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vertices of nonsingular matrices whose graph is a path. A criterion

for matrices associated with more general trees to have at most

n − 1 P-vertices is established. The cases of the cycles and stars are

also analyzed. Several algorithms for generating matrices with a

given number of P-vertices are proposed.
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1. Introduction

For a given n × n real symmetric matrix A = (aij), we define the graph of A, and write G(A), as
the (simple) graph whose vertex set is {1, . . . , n} and edge set is {ij|i /= j and aij /= 0}. We confine our

attention to the set
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S(G) = {A ∈ Rn×n|A is symmetric and G(A) = G},
i.e., the set of all symmetric matrices sharing a common graph G on n vertices. Nevertheless, all results

can easily be extended to Hermitian matrices. We will often omit the mention of G if it is clear from

context.

If G is a tree, a matrix A ∈ S(G) is called acyclic. In particular, if G is a path, we order the vertices of

G such that A ∈ S(G) is a tridiagonal matrix.

Let us denote the (algebraic) multiplicity of the eigenvalue θ of a symmetric matrix A(= A(G)) by
mA(θ). By A(i)wemean the (n − 1) × (n − 1) principal submatrix, formed by the deletion of row and

column indexed by i, which is equivalent to removal of the vertex i from G, i.e., A(G\i). More generally,

if S is a subset of the vertex set of G, then A(S) is the submatrix of A resulting on deleting the rows

and columns indexed by S. By A[S]wemean the principal submatrix of Awhose rows and columns are

indexed by S.

As a consequence of Cauchy’s Interlacing Theorem for the eigenvalues of symmetric matrices, one

can deduce that

mA(G)(θ) − 1�mA(G\i)(θ) �mA(G)(θ) + 1. (1.1)

In the case of mA(G\i)(θ) = mA(G)(θ) + 1, the vertex i was designated by Jonhson et al. as a Parter-

vertex of A for θ , and intensively studied in [16–18], just to cite a few,motivated by the striking research

due to Parter [21], complemented and extended by Wiener in [22], on the location and multiplicity

of eigenvalues of sign symmetric acyclic matrices. Note that this concept has also been considered

by Godsil in the context of the matchings polynomial theory as a θ-positive vertex of G [7,13]. When

θ = 0, a Parter-vertex is simply called a P-vertex of A [19], and Pν(A) denotes the number of P-vertices

of A. The multiplicity of zero eigenvalue is an important issue in many areas of pure and applied

matrix theory. For example, in [13] Godsil observed that themultiplicity of 0 as a root of thematchings

polynomial of a graph coincides with the classical notion of deficiency. We recall that the matchings

polynomial of a tree is equal to the characteristic polynomial of its 01-adjacency matrix.

In 2004, Johnson and Sutton showed in [18] that each singular acyclic matrix of order n has at

most n − 2 P-vertices. Recently, Kim and Shader proved in [20] that this does not hold for nonsingular

acyclic matrices by constructing some examples for paths and stars.

Theorem 1.1 [20]. Let T be a path on n vertices.

(a) If n is even, then there exists a nonsingular matrix A ∈ S(T) such that Pν(A) = n.
(b) If n is odd, then there exists a nonsingular matrix A ∈ S(T) such that Pν(A) = n − 1.

Moreover, when n is odd, they proved that Pν(A) � n − 1 for any nonsingular matrix A in S(T).
When n is even, obviously Pν(A) � n. These observations led Kim and Shader to present two open

questions on the “continuity" of Pν(A), when A runs over all (tridiagonal) matrices of S(T), with T a

path.

Question 1 [20]. Let T be a path with an even number n of vertices. Is the equality

{Pν(A)|A is a nonsingular matrix in S(T)} = {0, 1, . . . , n}
true?

Question 2 [20]. Let T be a path with an odd number n of vertices. Is the equality

{Pν(A)|A is a nonsingular matrix in S(T)} = {0, 1, . . . , n − 1}
true?

