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It is well known that the spectral radius of a tree whose maximum
degree is � cannot exceed 2

√
� − 1. A similar upper bound holds

for arbitrary planar graphs, whose spectral radius cannot exceed√
8� + 10, and more generally, for all d-degenerate graphs, where

the corresponding upper bound is
√

4d�. Following this, we say
that a graph G is spectrally d-degenerate if every subgraph H of
G has spectral radius at most

√
d�(H). In this paper we derive

a rough converse of the above-mentioned results by proving that
each spectrally d-degenerate graph G contains a vertex whose
degree is at most 4d log2(�(G)/d) (if �(G) � 2d). It is shown that
the dependence on � in this upper bound cannot be eliminated,
as long as the dependence on d is subexponential. It is also proved
that the problem of deciding if a graph is spectrally d-degenerate
is co-NP-complete.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

All graphs in this paper are finite and simple, i.e. no loops or multiple edges are allowed. We use
standard terminology and notation. We denote by �(G) and δ(G) the maximum and the minimum
degree of G , respectively. If H is a subgraph of G , we write H ⊆ G . For a graph G , let ρ(G) denote its
spectral radius, the largest eigenvalue of the adjacency matrix of G . More generally, if M is a square
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matrix, the spectral radius of M , denoted by ρ(M), is the maximum modulus |λ| taken over all
eigenvalues λ of M .

If T is a tree, then it is a subgraph of the infinite �(T )-regular tree. This observation implies
that the spectral radius of T is at most 2

√
�(T ) − 1. Similar bounds have been obtained for arbitrary

planar graphs and for graphs of bounded genus [8]. In particular, the following result holds.

Theorem 1.1. (See Dvořák and Mohar [8].) If G is a planar graph, then

ρ(G) �
√

8�(G) + 10.

The proof in [8] uses the fact that the edges of every planar graph G can be partitioned into two
trees of maximum degree at most �(G)/2 and a graph whose degree is bounded by a small constant.
A similar bound was obtained earlier by Cao and Vince [4].

Whenever a result can be proved for tree-like graphs and for graphs of bounded genus, it is natural
to ask if it can be extended to a more general setting of minor-closed families. Indeed, this is possible
also in our case, and a result of Hayes [11] (see Theorem 1.2 below) goes even further.

A graph is said to be d-degenerate if every subgraph of G has a vertex whose degree is at most d.
This condition is equivalent to the requirement that G can be reduced to the empty graph by succes-
sively removing vertices whose degree is at most d.

A requirement that is similar to degeneracy is existence of an orientation of the edges of G such
that each vertex has indegree at most d. Every such graph is easily seen to be 2d-degenerate, and
conversely, every d-degenerate graph has an orientation with maximum indegree d.

Theorem 1.2. (See Hayes [11].) Any graph G that has an orientation with maximum indegree d (hence also
any d-degenerate graph) and with � = �(G) � 2d satisfies

ρ(G) � 2
√

d(� − d).

It is well known that each planar graph G has an orientation with maximum indegree 3. Theo-
rem 1.2 thus implies that ρ(G) �

√
12(� − 3), which is slightly weaker than the bound of Theorem 1.1

(for large �).
The above results suggest the following definitions. We say that a graph G is spectrally d-degenerate

if every subgraph H of G has spectral radius at most
√

d�(H). Hayes’ Theorem 1.2 shows that d-
degenerate graphs are spectrally 4d-degenerate. The implication is clear for graphs G of maximum
degree at least 2d. On the other hand, if �(G) � 2d, then ρ(G) � �(G) �

√
2d�(G). The main result

of this paper is a rough converse of this statement.

Theorem 1.3. If G is a spectrally d-degenerate graph, then it contains a vertex whose degree is at most
max{4d,4d log2(�(G)/d)}.

The proof is given in Section 3. If it were not for the annoying factor of log(�), this would imply
f (d)-degeneracy, which was our initial hope. However, in Section 4 we construct examples showing
that the ratio between degeneracy and spectral degeneracy may be as large as (almost) log log�(G).

