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Abstract

We consider a certain class of Herglotz—Nevanlinna matrix-valued functions which can be real-
ized as the Weyl-Titchmarsh matrix-valued function of some symmetric operator and its self-adjoint
extension. New properties of Weyl-Titchmarsh matrix-valued functions as well as a new version of
the functional model for such realizations are presented. In the case of periodic Herglotz—Nevanlinna
matrix-valued functions, we provide a complete characterization of their realizations in terms of
the corresponding functional model. We also obtain properties of a symmetric operator and its self-
adjoint extension which generate a periodic Weyl-Titchmarsh matrix-valued function. We study pairs
of operators (a symmetric operator and its self-adjoint extension) with constant Weyl-Titchmarsh
matrix-valued functions and establish connections between such pairs of operators and represen-
tations of the canonical commutation relations for unitary groups of operators in Weyl’s form. As
a consequence of such an approach, we obtain the Stone—von Neumann theorem for two unitary
groups of operators satisfying the commutation relations as well as some extension and refinement
of the classical functional model for generatorshafse groups. Our exangd include multiplication
operators in weighted spaces, first and second order differential operators, as well as the Schrodinger
operator with linear potential and its perturbation by bounded periodic potential.
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1. Introduction

In this paper we study a certain class of Herglotz—Nevanlinna matrix-valued functions
which can be realized as the Weyl-Titchmarsh matrix-valued funddeny (z) gener-
ated by the densely defined symmetric operafand its self-adjoint extensioH acting
on some Hilbert spac$ [5,7,8]. The new properties of these functions as well as a new
version of the functional model for the pai¥{, H) in terms ofMy, y (z) are obtained. We
introduce so-calledU, b)-periodic pair of operator&+, H) (UHU*=H—bl, UHU* =
H—blI, U is aunitary operator ish) and establish that the Weyl-Titchmarsh matrix-valued
function isb-periodic (M3 gy (z + b) = My (2)) if and only if the corresponding pair of
operatorgH, H) generating this matrix-valued function(§, b)-periodic. It is shown that
any Weyl-Titchmarsh functiom, g (z) corresponding to symmetric operatdgrwith the
defect indiceq1, 1) which admits quasi-Hermitian extensiéty, without spectrum is al-
waysrm/ tr(SH;l)—periodic. EachU, b)-periodic symmetric operatd{ is associated with
a groupl” of transformations of the séf(m) of all m x m unitary matrices into itself. It
turns out that the group' is cyclic if and only if an operatok admits periodic extension.
We consider a pair of operatofs/, H) with the constant Weyl-Titchmarsh matrix-valued
functions and find connections between such pairs and representations of the canonical
commutation relations for unitary groups of ogtrs in Weyl's form. As a consequence
of this approach we obtain the Stone—von Neumann theorem [17] for two unitary groups
of operators satisfying the commutation relations as well as some extension and refine-
ment of the classical functional model forrerators of those groups. The examples of
the Schrodinger operator with linear potential and its perturbation by a bounded periodic
function are considered.

2. The Weyl-Titchmarsh function

Let $ be a Hilbert space, and l&t be a prime symmetric operator i that is,$ does
not contain a proper subspace that reddgeand in which induces a self-adjoint oper-
ator. Let® (H) denote the domain dff. We assume that the defect indexiéfis (m, m),
m < oo. This means that for any nonreathe defect subspad8, = [(H — z2)D(H)]*-
has dimensionn. Let H be a self-adjoint extension ¢ in $ (an orthogonal exten-
sion) with domair® (H). The Weyl-Titchmarsh function of the pdi, H), My y(z), is
an operator-valued function whose values are operators om-tlienensional spacgi;.
My () is defined on the resolvent setH ) of the operato by

My (@) = Py(zH + D(H — 2D Moy, (1)
where Py is the orthogonal projection from onto91;. From the spectral representation
of H, it follows thatM; p (z) can be written as

AZ

MH,H(Z)Z/ .
R

Values of a nondecreasing functietir) are operators offt;, and are defined by (1) =
PLE()\)|,;, where E()) is the resolution of identity associated wiii. We normalize

+Z1 do(0). 2
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E(A) by the conditionE (1) = 1/2(E(A + 0) + E(A — 0)). It is evident thatMy g () is
analytic onp (H), particularly, fordz £ 0, and from (2) it follows tha My g (z) > 0 for
z € C4. Therefore My 1 (z) belongs to the Herglotz—Nevanlinna class.