We construct tridiagonal matrices in order to give positive answers to both open questions. Before

that, we provide an overview of some results of 2-Toeplitz matrices and, in Sections 3 and 4, we

consider the maximum number of P-vertices for matrices when the underlying graph is a cycle. We
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also analyze some particular cases of trees, such as stars, 2-generalized starts, and brooms. Some

criteria are established answering partially to other remained open questions. We point out that other

families of matrices may satisfy the continuity property of the number of P-vertices proved here.

2. Symmetric tridiagonal 2-Toeplitz matrices

A symmetric tridiagonal matrix of the form

B =

⎛
⎜⎜⎜⎜⎜⎝

a1 b1

b1
. . .

. . .

. . .
. . . bn−1

bn−1 an

⎞
⎟⎟⎟⎟⎟⎠ , (2.1)

where all the non-mentioned entries are null, is called a 2-Toeplitz matrix if

ai+2 = ai and bi+2 = bi, for i = 1, . . . , n − 2,

i.e.,

B(2)
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1
b1 a2 b2

b2 a1 b1

b1
. . .

. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

. (2.2)

Theseparticularkindof Jacobimatrices, and themoregeneralk-Toeplitzmatriceshavebeen thoroughly

studied by da Fonseca and Petronilho in [9,10].

Recall that the sequence of Chebyshev polynomials of second kind, {Uk(x)}k � 0, satisfies the three-

term recurrence relation

2xUk(x) = Uk+1(x) + Uk−1(x),

for all k � 1, with initial conditions U0(x) = 1 and U1(x) = 2x (e.g., [5]). Each Uk(x) is of degree k and

satisfies

Uk(x) = sin(k + 1)θ

sin θ
, with x = cos θ (0� θ < π),

and, therefore, the zeros of Uk(x) are

λ� = cos

(
�π

k + 1

)
, for � = 1, . . . , k.

Setting

p2(x) = (x − a1)(x − a2),

P∗
k (x) = (b1b2)

k Uk

(
x − b21 − b22

2 b1b2

)
,

and

Pk(x) = (b1b2)
k

[
Uk

(
x − b21 − b22

2 b1b2

)
+ βUk−1

(
x − b21 − b22

2 b1b2

)]
,

with β = b2/b1, we define a new sequence of (orthogonal) polynomials, {Qk(x)}k � 0, such that

Q2k+1(x) = (x − a1)P
∗
k (p2(x))
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and

Q2k(x) = Pk(p2(x)).

Each Qk(x) is of degree k and, according to [9,10],

det B(2)
n = (−1)nQn(x). (2.3)

Observe that, if n is odd and a1 = 0, then B
(2)
n is singular.

3. P-vertices of an even cycle

In this section, for each cycle Cn of even order n, we construct a nonsingular matrix in S(Cn) such
that the number of P-vertices is equal to n. Consider a matrix C in S(Cn) of the form

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1 bn
b1 a2 b2

b2
. . .

. . .

. . .
. . . bn−1

bn bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.1)

Amatrix of the form (3.1) is often called a (symmetric) periodic Jacobimatrixwhen each bi is positive

[1].

Let us assume that

b1 = · · · = bn = 1, a2�−1 = 1 and a2� = a, for � = 1, 2, . . . , �n/2�.
If i is odd, then

det C(i) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 1

1 1 1

1 a 1

1
. . .

. . .

. . .
. . . 1

1 1 1

1 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= a U(n−2)/2

(
a − 2

2

)
.

Otherwise

det C(i) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

1 a 1

1 1 1

1
. . .

. . .

. . .
. . . 1

1 a 1

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= U(n−2)/2

(
a − 2

2

)
.

Therefore, det C(i) = 0, for any i ∈ {1, . . . , n}, if and only if

a = 2 + 2 cos

(
2�π

n

)
, for � = 1, . . . ,

n − 2

2
. (3.2)

On the other hand, for C defined in (3.1), we have [4]

det C = (a − 2)U(n−2)/2

(
a − 2

2

)
− 2U(n−4)/2

(
a − 2

2

)
− 2. (3.3)
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Hence, we can always find an a such that det C(i) = 0, for any i ∈ {1, . . . , n}, and det C /= 0. Note

that, if a is chosen as in (3.2), then (3.3) becomes

det C = −2U(n−4)/2

(
a − 2

2

)
− 2.