In the last section, we consider computational complexity questions related to spectral degeneracy.
First we prove that for every integer d � 3, it is NP-hard to decide if the spectral degeneracy of a given
graph G of maximum degree d + 1 is at least d. Next we show that the problem of deciding if a graph
is spectrally d-degenerate is co-NP-complete.

2. Spectral radius

We refer to [2,7,10] for basic results about the spectra of finite graphs and to [12] for results
concerning the spectral radius of (non-negative) matrices. Let us review only the most basic facts that
will be used in this paper. The spectral radius is monotone and subadditive. Formally this is stated in
the following lemma.
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Lemma 2.1.

(a) If H ⊆ G, then ρ(H) � ρ(G).
(b) If G = K ∪ L, then ρ(G) � ρ(K ) + ρ(L).

The application of Lemma 2.1(a) to the subgraph of G consisting of a vertex of degree �(G) to-
gether with all its incident edges gives a lower bound on the spectral radius in terms of the maximum
degree.

Lemma 2.2.
√

�(G) � ρ(G) � �(G).

A partition V (G) = V 1 ∪ · · · ∪ Vk of the vertex set of G is called an equitable partition if, for every
i, j ∈ {1, . . . ,k}, there exists an integer bij such that every vertex v ∈ V i has precisely bij neighbors
in V j . The k × k matrix B = [bij] is called the quotient adjacency matrix of G corresponding to this
equitable partition.

Lemma 2.3. Let B be the quotient adjacency matrix corresponding to an equitable partition of G. Then every
eigenvalue of B is also an eigenvalue of G, and ρ(G) = ρ(B).

Proof. The first claim is well known (see [10] for details). To prove it, one just lifts an eigenvector
y of B to an eigenvector x of G by setting xv = yi if v ∈ V i . By the Perron–Frobenius Theorem, the
eigenvector corresponding to the largest eigenvalue of B is positive (if G is connected, which we
may assume), so its lift is also a positive eigenvector of G . This easily implies (by using the Perron–
Frobenius Theorem and orthogonality of eigenvectors of G) that this is the eigenvector corresponding
to the largest eigenvalue of G . Thus, ρ(G) = ρ(B). �

We will need an extension of Lemma 2.3. As above, let V (G) = V 1 ∪· · ·∪ Vk be a partition of V (G),
and let ni = |V i|, 1 � i � k. For every i, j ∈ {1, . . . ,k}, let ei j denote the number of ordered pairs (u, v)

such that u ∈ V i , v ∈ V j and uv ∈ E(G), i.e. ei j is the number of edges between V i and V j if i �= j,
and is twice the number of edges between the vertices in V i if i = j. Let bij = ei j/ni and let B = [bij]
be the corresponding k × k matrix. This is a generalization from equitable to general partitions, so we
say that B is the quotient adjacency matrix of G also in this case. If a matrix B ′ = [b′

i j]k
i, j=1 satisfies

0 � b′
i j � bij for every pair i, j, then we say that B ′ is a quotient sub-adjacency matrix for the partition

V 1 ∪ · · · ∪ Vk .

Lemma 2.4. If B ′ is a quotient sub-adjacency matrix corresponding to a partition of V (G), then ρ(G) � ρ(B ′).

Proof. By the monotonicity of the spectral radius, ρ(B ′) � ρ(B), where B is the quotient adjacency
matrix. So we may assume that B ′ = B . The matrix B is element-wise non-negative. By the Perron–
Frobenius Theorem, its spectral radius ρ(B) is equal to the largest eigenvalue of B (which is real and
positive) and the corresponding eigenvector y is non-negative. Let us define the vector f ∈ R

V (G) by
setting f v = yi if v ∈ V i . Then

‖ f ‖2 =
∑

v∈V (G)

f 2
v =

k∑
i=1

ni y2
i .

Furthermore, if A is the adjacency matrix of G , then

〈 f |A f 〉 = 2
∑

uv∈E(H)

fu f v

=
k∑

i=1

k∑
j=1

eij yi y j
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=
k∑

i=1

ni yi

k∑
j=1

bij y j

= ρ(B)

k∑
i=1

ni y2
i

= ρ(B)‖ f ‖2.

