). The numbers
shown above each bar are the average of the relative levels of NbRabGAP1 mRNA in (A) and BaMV coat protein in (B) and (C) with the standard errors derived from at least
three independent experiments. C: GFP-knockdown control plants; KD: NbRabGAP1-knockdown plants. cp: BaMV coat protein; and rbcL: RuBisCO large subunit (the loading
control for normalization). Asterisks indicate statistically significant differences between the indicated group analyzed by the student T-test (***Po0.001).
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Total RNAs and proteins were extracted from the protoplasts at
24 h and 48 h post-inoculation. The expression levels of NbRab-
GAP1 in the knockdown protoplasts were about 10–20% of those in
the control protoplasts (Fig. 5A). However, the accumulation levels
of BaMV coat protein were similar in both the knockdown and the
control protoplasts at 24 h and 48 h post-inoculation (Fig. 5B).
Overall these results indicated that the reduction of NbRabGAP1
expression did not interfere with the viral protein accumulation in
protoplasts but it did affect those in the inoculated and systemic
leaves. These observations suggest that NbRabGAP1 is involved in
the movement of BaMV.

To test the hypothesis that NbRabGAP1 is involved in assisting
the cell-to-cell movement of BaMV, the area of viral infection foci
on the inoculated leaves was measured by fluorescent microscopy.
The plasmid pCBG (containing a 35S promoter driven BaMV
infectious cDNA could express the GFP under the control of a BaMV
subgenomic promoter) was used to inoculate the control (pTRV2.
Luc containing luciferase gene fragment) and the NbRabGAP1-
knockdown plants. The area of the resultant green fluorescent foci
on the inoculated leaves were measured at 4 dpi (Fig. 6A). A total
number of 25 and 24 foci from the control and the NbRabGAP1-
knockdown plants were measured, respectively. On average, the

foci in the control plants (mean area¼3.8 mm2) were larger than
those in the NbRabGAP1-knockdown plants (mean area¼2.2 mm2;
Fig. 6B) with the statistical significance. Together with our previous
observations that the coat protein accumulation of BaMV was
reduced in the inoculated leaves of the NbRabGAP1-knockdown
plants but not in the knockdown protoplasts, these results indicated
that the cell-to-cell movement of BaMV was restricted when the
expression of NbRabGAP1 was decreased.

Transiently expressed NbRabGAP1 but not the catalytic site mutant
can help the accumulation of BaMV

To confirm NbRabGAP1 plays a positive role in helping the
spreading of BaMV in N. benthamiana plants, we transiently
expressed an Orange fluorescent protein (OFP)-fused NbRabGAP1
(NbRabGAP1-OFP, approximately 120 kDa) after two days of virus
inoculation (Fig. 7A). Furthermore, we have also transiently
expressed a substitution mutant (NbRabGAP1(R111A)-OFP; muta-
tion at the active site of TBC domain of the GAP) which failed to
activate the GTP hydrolysis activity of Rab GTPase (Pan et al.,
2006). The results showed that the accumulation levels of BaMV
coat protein was significantly increased to 163% of that of the

Fig. 3. PVX coat protein accumulations in NbRabGAP1-knockdown (KD) plants. (A) qRT-PCR quantification of NbRabGAP1 mRNA levels in the inoculated leaves of control
(knockdown with pTRV2.GFP) and NbRabGAP1-knockdown plants after PVX infection. (B) Coat protein accumulation levels detected by Western blotting in viral RNA-
inoculated leaves. The coat protein levels in control plants at 3 dpi were set as 100%. (C) Coat protein accumulation levels in the 3rd leaf above the inoculated leaf at 7 dpi.
The accumulation levels in control plants were set as 100%. Representative results are shown under the statistic results in (B) and (C). The numbers shown above each bar are
the average of the relative levels of NbRabGAP1 mRNA in (A) and PVX coat protein in (B) and (C) with the standard errors derived from at least three independent
experiments. C: GFP-knockdown control plants; KD: NbRabGAP1-knockdown plants. cp: PVX coat protein; and rbcL: RuBisCO large subunit (the loading control for
normalization). Asterisks indicate statistically significant differences between the indicated group analyzed by the student T-test (*Po0.05, **Po0.01, and ***Po0.001).
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Fig. 4. CMV coat protein accumulations in NbRabGAP1-knockdown (KD) plants. (A) qRT-PCR quantification of NbRabGAP1 mRNA levels in control (knockdown with pTRV2.
GFP) and NbRabGAP1-knockdown plants after CMV infection. The mRNAs were isolated from the CMV-inoculated leaves. (B) The coat protein accumulation levels detected by
Western blotting in viral RNA-inoculated leaves. The coat protein levels in control plants at 3 dpi were set as 100%. (C) Coat protein accumulation levels in the 3rd leaf above
the inoculated leaf were quantified at 7 dpi. The accumulation levels in control plant were set as 100%. Representative results are shown under the statistic results in (B) and (C).
The numbers shown above each bar are the average of the relative levels of NbRabGAP1 mRNA in (A) and CMV coat protein in (B) and (C) with the standard errors derived from
at least three independent experiments. C: GFP-knockdown control plants; KD: NbRabGAP1-knockdown plants. cp: CMV coat protein; and rbcL: RuBisCO large subunit, (the
loading control for normalization). Asterisks indicate statistically significant differences between the indicated group analyzed by the student T-test (**Po0.01 and
***Po0.001).