Example 3.1. Suppose that n = 12 and choose a = 3, i.e., � = 1. Then det C = −4 /= 0 anddet C(i) =
0, for any i ∈ {1, . . . , 12}.

We remark that this approach cannot be used for cycles of odd order. For example, for n = 3, C is

always singular and, for n = 5, C(2) is nonsingular.

4. P-vertices of an odd cycle

For the case of an odd cycle, our approach is different. We begin computing the determinants of a

particular family of even order tridiagonal matrices. Since we are using elementary row and column

operations, we leave the details for the reader.

Let us consider the tridiagonal matrix of order 2k, for k � 2, block partitioned as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

1
. . .

. . .

. . .
. . . 1

1 0 1

1 a 1

1 a 1

1 a 1

1 0 1

1
. . .

. . .

. . .
. . . 1

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.1)

or as, with all blocks of even order,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

1
. . .

. . .

. . .
. . . 1

1 0 1

1 a 1

1 a 1

1 0 1

1
. . .

. . .

. . .
. . . 1

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.2)

We assume, with some conventions, that the sum of the orders of the blocks gives 2k.

Lemma 4.1. The determinant of each tridiagonal matrix of the form (4.1) or (4.2) is (−)k(1 − a2).

Remark 4.1. Lemma 4.1 is still true for the tridiagonal matrix of order 2k of the form
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 1

1 0 1

1
. . .

. . .

. . .
. . . 1

1 0 1

1 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.3)

Taking into account the expression for the determinant of a matrix whose graph is a cycle (cf., e.g.

[4]), and Lemma 4.1, the determinant of the matrix of order n (odd)

C(a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 1 1

1 a 1

1 a 1

1 0
. . .

. . .
. . . 1

1 0 1

1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.4)

is

det C(a) =
{
2 + 3a − a3, if n = 4� + 1

2 − 3a + a3, if n = 4� − 1
.

Again from Lemma 4.1, if n = 4� + 1, then det C(1) /= 0 and Pν(C
(1)) = n; else, n = 4� − 1,

det C(−1) /= 0 and Pν(C
(−1)) = n.

Theorem 4.2. Given a cycle Cn of order n, there exist a nonsingular matrix in S(Cn) such that the number

of P-vertices is n.

5. The continuity of the P-vertices of a path

In this section, we return to the P-vertices of a path, establishing algorithms to answer Questions 1

and 2 both affirmatively. First, we recall some notation and facts about sign patterns.

Amatrixwhose entries are+,−, or 0 is called a sign pattern. For each n × n sign symmetric pattern

A there is a natural class of real symmetric matrices whose entries have the signs indicated by A, i.e.,

QSYM(A) = {B ∈ Rn×n|B is symmetric and sign B = A}.
Recall thatwedefinethe inertiaofann × n real symmetricmatrixH as the triple In(H) = (n+, n−, n0),

where n+ is the number of positive eigenvalues, n− is the number of negative eigenvalues and

n0(= n − n+ − n−)is the number of the zero eigenvalues. For a symmetric sign pattern A, we define

the inertia (set) of A to be In(A) = { In(B)|B ∈ QSYM(A)}. We say the sign pattern A requires unique

inertia and is sign nonsingular if every real matrix in Q(A) has the same inertia and is nonsingular,

respectively.

Using some techniques on congruences between Hermitian matrices explored in [2,3], da Fonseca

presented in [6] a concise study of the inertia sets of tridiagonal sign patterns, latter extended to some

other matrices, by da Fonseca and Mamede in [8], bringing together the known results until then (e.g.

[11,12,14]).

By the same time, Kim and Shader [20] studied independently the singularity of a irreducible

tridiagonal matrix (2.1) with a certain pattern of the zero main diagonal entries, namely a2�−1 = 0,

for � = 1, 2, . . . , �n/2�. Note that such amatrix can be seen as belonging to the symmetric tridiagonal

sign pattern class of
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ±
± ∗ ±

± 0 ±
± ∗ ±

± 0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

(5.1)

where each ∗ assumes the value +, −, or 0. From [6, Proposition 2.1] A is sign singular if and only

if n is odd, and in this case In(A) =
(
n−1
2

, n−1
2

, 1
)
; otherwise, In(A) =

(
n
2
, n
2
, 0
)
. This fact implies

immediately [20, Proposition 1].