Since the matrix A is symmetric, ρ(A) is equal to the numerical radius of A. Thus, it follows from
the above calculations that ρ(G) � 〈 f |A f 〉

‖ f ‖2 = ρ(B), which we were to prove. �
3. Spectrally degenerate graphs are nearly degenerate

In this section we prove our main result, Theorem 1.3. For convenience we state it again (in a
slightly different form).

Theorem 3.1. Let G0 be a spectrally d-degenerate graph with r = δ(G0) > 4d. Then r � 4d log2(�(G0)/d).

Proof. Suppose for a contradiction that r > 4d log2(�(G0)/d) � 4d. Let G be a subgraph of G0 ob-
tained by successively deleting edges xy for which deg(x) � deg(y) > r, as long as possible. Then G
has the following properties:

(a) δ(G) = r > 4d log2(�(G0)/d) � 4d log2(�(G)/d).
(b) G is spectrally d-degenerate.
(c) The set of vertices of G whose degree is bigger than r is an independent vertex set in G .

Our goal is to prove that r � 4d log2(�(G)/d). This will contradict (a) and henceforth prove the theo-
rem.

Let us consider the vertex partition into the following vertex sets:

V 0 = {
v ∈ V (G)

∣∣ degG(v) = r
}
,

and for i = 1, . . . , l,

V i = {
v ∈ V (G)

∣∣ 2i−1r < degG(v) � 2ir
}
,

where l = �log2(�(G)/r)� � log2(�(G)/d). Let B = [bij]l
i, j=0 be the quotient adjacency matrix for the

partition V 0, V 1, . . . , Vl of V (G). Since all vertices in V 0 have the same degree r, it follows from the
definitions of the entries of B that r = ∑l

i=0 b0i . Thus it suffices to estimate the entries b0i in order
to bound r.

For i = 0, let H ⊆ G be the induced subgraph of G on V 0. Since G is spectrally d-degenerate, we
have that ρ(H) �

√
d�(H) �

√
dr �

√
r2/4 = r

2 . On the other hand, since H has average degree b00,

we have ρ(H) � b00. Thus, b00 � r
2 . This shows that

∑l
i=1 b0i = r − b00 � r/2, and thus it suffices to

prove that

l∑
i=1

b0i � 2d log2
(
�(G)/d

)
. (1)

From now on we let B ′ be the matrix obtained from B by setting the entry b′
00 to be 0. This is

the quotient adjacency matrix of the subgraph G ′ of G obtained by removing edges between pairs of
vertices in V 0.

We shall now prove that
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t∑
i=1

2i−1b0i � 2td (2)

for every t = 1, . . . , l. Let us consider the subgraph Gt of G ′ induced on V 0 ∪ V 1 ∪ · · · ∪ Vt and the
corresponding matrix

Bt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b01 . . . b0t

r 0 . . . 0

2r 0 . . . 0

4r 0 . . . 0
...

...
. . .

...

2t−1r 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us observe that the entries 2i−1r (i = 1, . . . , t) in the first column of Bt are smaller than the
corresponding entries in B ′ because every vertex in V i has degree more than 2i−1r. Therefore, Bt is
a quotient sub-adjacency matrix for the subgraph Gt . By expanding the determinant of the matrix
λI − Bt , it is easy to see that

ρ(Bt)
2 =

t∑
i=1

2i−1rb0i. (3)

Using Lemma 2.4 and the fact that Gt is spectrally d-degenerate, we see that ρ(Bt)
2 � ρ(Gt)

2 � d ·2tr.
This inequality combined with (3) implies (2).

We shall now prove by induction on s that

s∑
i=1

b0i � (s + 1)d (4)

for every s = 1, . . . , l. For s = 1, this is the same as the inequality (2) taken for t = 1. For s � 2, we
apply inequalities (2) to get the following estimates:

2s−t
t∑

i=1

2i−1b0i � 2sd (5)

and henceforth

s∑
t=1

2s−t
t∑

i=1

2i−1b0i � s · 2sd. (6)

Finally, inequalities (5) (taken with t = s) and (6) imply

2s
s∑

i=1

b0i =
s∑

i=1

(
2i−1 +

s∑
j=i

2 j−1

)
b0i

=
s∑

i=1

2i−1b0i +
s∑

t=1

2s−t
t∑

i=1

2i−1b0i

� 2sd + s · 2sd = 2s(s + 1)d.