Fig. 5. Coat protein accumulation levels detected in the protoplasts derived from control and knockdown (KD) plants. (A) qRT-PCR quantification of NbRabGAP1 mRNA levels
in the control (GFP-knockdown) and NbRabGAP1-knockdown protoplasts after BaMV inoculation. (B) Coat protein accumulation levels detected by Western blotting in viral
RNA-inoculated protoplasts. The accumulation levels in the control protoplasts at the 24 h post-transfection were set as 100%. Representative results are shown under the
statistical results in (B). The numbers shown above each bar are the average of the relative levels of NbRabGAP1 mRNA in (A) and BaMV coat protein in (B) with the standard
errors derived from at least three independent experiments. C: protoplasts derived from GFP-knockdown plants; KD: protoplasts derived from NbRabGAP1-knockdown
plants. cp: BaMV coat protein; and rbcL: RuBisCO large subunit (the loading control for normalization).
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control plants when NbRabGAP1 was expressed at three days
post-infiltration. However, the coat protein accumulation was
increased to 120% of that of the control plants but statistically
insignificant when mutant NbRabGAP1(R111A) was expressed
(Fig. 7B). The results suggest that the single point mutation at
the predicted catalytic site NbRabGAP1(R111A) might not com-
pletely block the function of helping the movement of BaMV.
However, the fully GAP function of NbRabGAP1 is necessary to
entirely support the spreading of BaMV.

Discussion

The reduction of BaMV coat protein accumulation in the
inoculated and systemic leaves but not in protoplasts of the
NbRabGAP1-knockdown plants suggested that NbRabGAP1 could
be important for virus movement (Figs. 2, 5 and 6). The enhance-
ment of BaMV accumulation in the NbRabGAP1-expressed plants
supported the idea of a positive role of NbRabGAP1 in helping
BaMV spread (Fig. 7). This role could be applied to other viruses
such as PVX and CMV (Figs. 3 and 4). However, the induction of
NbRabGAP1 expression occurred after infection with potexviruses
(BaMV and PVX) but not with CMV (Fig. 4A). It is possible that the
requirement of NbRabGAP1 may have differences among the
infection cycles of different viruses. Further, the upregulation of
NbRabGAP1 after BaMV and PVX infection is not likely to be
involved in the host's defense response; it is more likely that a
system is utilized by the viruses. Within the context of intracel-
lular movement regulation, NbRabGAP1 possibly functions by
facilitating potexviral spreading between cells.

NbRabGAP1, predicted to be a Rab-GAP, can assist the recycling of
Rabs to allow Rabs to engage in another round of membrane-vesicle
budding, movement, docking, or fusion. It is possible that NbRabGAP1
helps to target the vRNP and/or TGB proteins (in potexviruses) to PD
via the endomembrane secretory or some other specific pathway
(most likely to be the ER and post-ER secretory pathways) (Ju et al.,
2005; Tilsner et al., 2012; Tseng et al., 2009; Yoshimoto et al., 2010).
The viral RNA replicating in the infected cells in association with the