In order to simplify the notation, for b1 = · · · = bn−1 = 1, we identify the tridiagonal matrix B

defined in (2.1) with its main diagonal (a1, . . . , an).
Suppose that n is even. The 2-Toeplitz matrix (2.2) defined by

A(n)
n = (1,−1, . . . , 1,−1)

has inertia
(
n
2
, n
2
, 0
)
. Note also that, from (2.3) [10]

det A(n)
n = Un

2

(
−3

2

)
+ Un−2

2

(
−3

2

)
.

Remark 5.1. From [6, Theorem 2.3(a)], if one replaces any subset of diagonal entries by zeros, then

the inertia remains unchanged, and is always equal to In(A
(n)
n ) =

(
n
2
, n
2
, 0
)
. Therefore, such tridiagonal

matrices are always nonsingular.

Since the inertia of eachprincipal submatrix is either
(
n
2
, n−2

2
, 0
)
or
(
n−2
2

, n
2
, 0
)
, wehave Pν(A

(n)
n ) =

0. Setting A
(n)
n−1 = (0,−1, . . . , 1,−1), the only principal matrix with determinant equal to zero is

A
(n)
n−1(2). Therefore, Pν(A

(n)
n−1) = 1.Nextwe set,A

(n)
n−2 = (0,−1, . . . , 1, 0), and thenull principalminors

are A
(n)
n−2(2) and A

(n)
n−2(n − 1), and thus Pν(A

(n)
n−2) = 2. We proceed now repeating the two previous

steps to A
(n)
n−2 replacing first the 3-entry (which is 1) by zero, and then replacing the (n − 2)-entry

(which is −1) on the resultant matrix by zero.

If n/2 is odd, on the step n/2 + 2, we get the nonsingular tridiagonal matrix

A
(n)
n/2−1 = (0,−1, 0, . . . ,−1, 0︸ ︷︷ ︸

n/2 entries

, 0, 1, 0, . . . , 1, 0︸ ︷︷ ︸
n/2 entries

).

Note that

Pν

(
A
(n)
n/2−1

)
= n

2
+ 1.

Otherwise, n/2 is even and, on the step, n/2 + 1 we get the nonsingular tridiagonal matrix

A
(n)
n/2 = (0,−1, 0, . . . ,−1︸ ︷︷ ︸

n/2 entries

, 1, 0, . . . , 1, 0︸ ︷︷ ︸
n/2 entries

).

In both cases, the algorithm proceeds replacing alternately −1 and 1 by zeros as before, but now

from “inside” to “outside”, obtaining in the end (the (n + 1)th step), the matrix

A
(n)
0 = (0, . . . , 0),

where, obviously, Pν(A
(n)
0 ) = n.
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In general,

Pν

(
A
(n)
k

)
= n − k for k = n, n − 1, . . . , 1, 0,

providing the following theorem.

Theorem 5.1. Let T be a path with an even number n of vertices. Then

{Pν(A)|A is a nonsingular matrix in S(T)} = {0, 1, . . . , n}.
Example 5.1. For n = 8 we have:

k A
(8)
k Pν

(
A
(8)
k

)
8 (1,−1, 1,−1, 1,−1, 1,−1) 0
7 (0,−1, 1,−1, 1,−1, 1,−1) 1
6 (0,−1, 1,−1, 1,−1, 1, 0) 2
5 (0,−1, 0,−1, 1,−1, 1, 0) 3
4 (0,−1, 0,−1, 1, 0, 1, 0) 4
3 (0,−1, 0, 0, 1, 0, 1, 0) 5
2 (0,−1, 0, 0, 0, 0, 1, 0) 6
1 (0, 0, 0, 0, 0, 0, 1, 0) 7
0 (0, 0, 0, 0, 0, 0, 0, 0) 8