This proves (4). For s = l, this implies (1) and completes the proof of the theorem. �
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4. A lower bound

In this section we show that the log(�) factor in the bound given by Theorem 1.3 cannot be
eliminated entirely.

Let α ∈ R+ . We say that a graph G is α-log-sparse, shortly α-LS, if every subgraph H of G has
average degree at most α log(�(H)). Observe that being α-LS is a hereditary property and that every
α-LS graph G is α log(�(G))-degenerate.

Pyber, Rödl, and Szemerédi [15, Theorem 2] proved that there exists a constant α0 such that every
graph G with average degree at least α0 log(�(G)) contains a 3-regular subgraph. On the other hand,
they proved in the same paper [15] that there exists a constant β > 0 such that, for each n � 1, there
is a bipartite graph of order n with average degree at least β log log n which does not contain any
3-regular subgraph (and is hence α0-LS). These results establish the following.

Theorem 4.1. (See [15].) There exist constants α0, β0 > 0 such that for every integer τ > 1 there exists a
bipartite graph G with bipartition V (G) = A ∪ B with the following properties:

(a) G is α0-LS.
(b) |A| � |B| and every vertex in A has degree τ .
(c) β0 log log |A|� τ .

We will prove that graphs of Theorem 4.1 have small spectral degeneracy. The proof will use the
Chernoff inequality in the following form (cf. [14, Theorem 7.2.1]):

Lemma 4.2. Let X1, . . . , Xn be independent random variables, each of them attaining value 1 with probabil-
ity p, and having value 0 otherwise. Let X = X1 + · · · + Xn. Then, for any r > 0,

Prob
[|X − np| � r

]
< exp

(
− r2

2(np + r/3)

)
.

We can now prove the following lemma, showing that a bipartite graph whose bipartite parts are
“almost” regular cannot be log-sparse.

Lemma 4.3. Let T � 10 and t > 0 be integers such that

6α0 log(20T ) � t � T .

Let H be a bipartite graph of maximum degree �� 2T with bipartition V (H) = A ∪ B satisfying the following
properties:

(a) t � deg v � T for each vertex v ∈ A.
(b) Each vertex v ∈ B has degree at least �/2.

Then H is not α0-LS.

Proof. Choose a subset A′ of A by selecting each element uniformly independently with probability
p = 2T /�, and let H ′ be the subgraph of H induced by A′ ∪ B . The expected size of A′ is a′ =
2T |A|/�. Note that T |A| � |E(H)| � |B|�/2, thus a′ � |B|. Furthermore, |A| � �/2, and thus a′ �
T � 10. By Lemma 4.2,

Prob

[∣∣A′∣∣ � 1

2
a′

]
< e−3a′/28 <

1

2
.

Therefore, we have 2|A′| � a′ � |B| with probability greater than 1
2 .
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Consider a vertex v ∈ B . The expected degree of v in H ′ is between T and 2T , and the probability
that v has degree greater than 2cT is less than e−cT for any c � 10, by Lemma 4.2. Let z = 0 if
degH ′ v � 20T and z = degH ′ v otherwise. The expected value of z is

∞∑
j=20T +1

Pr(degH ′ v = j) j =
∞∑

j=20T +1

j∑
i=1

Pr(degH ′ v = j)

=
20T∑
i=1

∞∑
j=20T +1

Pr(degH ′ v = j) +
∞∑

i=20T +1

∞∑
j=i

Pr(degH ′ v = j)

= 20T Pr(degH ′ v > 20T ) +
∞∑

i=20T +1

Pr(degH ′ v � i)

= 20T Pr(degH ′ v > 20T ) +
∞∑

i=20T

Pr(degH ′ v > i)

� 20T e−10T +
∞∑

i=20T

e−i/2.