endomembrane systems is a common strategy for most of the plant
positive-sense RNA viruses (Pena and Heinlein, 2012; Tilsner et al.,
2012). To accomplish the successful infection, the newly synthesized
progeny RNAs has to move from the replication site to neighboring
cells through the secretory pathway. In the case of PVX, the TGBp1
forms the core of X-bodies containing vRNAs, other movement-
associated proteins and virions that are proposed to link viral RNA
replication and movement and possibly the encapsidation (Tilsner
et al., 2012). The TGBp2 and TGBp3 are the ER-associated transmem-
brane proteins and the TGBp2 induces the ER-derived granular vesicles
(Ju et al., 2005; Toyooka et al., 2006). TGBp2 mutant failed to induce
the vesicle formation was shown to fail in cell-to-cell trafficking
(Yoshimoto et al., 2010). Lately, the movement protein of Chinese
wheat mosaic viruswas demonstrated to form the ER-derived vesicular
structure and could complement the cell-to-cell movement-defective
PVX (Qin et al., 2007). The possible role of NbRabGAP1 is involved in
helping the viral movement proteins to induce these vesicles. Alter-
natively, NbRabGAP1 might regulate the return of TGB proteins from
PD via the endocytotic pathway as those found in PMTV (Haupt et al.,
2005). However, this observation has not been reported yet in the
potexviruses.

Materials and methods

Plant and virus

The growth condition for N. benthamiana was 16/8 h of light/
dark at 28 1C. BaMV strain S (Lin and Hsu, 1994), PVX strain
Taiwan, and CMV strain NT9 (Hsu et al., 1995) were used as the
infection agents.

Quantitative RT-PCR

The reverse transcription reactions were carried out with the
Powerscript reverse transcriptase (BD Biosciences, San Jose, CA, USA).
For the SYBR Green I-based quantitative RT-PCR, two sets of primers
were used in quantifying the NbRabGAP1 mRNA expression levels

Fig. 6. The effects of the NbRabGAP1-knockdown on BaMV infection. (A) The areas of the GFP fluorescent foci in the inoculated leaves of the Luc-knockdown control (C,
knockdown with the luciferase cDNA fragment) and NbRabGAP1-knockdown (KD) plants were measured under the fluorescent microscope after the plants were inoculation
with the pCBG plasmids. Bar length¼0.5 mm. (B) Statistical analysis of the results obtained in (A). X-axis is the GFP focus size (mm2). The numbers shown above the statistic
bar were the average and the standard deviation of 25 and 24 foci from C and NbRabGAP1-knockdown plants, respectively.

Y.-P. Huang et al. / Virology 447 (2013) 292–299 297



(Fig. 1A). Primer pair 1, 5′GAATATCCAGGTGATTGA3′ and 5′GAGATAT-
GAGAAGCCGA3′, was used to confirm the cDNA-AFLP differentially
expressed pattern; and primer pair 2, 5′GAAAGTGT CGACTCTGGG3′
and 5′TACAGATTCTCCCTTGCTAA3′, was used for the VIGS experi-
ments. Primers for the actin mRNAwhich was included as the internal
control for the normalization of NbRabGAP1 were 5′GTGGTTTCAT-
GAATGCCAGCA3′ and 5′GATGAAGATACTCACAGAAAGA3′.

cDNA cloning by RACE

RACE reactions were carried out to clone the full-length NbRab-
GAP1 cDNA. For the 3′ RACE, the reverse transcription reaction driven

by the Powerscript reverse transcriptase included primers 5′GC-
CCCGGGATCCT203′ and 5′GAGAATATCCAG GTGATTGA3′. The 5′RACE
was conducted using the BD SMART™ RACE cDNA Amplification
Kit (BD Biosciences, San Jose, CA, USA) according to the instructions
provided by the manufacturer. The gene-specific primer was 5′
CCGGGTACATGCCGAAATTTTGAATC3′. Both RACE products were
cloned into the pGEM-T easy vector (Promega, Madison, WI, USA)
and sequenced.