Example 5.2. For n = 10 we have:

k A
(10)
k Pν

(
A
(10)
k

)
10 (1,−1, 1,−1, 1,−1, 1,−1, 1 − 1) 0
9 (0,−1, 1,−1, 1,−1, 1,−1, 1 − 1) 1
8 (0,−1, 1,−1, 1,−1, 1,−1, 1, 0) 2
7 (0,−1, 0,−1, 1,−1, 1,−1, 1, 0) 3
6 (0,−1, 0,−1, 1,−1, 1, 0, 1, 0) 4
5 (0,−1, 0,−1, 0,−1, 1, 0, 1, 0) 5
4 (0,−1, 0,−1, 0, 0, 1, 0, 1, 0) 6
3 (0,−1, 0, 0, 0, 0, 1, 0, 1, 0) 7
2 (0,−1, 0, 0, 0, 0, 0, 0, 1, 0) 8
1 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) 9
0 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 10

The case when n is odd is divided in two parts. For k = 1, . . . , (n − 1)/2, we define the tridiagonal

matrix

B
(n)
k = (0, . . . , 0, 1, 1︸ ︷︷ ︸

2k entries

, 0, . . . , 0),

and observe that det B
(n)
k (2� − 1) /= 0, for � = 1, . . . , k, and the remaining minors are zero.

For the second part of our algorithm, we define the tridiagonal matrix

B
(n)
k = (1, 0, . . . , 0, 1︸ ︷︷ ︸

2k−n entries

, 0, . . . , 0),

for k = (n + 1)/2, . . . , n. Now, det B
(n)
k (n + 1 − 2�) = 0, for � = 1, . . . , n − k, and the remaining

minors are nonzero.

Therefore

Pν(B
(n)
k ) = n − k, for k = 1, 2, . . . , n.
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Since In(B
(n)
k ) =

(
n+1
2

, n−1
2

, 0
)
, for anyk ∈ {1, . . . , n}, according [6, Theorem2.3(b)],wecananswer

to Question 2.

Theorem 5.2. Let T be a path with an odd number n of vertices. Then

{Pν(A)|A is a nonsingular matrix in S(T)} = {0, 1, . . . , n − 1}.
Example 5.3. For n = 7 we have:

k B
(7)
k Pν(B

(7)
k )

1 (1, 1, 0, 0, 0, 0, 0) 6
2 (0, 0, 1, 1, 0, 0, 0) 5
3 (0, 0, 0, 0, 1, 1, 0) 4
4 (1, 0, 0, 0, 0, 0, 0) 3
5 (1, 0, 1, 0, 0, 0, 0) 2
6 (1, 0, 0, 0, 1, 0, 0) 1
7 (1, 0, 0, 0, 0, 0, 1) 0

6. The case of the stars

In [20], the case when the tree is a star was also added to Question 2. Here we will answer affir-

matively to this question, producing a new algorithm. If Sn is a star on n vertices, we assume that each

matrix in S(Sn) is of the form

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 b1 b2 · · · bn−1

b1 a2
b2 a3
...

. . .

bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎠ . (6.1)

In our context, we may assume that all bi’s are positive, and say that A belongs the the sign class of⎛
⎜⎜⎜⎜⎜⎜⎝

∗ + + · · · +
+ ∗
+ ∗
...

. . .

+ ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

,

where each diagonal entry is 0, + or −. The inertia sets of such sign class were analyzed in [6,8,14].

For each k ∈ {1, . . . , n}, define
a� = b�−1 = 1, for � = k + 1, . . . , n,

a� = b�−1 = 2, for � = 2, . . . , k,

and

a1 = a2 + · · · + an − 1,

getting in (6.1) the matrix S
(n)
k . Now, we only have to point out that, for � = k + 1, . . . , n,

det S
(n)
k (�) = 0,

and is nonzero, otherwise, to conclude that

Pν

(
S
(n)
k

)
= n − k.
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Since In(S
(n)
k ) = (n − 1, 1, 0), for any k ∈ {1, . . . , n}, we have the following.

Theorem 6.1. Let T be a starwith n vertices. Then, for each k ∈ {0, 1, . . . , n − 1}, there exists a nonsingular
matrix A in S(T), such that, Pν(A) = k.