We conclude that the expected number of edges of H ′ incident with vertices of degree greater than
20T is less than

|B|
(

20T e−10T +
∞∑

i=20T

e−i/2

)
< |B|(20T + 3)e−10T .

By Markov’s inequality, it happens with positive probability that H ′ has less than 2|B|(20T + 3)e−10T

edges incident with vertices of degree greater than 20T and that 2|A′| � |B|.
Let us now fix a subgraph H ′ with these properties. Let H ′′ be the graph obtained from H ′ by

removing the vertices of degree greater than 20T . Clearly, �(H ′′) � 20T . Also, H ′′ has at most 3|A′|
vertices and more than∣∣A′∣∣t − 2|B|(20T + 3)e−10T �

∣∣A′∣∣(t − 4(20T + 3)e−10T )
� 1

2

∣∣A′∣∣t
edges, thus the average degree of H ′′ is greater than t/6. Since t/6 � α0 log(20T ), this shows that H
is not α0-LS. �
Theorem 4.4. Suppose that a bipartite graph G with bipartition V (G) = A ∪ B satisfies properties (a)–(c) of
Theorem 4.1, where τ � 10 and 6α0 log(20τ ) � τ . Then G is spectrally d-degenerate, where

d = 48(3 + 2
√

2 )α0 log(20τ ).

Proof. Suppose for a contradiction that H is a subgraph of G with maximum degree D = �(H) whose
spectral radius violates spectral d-degeneracy requirement,

ρ(H) >
√

dD. (7)

We may assume that H is chosen so that D is minimum possible. Since G is α0-LS, the same holds
for its subgraph H . In particular, H is α0 log(D)-degenerate and hence ρ(H) � 2

√
α0 log(D) · D . By (7)

we conclude that

4α0 log(D) > d. (8)

This implies, in particular, that

D � 2τ . (9)
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Let γ = (3 − 2
√

2 )/8. Let us partition the edges of H into three subgraphs, H = H0 ∪ H1 ∪ H2, such
that the following holds:

(a) Each vertex in V (H0) ∩ B has degree in H0 at least D/2.
(b) Each vertex in V (H0) ∩ A has degree in H0 at least γ d.
(c) H1 is γ d-degenerate.
(d) �(H2) � D/2.

Such a partition can be obtained as follows. Let H0 be a minimal induced subgraph of H such that
E(H) \ E(H0) can be partitioned into graphs H1 and H2 satisfying the conditions (c) and (d) and
V (H0) ∩ V (H1) ∩ A = ∅. We claim that H0 satisfies (a) and (b). Indeed, suppose that H0 violates (a).
Then, there exists a vertex v ∈ V (H0) ∩ B of degree at most D/2. Consider the graph H ′

2 obtained
from H2 by adding all edges of H0 incident with v . Clearly, �(H ′

2) � D/2, since v has degree at most
D/2 and all vertices in A ∩ V (H ′

2) have degree at most τ � D/2 by (9). Thus, there exists a partition
of E(H) \ E(H0 − v) satisfying (c) and (d), which contradicts the minimality of H0. Similarly, suppose
that H0 violates (b), so there exists v ∈ V (H0)∩ A of degree at most γ d. Since V (H0)∩ V (H1)∩ A = ∅,
v /∈ V (H1), and thus the graph H ′

1 obtained from H1 by adding all edges of H0 incident with v is
γ d-degenerate. Furthermore, V (H0 − v)∩ V (H ′

1)∩ A = ∅, so we again obtain a contradiction with the
minimality of H0.

Suppose that H0 �= ∅. Then we use properties (a)–(b) of H0 and apply Lemma 4.3 to conclude that
H0 is not α0-LS. This contradicts our assumption that G is α0-LS and shows that H0 must be empty.

Thus, H = H1 ∪ H2. Since H was selected as a subgraph violating spectral degeneracy with its
maximum degree smallest possible, we conclude that H2 is spectrally d-degenerate. By applying
Lemma 2.1(b) and using Theorem 1.2 on H1, we obtain

ρ(H) � ρ(H1) + ρ(H2)

�
√

4γ d�(H1) + √
d�(H2)

�
√

4γ dD + √
dD/2

� (
√

4γ + √
1/2 )

√
dD = √

dD.