The functiono has the following properties:

/ do (L) = Iy, 3)
R
/(1 +12) (do(Wh,h) =00 VheMN, (4)

whereo (A) = 1/2(c (A + 0) + o (A — 0)). Condition (3) is obvious, while condition (4)
follows from the fact, that according to von Neumann'’s formulas, for veater9i;,

h ¢ ®(H). Condition (3) provides a normalizaticcondition for the Weyl-Titchmarsh
function My (i) = i In, . From condition (4) it follows that points of growth efform a
noncompact set.

Upon selecting an orthonormal basisdita we can identify the spac®; with C™, and
regardMy y (z) ando (1) as operators o™ . Matrices of these operators, with respect to
the selected basis, are also denotedfyy y (z) ando (1).

An important property of the Weyl-Titchmarsh functions is given by the following the-
orem.

Theorem 1.Let H and  be prime symmetric operators with equal defect numbers in
Hilbert spaces and ), respectively, and/ and H be their self-adjoint extensions. Sup-
pose that there is the unitary operatit: § — § such thatWH = HW andWH = HW.
Then there is a unitary operatd¥y: 9t; — 0N; such thatWoMyy  (2) = Mﬂ)[_}(Z)WO-

Proof. From the assumptions of the theorem it follows th&£ (L) = E(L)W, where
E(}) and E()) are the resolutions of the identity, associated wittand H, respectively.
From the assumption aboft and’H we have thaWD(H) = D(H), and forf e ®(H),
W(H —zDf = (H — zI)W . In other words W, = M, whered, = (H — zI)D(H),
(H — z)D(H). SinceW is a unitary operator we obtain that‘ﬁ ‘ﬁz, and

WPJr =P, W.

PutWo = W|9%. ThenWj is the unitary operator frort; ontot;, Wg = W*|9;. For
any f €91 andg € 9; we have

(WoMr, 11 (2) f, 8) = (WM 1 (2) f. 8) = (M, (2) f, W*g)

A A 1
/ St (P EGYf W )—/ S A(WPLEG)£.)
R

R

A 1 - -
=/ sz d(PLEGIWS, &) = (Myy (@ Wof, &)
R

These equalities show th#fy possesses desired propertyl
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If {ej};’?:l is an arbitrary orthonormal basis%;, then{Wge;} is the orthonormal basis

in 9. With respect to these bases, matrices{ 4 (z) and M, ;(z) are equal. There-
fore, Theorem 1 can be reformulated as follows: ’

If pairs (H, H) and (H, H) are unitarily equivalent, then there are bases with respect
to which matrices of their Weyl-Titchmarsh functions are equal

The next theorem is a statement about realization. It provides the functional model of a
pair with prescribed Weyl-Titchmarsh function.

Theorem 2.Let F(z) be a function whose values are linear operators onhdimen-
sional spacét, and which admits integral representation

oo

F(z)=/ )\” do()).

—0oQ
whereo (1) is a hondecreasing function with values on the set of linear operatof,on
and which satisfieg3) and (4). Then, there is a Hilbert spacﬁ which contain®t as a
subspace, prime symmetrlc operahﬁlwnh defectindexm, m), and self-adjoint extension
H in §, such thatF (z) = H 7@ If (9, H, H) is another realization of7, then there is

a unitary operaton : $ — fHsuchthatyH =Hw, andv H = HY.

Remark. Conditions (3) and (4) are understood now wiihinstead of)t;.