Remark 6.1. Note that det S
(n)
k = −2k−1, for k = 1, . . . , n.

Evaluating the inertia of D in (6.1) as in [6, Theorem 2.3], if we do not consider the first diagonal

entry, when there exists exactly one diagonal entry zero, we find that there are no zero eigenvalues

[20, Proposition 6(a)].

7. P-vertices of a tree

In this section, we establish criteria for the existence of nonsingular acyclic matrices, such that the

number of P-vertices is equal to the order of the underlying tree.

Recall that a vertex of a graph is said to be pendant if its neighborhood contains exactly one vertex

and a center of a tree is a vertex with degree greater than or equal to 3. A path connected to a vertex

to some center is called a pendant-path.

Theorem 7.1. Let T be a tree on n vertices, with more than one pendant vertex adjacent to some center,

and let A ∈ S(T). If Pν(A) = n, then A is singular.

Proof. Suppose, without loss of generality, that S = {1, . . . , k} is the set of pendant vertices of T

adjacent to the center k + 1. Since Pν(A) = n, we have det A(�) = 0, for � = 1, . . . , k + 1. Suppose

now that A is nonsingular. Then

0 /= det A = −a21,k+1a2,2 · · · ak,k det A(1, . . . , k + 1).

Then, since

0 = det A(k + 1) = a11a2,2 · · · ak,k det A(1, . . . , k + 1),

we have a11 = 0. But

0 /= det A = −a22,k+1a1,1a3,3 · · · ak,k det A(1, . . . , k + 1),

which is impossible. Hence, A is singular. �

Analogously, we may prove the following corollary.

Corollary 7.2. Let B be a nonsingular tridiagonal matrix of the form (2.1), with n > 1. If det B(1) =
det B(2) = 0 (resp., det B(n) = det B(n − 1) = 0), then a1 = 0 (resp., an = 0).

Observe that in the previous corollary, B cannot be positive (or negative) semidefinite.

Corollary 7.3 [20]. Let B be a nonsingular matrix of the form (2.1), with n even. Then Pν(B) = n if and

only if the main diagonal of B is zero.

Corollary 7.4 [20]. Let B be a nonsingular matrix of the form (2.1), with n odd. Then Pν(B) � n − 1.

We observe that the two matrices constructed by Kim and Shader [20], where both limits are

attained, are different from the examples presented here.

The next corollary [20, Proposition 6(c)] is immediate from Theorem 7.1.

Corollary 7.5. Let T be a star on n� 3 vertices. For any nonsingular matrix A ∈ S(T), Pν(A) < n.
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Recall that a broom is a tree consisting of a star and a path attached to an arbitrary pendant vertex of

the star. Brooms have particulary minimal properties. For example, a broom is the unique tree which

minimizes even spectral moments and the Estrada index [15], and has minimal energy among the

trees with fixed diameter or fixed number of pendant vertices [23,24].

Corollary 7.6. Let T be a broom on n� 4 vertices. For any nonsingular matrix A ∈ S(T), Pν(A) < n.

Theorem 7.7. Let T ′ be a pendant-path on a tree T . Suppose that {1, . . . , k} is the set of vertices of T ′. Then if
A = (aij) is a nonsingularmatrix inS(T) such that Pν(A) = n, then a2�−1,2�−1 = 0, for� = 1, . . . , �k/2�.

Proof. Let us choose apendant-path T ′ with2ormore vertices, and suppose,without loss of generality,

that k is the vertex of T ′ adjacent to the center k + 1. Let us prove that a11 = 0. In fact, since

0 /= det A = −a212 det A(1, 2)

and

0 = det A(2) = a11 det A(1, 2),

the result follows. If T ′ has up to 2 vertices, the procedure stops here. Otherwise, a similar argument

is applied to prove a33 = 0. We stop when the kth vertex is reached. �

Theorem 7.7 turns to be a very useful tool in the characterization of trees having maximal P-vertex

value. For example, let us consider a 2-generalized star, i.e., a star where to each pendant vertex we

add a new vertex [8,12].

Proposition 7.8. Let T be a 2-generalized star on 2n + 1 vertices. The central vertex of T cannot be a

P-vertex of any nonsingular matrix A ∈ S(T).