This contradicts (7) and completes our proof. �
By Theorem 4.1, there exist constants β and n0 such that we can apply Theorem 4.4 to graphs

on n vertices with τ � β log log n, for any n � n0. Then, d = O (log log log n), and thus the ra-
tio between the degeneracy and the spectral degeneracy is at least Ω(log logn/ log log log n) �
Ω(log log �/ log log log�).

Let us however remark that this does not exclude the possibility that the degeneracy is bounded
by a function of the spectral degeneracy. Answering a question we posed in the preprint version of
this paper, Alon [1] proved that that is not the case.

Theorem 4.5. For every M, there exist spectrally 50-degenerate graphs with minimum degree at least M.

5. Computational complexity remarks

Our results raise the problem of how hard it is to verify spectral degeneracy of a graph.

Spectral Degeneracy Problem

Input: A graph G and a positive rational number d.
Task: Decide if G is spectrally d-degenerate.

Below we prove that this problem is co-NP-complete. To demonstrate this, we need some preliminary
results. First, we show that distinct roots of a polynomial cannot be too close to each other. For a
polynomial p(x) = ∑k

i=0 ai xi with integer coefficients, let a(p) = log max0�i�k |ai |.
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Lemma 5.1. Let p(x) be an integer polynomial of degree k. If p(u) = p(v) = 0 and u �= v, then − log |u − v| =
O (k3(a(p) + log k)).

Proof. Mahler [13] proved that if y and z are two roots of a polynomial s(x) of degree d, then
− log |y − z| = O (− log |D| + d log d + da(s)), where D is the discriminant of s. To apply this result,
we need to eliminate the roots of p with multiplicity greater than one. By Brown [3], there exists
an integer polynomial q(x) that is a greatest common divisor of p(x) and p′(x) such that a(q) =
O (k(a(p) + log k)). Let c be the leading coefficient of q and let r(x) = ck p(x)/q(x). Note that r(x) is an
integer polynomial, all of whose roots are simple, r(u) = r(v) = 0, and a(r) = O (k2(a(p)+ log k)). Since
r is an integer polynomial with simple roots, the absolute value of its discriminant is at least 1. Using
the afore-mentioned result of Mahler [13], we conclude that − log |u − v| = O (k3(a(p) + log k)). �

Cheah and Corneil [5] showed the following.

Theorem 5.2. For any fixed integer d � 3, determining whether a graph of maximum degree d + 1 has a
d-regular subgraph is NP-complete.

We need an estimate on the spectral radius of graphs where the vertices of maximum degree are
far apart.

Lemma 5.3. Let G be a graph of maximum degree d + 1 such that the distance between every pair of vertices
of degree d + 1 is at least three. Then

ρ(G) � 3
√

(d + 1)
(
d2 + 1

)
.

Proof. We may assume that G is connected, since the spectral radius of a graph is the maximum of
the spectral radii of its components. We use the fact that ρ(G) = lim supn→∞ n

√
cn , where cn is the

number of closed walks of length n starting at an arbitrary vertex v of G . For any vertex z of degree
d + 1, G contains at most (d + 1)[(d − 1)d + (d + 1)] = (d + 1)(d2 + 1) walks of length 3 starting at z,
including those whose second vertex is z as well. Similarly, the number of walks of length 3 from a
vertex of degree at most d is at most (d + 1)d2. We conclude that cn � [(d + 1)(d2 + 1)]�n/3� , and the
claim follows. �

We will also use the following result which shows that the spectral radius of a connected non-
regular graph of maximum degree d cannot be arbitrarily close to d.

Lemma 5.4. (See Cioabă [6].) Let G be a connected graph of maximum degree d and with diameter D. If G has
a vertex of degree less than d, then

ρ(G) < d − 1

D|V (G)| .

We can now proceed with examining the complexity of spectral degeneracy computation.

Lemma 5.5. The Spectral Degeneracy Problem is in co-NP.