Proof. Sinceo (1) is a nondecreasing operator-valued function and satisfies (3), it is the
generalized resolution of identity which actsdh We use the following fundamental the-
orem by M.A. Najmark (see, for example, [1]):

Leto (1) be the generalized resolution of identity which acts on the Hilbert space
Then, there exists a Hilbert spagewhich contains)t as a subspace and the orthogo-
nal resolution of |dent|t)E(A) such that for any Borel sed € B(R) (B(R) is the Borel
field of R) o (4) = PE(A)|M, whereP is the orthogonal projection fromd ontoM. The
spacesa can be selected to be minimal in that sense thiat.{E(A)h | A € B(R), h € 9}
= §, wherec.l.h. means the closed linear hull. Thetilmogonal resolution of the identity
E(3) defines the self-adjoint operatdf in $. Under minimality condition the Hilbert
spacef) and the operato! are defined uniquely up to unitary equivalence

In our situation this construction gives the Hilbert spﬁ}:e L%(R, M, do). Elements
of § are measurable function&1), A € R, with values indt such that

/ (do () f (), FO))g, < 00
R
The spaceéh is identified with the subspace a2 (R, M, do) which consists of constant

functions. The orthogonal resolution of identifyis defined as£ (A) £ (1) = xa (L) f (1),
wherey 4 is the indicator function of the set.
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The self-adjoint operataf is defined as follows:

®(ﬁ)={fe§a\/(1+xz> (da(x)f(x),m))mmo,, (5)
R

HHM)=rf(V), feDH). (6)

From (4) it follows thatH is an unbounded operator.
Let
@Obz{femﬁH/Q+DddMﬂM:0} 7)
R

and

HHR) =rf ), feDH). (8)

D(H) is a linear manifold, dense if) (this fact follows from (4)), andH f, g) = (f, Hg)

for f,g € D(H). Thus,H is a symmetric operator. Moreover, condition (7) implies, that
=[(H+iDD(H)]*+ =MN;. Indeed, forf € L2(R, M, do) put fo = [do(x)f.Thenwe

havef (A+i)g+h,whereg = (f — fo)/(k+z)e®(H) h= fol (A+i)g. Therefore,

one of the defect numbers 6t is m. It is easily seen thall_; = {(A — i)(A + i) L& |

£ € M}, which means that difi_; = m, and the defect index of is (m, m). In general,

for arbitrary nonreat the defect subspace®, = {(A —i)(» — )7 lE | £ ey

The Weyl-Titchmarsh function for the pdi¥, H) is

+1
Mj;q,=P+(ZH+1)(H—zl)_llsn,-=/Z)L do(2)
R

and coincides with the given functidn Uniqueness of this realization up to unitary equiv-
alence is provided by Najmark’s tboeem which was formulated abovern

Combining results of Theorems 1 and 2 we obtain the following statement (see [7,8]).

Corollary 1. Let H be a prime symmetric operator on a Hilbert spagewith index of
defect(m, m) (m < o0o), and letH be a self-adjoint extension 6{ in $. Let My p(2)
be the Weyl-Titchmarsh function of the pélt, H). Let (9, H, H) be the realization of
My y described in Theorer®. Then, there is a unitary operata? : § — $ such that

H=dHD* (9)
and

H=0oHo* (10)

Let U be a unitary operator of), andU = ®U ®* be its representation in the model
space). We say that the operatm is of shift-type(s-type) operator if forf € 9,

A=
UH = Tl D) (11)
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where D is a unitary operator ofit which commutes withs (1), and whereb is a real
number.
Often it is more convenient to use the following realizatiorFofsee [7,8]). Let

dr(A) = 1+ 2% do(M); (12)
then,
o1 Y
F(z)= / I:)»—Z - 1+)L2:|dr()\). (13)

The mapping given byv : LR, M, do) — LZ(R, N, d7), where(Wf)(1) = f(1) x
(» — i)~ L is then unitary. For the self-adjoint operaér= W H W*, we then have

D(H) = :f € LAR,M,d7) | /(1+A2) (AT f ), fFR) gy < oo}
R

andH f(A) = Af (). A
For the symmetric operat@¢ = WHW* the following properties hold:

(i) DH)= :f €D(H) | /f(k)dr()\) = o};
R

(i) (HHO) =1fR);
(i) N, = {%g | & e‘ﬁ}.
In such a representation, the s-type unitary oper@tacts in the following way:
U f)(®) = Df (. = b).

For further development of theory of the Weyl-Titchmarsh functions and their applica-
tions we refer readers to [2,4-13,15] and references therein.

3. Periodic operators

Let H be a prime symmetric operator with index of deféat m), m < oo, and letH
be its orthogonal self-adjoint extension. In this section we study pa&irg?) for which
the Weyl-Titchmarsh function is-periodic, that is

My g (2) = My g (z+b), (14)

whereb is some real number.
We start from the following lemma.