Constructs for transient expression

The PCR primer pairs, GAP1-5′ (5′GGGATGGCTGCAATTGCAATT-
GAG3′) and GAP1-3′ (5′GGGTCATTACATCTCCGAGAGGAGG3′), are
used for NbRabGAP1 fluorescent protein fusion construct;
GAP1mu-5′ (5′CTCAGGATATAAAGCCGAA3′) and GAP1-3′ are used
for mutagenesis on the TBC domain of NbRabGAP1 that changes
the catalytic residue arginine (R) to alanine (A). The PCR products
were cloned and sequenced. The full-length of NbRabGAP1 and
NbRabGAP1(R111A) were then subcloned into the orange fluor-
escent protein (OFP) containing vector pBin-OFP driven by the
Cauliflower mosaic virus 35S promoter (reconstructed from
pmKO2-S1; MBL international, Woburn, USA), the resultant con-
structs were designated as NbRabGAP1-OFP and NbRabGAP1
(R111A)-OFP. Agrobacterium containing the plasmid encodes
NbRabGAP1-OFP, NbRabGAP1(R111A)-OFP or pBIN61-HcPro was
cultured to OD600¼1 and induced with 500 μM acetosyringone in
10 mM MgCl2. Each construct in the Agrobacterium broth was
mixed with pBIN61-HcPro broth in a 1:1 volume ratio and
infiltrated into the N. benthamiana leaves.

Virus-induced gene silencing

The silencing system was constructed in the TRV vector. A 371-
bp NbRabGAP1 cDNA fragment (nt 2834–3204, including the entire
3′ UTR), amplified by using the primer pair 5′GAGAATATCCAGGT-
GATTGA3′ and 5′GCTAACAACATATACTGTTACA3′, was cloned into
the pTRV2 vector with SmaI site. The resulted construct was
designated as pTRV2.RabGAP1. Two control plasmids, pTRV2.GFP
and pTRV2.Luc, containing portions of GFP and Luciferase gene
were constructed. Plasmids pTRV2.RabGAP1, pTRV2.GFP and
pTRV2.Luc were transformed into the Agrobacterium tumefaciens
C58C1 strain by electroporation.

To knock down NbRabGAP1 expression in N. benthamiana, the
A. tumefaciens C58C1 containing pTRV1, pTRV2.GFP, pTRV2.Luc or
pTRV2.RabGAP1 was cultured to OD600¼1 at 30 1C before induc-
tion by the addition of 130 μM acetosyringone in 10 mM MgCl2 for
3 h at room temperature. Subsequently, the pTRV2.GFP-, pTRV2.
Luc- or pTRV2.RabGAP1-containing A. tumefaciens C58C1 was
mixed with pTRV1-containing A. tumefaciens C58C1 at a 1:1
volume ratio. The 1st and 2nd leaves were infiltrated with the
mixed broth at the four-leaf stage (seedlings with two cotyledons
and two leaves) and 500 ng of BaMV, PVX, or CMV virion RNA was
inoculated onto the 6th leaf when it was mature. Total RNAs and
proteins were extracted from the leaves at 1, 3, 5, and 7 dpi and
measured for the NbRabGAP1 mRNA and viral coat protein levels,
respectively. For the protoplast inoculation assay, protoplasts
prepared from the 6th leaf were transfected with 1 μg of BaMV
genomic RNA. The levels of NbRabGAP1 mRNA and viral coat
proteins were measured at 24 and 48 h of post-inoculation.

Detection of cell-to-cell movement

The viral cell-to-cell movement efficiency was determined by the
fluorescence distribution of virus-encoded GFP. The 6th leaf of the
VIGS plants was inoculated with 5 μg of the pCBG plasmid, a GFP-
expression BaMV viral vector (Lin et al., 2004). GFP fluorescent focus

Fig. 7. The effects of the expression of NbRabGAP1on BaMV infection. (A) The
Western blotting analysis of the transiently expressed NbRabGAP1-OFP, mutant
NbRabGAP1(R111A)-OFP and the OFP indicated on the top of each lane by agro-
infiltration on the N. benthamiana leaves. The total proteins were extracted and
separated onto a 12% SDS-polyacrylamide gel. After transferring to the membrane,
the proteins were detected with the antibody against OFP. (B) The relative
accumulation of BaMV coat protein was detected at 5 days post inoculation (dpi)
on the inoculated leaves while NbRabGAP1-OFP, mutant NbRabGAP1(R111A)-OFP,
or OFP only (as a control) was transiently expressed on the same leaves at 3 dpi.
The data measured from western blots were normalized with the large subunit of
RuBisCO (rbcL). The numbers shown above the statistic bar were the average and
the standard error of at least three independent experiments. Asterisks indicate
statistically significant differences between the indicated group analyzed by the
student T-test (**Po0.01 and ***Po0.001).
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was identified under an Olympus IX71 inverted fluorescent micro-
scope and the images were processed by Adobe Photoshop CS. Due to
the irregular circumference of the foci, the green fluorescent area of
each focus was calculated through the Image J software (http://
rsbweb.nih.gov/ij/).
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