Proof. If S is the set of pendant vertices, then aii = 0, for any i ∈ S. Let us assume that 1 is the central

vertex of T . Then det A(1) is the product of determinants of 2 × 2 matrices with pattern(
0 ±
± ∗

)
,

which are nonsingular. �

8. A last question

We end with one more question posed Kim and Shader in [20].

Question 3 [20]. If n� 3 is odd, is there a tree T on n vertices which has a nonsingular matrix A in S(T)
such that Pν(A) = n?

For a small n, the answer to Question 3 is negative. Before we show that fact, let us establish the

following proposition.

Proposition 8.1. Let B be a nonsingular tridiagonal matrix of the form (2.1), with n > 1. If Pν(B) = n,

then a2�−1 = an−2�+2 = 0, for � = 1, 2, . . . , �n/2�.
Proof. We have already seen a1 = an = 0. Next we prove a3 = 0. First, we observe that det B(123) =
0, since det B(3) = 0 and the inertia of B[12] is (1, 1, 0). Therefore

0 /= det B = −b23 det B(34),

and since det B(4) = 0, we have det B[123] = 0, which implies a3 = 0. We prove an−2 = 0 similarly.

Using a similar procedure we prove the remaining equalities. �
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Now, for n = 3, the only tree is the path with 3 vertices, and Proposition 8.1 provides the negative

answer. For n = 5, from Corollary 7.5 and, again, from Proposition 8.1 we get the same answer for the

star and for the path, respectively. The remaining case is a broom, also called here fork or chair. But

Corollary 7.6 gives a negative answer for that tree as well.

Other questions in [20] remain open, and we leave them for a future work.

Acknowledgments

The authors thank to the anonymous referee for the careful reading, comments, and suggestions

that helped us to improve the original version of the manuscript.

References

[1] R. Fernandes, C.M. da Fonseca, The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles,Linear
Multilinear Algebra 57 (7) (2009) 673–682.

[2] C.M. da Fonseca, The inertia of certain Hermitian block matrices, Linear Algebra Appl. 274 (1998) 193–210.
[3] C.M. da Fonseca, The inertia of Hermitian block matrices with zero main diagonal, Linear Algebra Appl. 311 (1–3) (2000)

153–160.
[4] C.M. da Fonseca, Interlacing properties for Hermitian matrices whose graph is a given tree, SIAM J. Matrix Anal. Appl. 27

(1) (2005) 130–141.
[5] C.M. da Fonseca, On the location of the eigenvalues of Jacobi matrices, Appl. Math. Lett. 19 (11) (2006) 1168–1174.
[6] C.M. da Fonseca, On the inertia sets of some symmetric sign patterns, Czechoslovak Math. J. 56 (3) (2006) 875–883.
[7] C.M. da Fonseca, On the multiplicities of eigenvalues of a Hermitian matrix whose graph is a tree,Ann. Mat. Pura Appl. 187

(2) (2008) 251–261.
[8] C.M. da Fonseca, R. Mamede, Algorithms for the inertia sets of some sign patterns, submitted for publication.
[9] C.M. da Fonseca, J. Petronilho, Explicit inverses of some tridiagonal matrices, Linear Algebra Appl. 325 (1–3) (2001) 7–21.

[10] C.M. da Fonseca, J. Petronilho, Explicit inverse of a tridiagonal k-Toeplitz matrix, Numer. Math. 100 (3) (2005) 457–482.
[11] Y. Gao, Y. Shao, The inertia set of nonnegative symmetric sign pattern with zero diagonal, Czechoslovak Math. J. 53 (4)

(2003) 925–934.
[12] Y. Gao, Y. Shao, Inertia sets of symmetric 2-generalized star sign patterns, Linear Multilinear Algebra 54 (1) (2006) 27–35.
[13] C.D. Godsil, Algebraic matching theory, Electron. J. Combin. 2 (1995) #R8
[14] F.J. Hall, Z. Li, D. Wang, Symmetric sign pattern matrices that require unique inertia, Linear Algebra Appl. 338 (2001)

153–169.
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