Lemma 1.Let F(z) be a function whose values are linear operators orvihdimensional
spacedt, and which admits the integral representation
o

A 1 h 1
F(z)=/ it da(k)=zlfn+(l+zz)/—d0()»),
A—Z A—2Z

—00
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whereo (1) is a nondecreasing function with values on the set of linear operatofi on
which satisfies condition®) and (4). The functionF'(z) is b-periodic, if and only if

T(A+b)=1(4) (15)
forany A € B(R), wherert is defined by12).

Proof. In order to prove the lemma we need the following generalization of the Stieltjes
inversion formula due to M. Livsic (see [14, Lemma 2.1]):

Leto(M) =1/2(c(L+0) + o (2 — 0)) (—o0 < A < o0) be some function of bounded
variation on each finite interval, such that the integral

o0

do (A
@(z):/ Aa_(z)

—00
converges absolutely. Le{)r) be some function analytic on the closed intentak [«, 8].
Denote byA, the broken path of integration consisting of directed segrentie, 8 —ie]
and antiparallel segmen + i€, « +i€]. Then

. 1
!@O%/(p(z)@(z)dz=—/fp()»)dff()»)-
Ae

o

Fix an orthonormal basig }’;':l in the spac@t. Theb-periodicity of the functionF (z)
yields

8]

bji + (1+ ( + b)) /

—00

o0
o =+ ) / ——dow(),  (19)
—0oQ
Sz # 0, andoj (1) = (o (Mex, ej). Since dindt = m < oo, of all functionso i, j, k =
1,2,...,m, are of uniform bounded variation and (15) follows from the Livsic's lemma.
Indeed, evaluating the integral of both sides of (16) aldngand then taking the limit as
€ — 0 we obtain

B B
/[1+ O+ b)?]do (. +b) = /(1+A2)da(k),
which is (15).

Suppose now that (15) is fulfilled. Then we have %ar+# 0,
1
A—2z—

1
F(Z+b)—F(z)=/[ b—)\_z}dr()»)zc,
R

wherec = fR[A/(1+A2) — (A 4b)/(A+ (A +b)®)]d7 (1), and where the integrals converge
absolutely. We assume for simplicity that= 1 (for casen < oo the proof can be done by
componentwise arguments). Consider that for the difference
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. =] [[—2 -
‘F(ly‘f‘b)_F(ly)‘_‘/[)\—iy—b_)»—l'yi|d7:()‘)
R

/ dt())
<b .
J V242 (- D)2+ y?

Then, for largey we note that

1/(/22 +y20. = )2 +32) <1/ (VA2 + LW/ — b2 + 1)
therefore, for a givem > 0, there isA > 0 such that

—A 00
dt(A) €
/+/ 21 2 2.2 2
I S VRO -0ty
uniformly with respect toy. Now using the fact thafRdr(k)/(l + 12) =1, we see that
for sufficiently largey,

A
/ dt()) - 1+ A2
| Z432/0-b2 52 Y

€
< =
2

It follows thatc = 0, andF (z + b) = F(z); thereby, proving the lemma.O

Definition. An operatorT acting on a Hilbert spac® with domain®(T) is said to be
(U, b)-periodic, if there is a unitary operatdy such that

UD(T) cO(T), (17)
UTU*=T — bl (18)

for some numbeb # 0.

Of course, a periodic operator cannot be bouh@me can easily see that if the operator
T* exists, then it iU, b)-periodic.

We say that prime symmetric operatdrin $ and its self-adjoint extensiod form a
(U, b)-periodic pair, if conditions (17) and (18) are fulfilled for both and H with the
same unitary operatdr.

It is evident, that if{ is a (U, b)-periodic operator, andii, is a defect subspace &,
thenUM, =MN,4p.