Proof. To verify that the spectral degeneracy of G is greater than d, guess a connected subgraph H
of G (on k � |V (G)| vertices) such that ρ(H) >

√
d�(H) = b. To prove that H has this property, first

compute the characteristic polynomial p(x) = det(xI − M), where M is the adjacency matrix of H .
Note that the absolute value of each coefficient of p is at most k! and that p can be computed
in polynomial time using, for example, Le Verrier–Faddeev’s algorithm [9]. Then, we need to show
that p has a real positive root greater than b. This is the case if p(b) < 0 and this condition can be
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verified in a polynomial time, since b is a square root of a rational number. Hence, we may assume
that p(b) � 0. Let us recall that ρ(H) is a simple root of p. Hence, if ρ(H) > b, then there exists a
root y of p such that b � y < ρ(H) and p(x) < 0 when y < x < ρ(H). To prove that b < ρ(H), it
suffices to guess a value x > b such that p(x) < 0, say any value between y and ρ(H). By Lemma 5.1,
− log(ρ(H) − y) = O (k4 log k), and thus such a number x can be expressed in polynomial space. �

For the hardness part, let us first consider a related problem of deciding whether the spectral
degeneracy is greater or equal to some given constant.

Theorem 5.6. For any fixed integer d � 3, verifying whether the spectral degeneracy of a graph is at least d is
NP-hard, even when restricted to graphs of maximum degree d + 1.

Proof. We give a reduction from the problem of finding a d-regular subgraph in a graph G of max-
imum degree d + 1, which is NP-hard by Theorem 5.2. Let G ′ be the graph obtained from G by
replacing each edge uv by a graph Guv created from a clique on d + 1 new vertices by removing an
edge xy and adding the edges ux and v y. Consider a connected subgraph H ⊆ G ′ . If H is d-regular and
z ∈ V (H) belongs to V (Guv) \ {u, v}, then Guv ⊆ H . It follows that G ′ contains a d-regular subgraph if
and only if G contains a d-regular subgraph.

Furthermore, if �(H) = d + 1, then by Lemma 5.3 we have

ρ(H) � 3
√

(d + 1)
(
d2 + 1

)
<

√
d�(H),

and if �(H) � d, then ρ(H) �
√

d�(H), where the equality holds if and only if H is d-regular. There-
fore, G has a d-regular subgraph if and only if the spectral degeneracy of G ′ is at least d. Since the
size of G ′ is polynomial in the size of G , this shows that deciding whether the spectral degeneracy of
a graph is at least d is NP-hard. �

A small variation of this analysis gives us the desired result.

Theorem 5.7. The Spectral Degeneracy Problem is co-NP-complete.

Proof. By Lemma 5.5, the problem is in co-NP, so it remains to exhibit a reduction from a co-NP-hard
problem.

Consider the graph G ′ from the proof of Theorem 5.6 and its connected subgraph H . If H has
maximum degree d + 1, then the spectral radius of H is at most√√√√ 3

√
(d2 + 1)2

d + 1
�(H)

by Lemma 5.3. If H has maximum degree at most d − 1, then

ρ(H) �
√

(d − 1)�(H).

Finally, if �(H) = d and H is not d-regular, then

ρ(H) �
√(

d − ∣∣V (H)
∣∣−2)2 �

√(
d − ∣∣V (H)

∣∣−2)
�(H)

by Lemma 5.4.
Let n = |V (G ′)|. Let b be a rational number such that

max

{
3

√
(d2 + 1)2

d + 1
, d − 1, d − n−2

}
� b < d.
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We conclude that either G ′ has spectral radius at least d or at most b. Thus, deciding whether the
spectral degeneracy of a graph is at most b (where b is part of the input) is co-NP-hard. �

However, this does not exclude the possibility that the spectral degeneracy could be approximated
efficiently. Let ε > 0 be a constant.

Approximate spectral degeneracy

Input: A graph G and a rational number d.
Task: Either prove that G is spectrally (1 + ε)d-degenerate, or show that it is not spectrally
d-degenerate.

Does there exist ε such that this problem can be solved in a polynomial time? Or possibly, is it
true that this question can be solved in a polynomial time for every ε > 0? Both of these questions
are open.
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