Proposition 1.LetH be a prime symmetric operator, and l6t> H be its self-adjoint ex-
tension such that the paif{, H) is (U, b)-periodic and(V, b)-periodic. Then the unitary
operatorW = V*U has following properties

(1) W commutes wittH ;
(2) each defect subspadg, reducesw;
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(3) if H has defectindegn, m), m < oo, then the spectrum d¥ consists of finite number
of eigenvaluesnumber of distinct eigenvalues not greater than

Indeed, properties (1) and (2) follow directly from the definitions above. The prop-
erty (3) follows from the fact that the operatdt commutes with the resolution of identity
E()) associated withH, c.l.h.{E(A)N | A € B(R)} = $, whereMt is a defect subspace
of H, and the spectrum d¥ |91 consists of finite numbers of eigenvalues.

Theorem 3.LetH be a prime symmetric operator on a Hilbert spagavith defect index
(m,m) (m < o0), and letH be its self-adjoint extension ify. Then the following condi-
tions are equivalent

(1) the Weyl-Titchmarsh functiaWy, g (z) of the pair(H, H) is b-periodic
(2) the pair(H, H) is (U, b)-periodic, wherel/ is an s-type operator.

Proof. Letthe pair(H, H) have ab-periodic Weyl-Titchmarsh function. LeH, H, H) be
the realization of 9, H, H), described in Theorem 2. Acading to Lemma 1 the function
o (1) satisfies the periodicity condition

(14 (A +b)?) do (. +b) = L+ 23 do (1).

On the spac# = L2(R, ;, do) consider the operatdr : f — U f defined by
- A—1i
(Uf)(l)=ﬁf(l—b). (19)
—b—i
The operatolJ is a unitary operator ilL2(R, 0M;, do’). Indeed,

2241

14 (—b)2 (do (W) f(h—Db), f(r—b))

UfUf)= /

1+ (A —b)?
/ 1+ (A —b)?

= d(o(h=b) f(A=b), f(h—b)) = (f, f).

—00

The domain of the operat6 is invariant undei’. For f € D (H), that is

/(A +i)do (M) f() =0,
R

we have
00 ‘ 00 A2+1
/()\‘Fl)dO’()\)(Uf)()\):/mdo’()u)f()u—b)

_71+(A—b>2

S da(A—b)f()»—b)=/(k+i)da(k)f(k)=0.
—b—i

—00
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Similar calculations show thatif € ©(H), thenU f € ©(H),andUH f = (H —b1)U f.
Therefore,(H, H) is the (U, b)-periodic pair. Therefore, the paifH, H) is (U, b)-
periodic, andJ is s-type operator.

Conversely, letH, H) | be a(U, b)- perlodlc palr with operatol/ of s-type. Therefore,
in the reallzatlor(ﬁ H, H) the pa|r(H H)is (U, b)- periodic, withU of the form (12).

From the equatioV HU™* = H — bl it follows that the resolution of identitf (1) of the
operatorH satisfies the condition
UEMWU*=E(+Db). (20)

If 9, is the defect subspace of the operdidd U*, then9t; = N, 5. Let {¢;} be an ortho-
normal basis iMt. Then
~ A—i
Uej =

A—i—b

is the orthonormal basis Fﬁ‘ki =MN;+». Now Theorem 1 gives

r+b
ok = (EMWer,ej) = (E+b)Uex, Uej) = /
from which we get1+ 2% do (L) = (1+ (A +b)?) do (A + b).

Therefore, the function satisfies the condition of Lemma 1, aiMy y (z) is theb-
periodic function. The theorem is proved

1+ 52

Tro-pe

Remark. It can be proved, that ifH, H) is a (U, b)-periodic pair, where index of defect
of His (1, 1), then the unitary operatdr is necessarily of s-type.

Lemma 2. Let H be a (U, b)-periodic prime symmetric operator with finite and equal
defect numbers, and I1€H, Hp) is a (U, b)-periodic pair. Define operator functiond(z)
andB(z) by the equations

o
AGz) = / ) (21)
R

.
B(z) = / T:dao(k), (22)

whereog(X) = P+ Eo(X) |, , and whereEg(2) is the resolution of identity foFg. Then the
functionsA and B satisfy the following identities

b

B(z+b) = %B(Z). (24)

Az +b) = g — A(2), (23)

Proof. We prove identity fotA. Identity for B is proved similarly,



676 M. Bekker, E. Tsekanovskii / J. Math. Anal. Appl. 294 (2004) 666—-686

AG+b) = / % doo ()

A

= / 1 1 1+ 22 doo())
= - o .
ctb+i) a—z—b Ati 0

Since(H, Hp) is the(U, b)-periodic pair, the Weyl-Titchmarsh functidsy, g, (z) for the
pair has period, from which it follows, that the measurerg(r) = (1 + A2) dog(A) also
has period. This condition provides that

! L awoy = ! L Nano
/[A—z—b_)\+ij| ol )_/[A—z_hui} o).

and the statement regarding the functidfy) follows. O

Corollary 2. Let H be a prime symmetric operator in the Hilbert spagewith index of
defect(m, m), and Hg be its orthogonal self-adjoint extension such that the §&ir Ho) is
a (U, b)-periodic. Then for any other orthogonal self-adjoint extenstbof the operator
'H the corresponding paitH, H) is a (U’, b)-periodic with some unitary operatdr’.

Proof. In light of Theorem 1 it is enough to show that periodicity M y,(z) implies
periodicity of My g (2).

Let op be the nondecreasing operator valued function which provides the integral rep-
resentation of thé/y; y,(z). Consider the functional model for the péit{, Ho). Then,
according to the von Neumann formulas, the donf@ii#) of the self-adjoint extension
H of the operatof{ consists of the functiong(1) € L2(R, ;, dog) which can be written
as

f=g+ @i —Vep_i), (25)

whereg € D(H), thatis [ (A +i)g () doo(r) = 0,9 € N, p—; € N, llgll = llp—ill, and
V is a unitary operator ifit_;. We also have thatfof e ©(H) Hf = Hg+i(¢i+ Ve_;).
From the definition of the Weyl-Titchmarsh function of the pair we have that
My g (2) — My gy (2)
1+ 72

where R and Ry are resolvents off and Hp, respectively. Calculating the difference of
resolvents, we get the following expression:

My g (2) — My gy (2)
1+ 72

where A(z) andB(z) are defined by (21) and (22). Now using formulas (23) and (24), we
obtain thatMyy g (z) — My, 1, (z) = My 5 (z + b) — My g, (z + b), and the corollary is
proved. O

=Py [R(Z) - RO(Z)] |mia

= AU = V)[(i + DAQV + (i —2)B@)] B(), (26)

Let H be a(U, b)-periodic prime symmetric operator in a Hilbert spagevith index
of defect(m, m) (m < o0). Fix orthonormal base{soj}’;':l in 9N; and{l//j}’}':l inM_;,and
a unitary operatoVp in 91_;. The matrix of this operator with respect to the ba[$1§};'?:1
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we also denote byp. Denote by® (Hp) the domain of self-adjoint extensidily of the
operatorH defined as

D(Ho) = {foJ | f=f0+ZCj(§0j —Voyj), foe D(H), c; G(C}.
J

SinceUD(H) = D(H) the setU"D(Hp) is the domain of another self-adjoint extension
H, of the operatof{. The extensiorH, is defined by the pair of defect subspadgs.;
and_;,», and by the unitary operatdré”) in the spacén_;,p. This operator is de-
fined by the condition that its matrix with respect to the b&&i8ys;} coincides with the
matrix V. It is easily seen thdl’é”) = U"VoU* |M_; 1 nb.

The von Neumann theory of self-adjoint extensions provides that the extefisican
also be characterized in terms of the defect subspicemdt_;; that is, for any unitary
operatorVg on91_; there exists unique unitary operadr on9i_;, such that

Lhi{; — Vayrj | j=1.2.....m}=Lh{U"p; — U"Voys; | j=1.2,....m}. (27)

Thus, the extensioH is (U", nb)-periodic if and only ifV,, = Vp.
The unitary operatoV,, which satisfies (27) can be found as the solution of the system
of equations

m
0j = Vaj =Y ayU'pe —U VoY), j=12,....m. (28)
k=1
Our previous comments can then be reformulated as follGasany unitary Vo, sys-
tem(28) has one and only one unitary solutidf.
Acting on both sides of (28) by* + i1 and byH* — i1, we obtain that

m
2ip; =Y a;[(2i +nb)U"px — nbU" Vo] (29)
k=1
and
2V =Y aj[nbU" g — (=2i +nb)U" Voyri]. (30)
k=1

If (29) and (30) are fulfilled then Eq. (28) is also fulfilled. LB{ and P_ be orthogonal
projections onto subspac®s and9t_;, respectively. Applying; to the both sides of (29)
we obtain that Eq. (29) can be written as

m m m
2ig; =Y [(2i +nb) Y (U gx, o)1 —nb y_(U" Vo, <ﬂ1)<ﬂ1:|« (31)
k=1 1=1 1=1
Therefore the matriw =[], k, j =1, 2, ..., m, satisfies equation
2i] =[C,Vo+ Dyle, (32)
where matriceg’, andD,, are defined by
Cn=—nb[U" i, @i ;s Dn=@i+nb)[(U"pr D],y (33)

and whereVy means the matrix of operat®dy with respect to the basis) ; ;'?:1.
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Applying the operatoP_ to the both sides of (30), we obtain

iV = [nb Y WU er, Y)Y — (—2i +nb) Y (U" oy, 1//1)1//1]- (34)

k=1 =1 =1
With the introduction of then x m matrices

An= @i —nb)[((U" Ve, YD s Bu=nb[(U"px, ¥ 1y (35)
Eq. (34) can then be written as
2iV, =[A,Vo+ Bylo. (36)

Thus, from (32) and (36), we deduce that with respect to the lpasis the matrix of the
operatorV, is defined by the expression

V= Tn(VO) =[A,Vo+ B,1[C, Vo + Dn]71~ (37)

Conversely, suppose that unitary matridégsandV,, are related by (37). Define matrix
o asa = 2i[C, Vo + D,]1~L. With thise and V,,, (31) and (34) hold for allj. Therefore,
(29) and (30) also hold.

Letting 7o = id (the identity mapping), we obtain the family = {7, n € Z} of map-
pings of the set ofn x m unitary matrices into itself. By construction, the mappiriys
possess the proper®y; (7,,(-)) = Th+m (). Therefore the family™ is a group.

From Corollary 1, we observe that if the trajectdify (Vo)}72 _ ., for some initial uni-
tary matrix Vg is periodic (that is,T,,(Vo) = Vo for some positive integet), then it is
periodic for any other initial unitary matrix with the same periodn such a situation, the
operatorH admits a(U, nb)-periodic self-adjoint extension, wheneis the period of the
trajectory of an initial unitary matrixp. We reformulate this property as a property of the
group!l.

Proposition 2. Let H be a(U, b)-periodic prime symmetric operator with index of defect
(m,m) and I" be the associated group of mappings of thenset m unitary matrices into
itself, defined by33), (35), and (37). Then the operatol admits a periodic self-adjoint
extension if and only if the group is of finite order.

Examples. (a) Let 2(1) be a nonnegative bounded function which has petiod et
do (1) = h(r)/(1 + 2%)dx and use definition (2). Then, the corresponding function has
the periodb. In particular, forh(1) =1+ sinA,

F(z)=i+e?—e L

The functionF (z) has the period 2, and is the Weyl-Titchmarsh function of the pair
(H, H) defined by the formulas (5)—(7).

(b) LetH = Lﬁl [0, ], and let the operatdk be defined as follows: The domain &f
is the set of all absolutely continuous functiofi@) = { fi (1)}, € 9, such thatf’ € ),
f(©) = f() =0, and where

_.df
Hf@) =i o (38)
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The operatorH has defect indexm,m). The defect subspac¥; is generated by the
columns of them x m matrix exp(t)I,,. There is a one-to-one correspondence between
the set of self-adjoint extensions & and them x m unitary matriced’.

Any self-adjoint extensiorHy of H can then be obtained as follows: The domain of
Hy is set of all absolutely continuous functiofisrom L2 [0, 1], such thatf’ € L2 [0, 1],
and f(0) = Vf (), whereV is a unitary matrix inC". For the pair(H, Hy) the Weyl—
Titchmarsh functionV; , is equal to

My 11, (2) = =il + 6212’_ 1T = DUy — eV = V), (39)

This function has periods2/ 1. Therefore, the operator (38) at#fl, form a 2z /[-periodic

pair. The unitary operatdy, such thal/’HU* = 'H — (2 /1)1, and with similar equality
holding for Hy, is the operator of multiplication by eXp-2xit/1).

(c) More generally, consider the operatéf = i d /dt 4 h(z) on L2 [0, [] with the same
domain that above: is a Hermitian, bounded measurable matrix function. Then the op-
eratorH; is symmetric with index of defedin, m). Let Hy be its self-adjoint extension.
Then the Weyl-Titchmarsh functiaify;, g, (z) has the period2/1.

Finally, we observe that, according to a&trem of M. Livsic [16], a prime symmetric
operator with index of defeal, 1) which admits a quasi-Hermitian extensidh with-
out spectrum in the finite complex plane is unitarily equivalent to the operator described
in example (b) wittvn =1 for [ = 2tr(3H~1) > 0. For the definition and some proper-
ties of quasi-Hermitian extensions of symmetric operators see [1]. Therefore, we have the
following statement.

Theorem 4. Let H be a prime symmetric operator with index of defékttl), and H
be a self-adjoint extension Gf. Suppose that{ admits a quasi-self-adjoint extension
H without spectrum. Then, the Weyl-Titchmarsh funclify ; (z) of the pair(H, H) is
periodic with period equal ter/ tr(3H;1).

This theorem does not admit generalizatio the case of larger defect numbers. Indeed,
let H = L?[0,], and let O< & < . Consider the symmetric operathf on §), defined as
follows: The domair® (H) is the set of all functiong (¢) which are absolutely continuous
forO<t<éandé <t <, ffen,andf(0)=fE) =fU)=0.Forf eDH), Hf =
idf/dt. The index of defect fof is equal to(2, 2). This operator admits a quasi-self-
adjoint extensior{ without spectrum, and{ ! is dissipative and unicellular (see [3] for
definitions and proofs of these properties). The operatds isomorphic to the direct
sumH1 & Ho of two first order differential operators with zero boundary conditions on
[0, &] and [, 1], respectively. LetH be the self-adjoint extension 6f1 & H, obtained
by imposing the following conditionsf (0) = w1 f(§ — 0), f(& + 0) = w2 f(l), where
|w1] = |w2| = 1. The the Weyl-Titchmarsh functiods, 4 (z) of the pair(H, H) isa 2x 2
diagonal matrix

My g (2) = [

M1(z) 0 :|
0 M>(z2)
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where
M1(z) = —i + 2179 — 11— w1e®) /[(€* — (1 — wre )],
Mo(z) = —i + 2i(wpe! — &) (ele =9V — eg)/[(eZI — %) (w2 — eiiz(lfé))]

(compare with (39))M1 has the period 2/&, function M> has the period 2/(I — &).
Therefore, if§ /(I — &) is an irrational number, the functiaify; 5 is not periodic.

4. Operators with constant Weyl-Titchmarsh function

Let H be a self-adjoint operator, and Bt(r) = exp(itH), t € R, be the one-parametric
group of unitary operators generated Hy If H is a (U, b)-periodic operator, then the
following commutative relation is fulfilled:

UW@) =e "W ()U. (40)

So far we have considered the Weyl-Titchmarsh functions which are invariant under
some fixed shifb of the argument. LeF (z) be a function whose values are operators on
m-dimensional spac®t, which admits representation (13), and which is invariant under
arbitrary real shift; that isF'(z + s) = F(z) for any reals. In such a situation the function
F(z) is constant in each half-plane,

ilm, zZe (C+,
F(z)= 41
@ {—ilm, zeC_. 41
These properties are fulfilled if and onlydt (1) = a Ldrly.

We have F(z) = HH(z) for the pair (H, H) acting in the Hilbert space'g =
L2(R, M, 7~ 1d)), where

D(H) = {f e LR, M, tdn) | /(1+)\2) (RgeS) ||;dx < oo}, (42)
R
(Hf)O)=1f (), (43)
D(H) = {fe@(H) | /f()\)d)\zo}, (44)
R
(Hf)0) = 1f (). (45)
According to Theorem 3, for any real numberthere is a unitary operatoV(s) on
L2(R, M, w~1dx) such thatV (s)HV*(s) = H — sI, andV (syHV*(s) = H — sI. More-

over, according to Theorem 3, operaﬁo(s) acts as foIIows(V(s)f)(A) fF—s).
Therefore, the family{V (s)} is a strongly continuous unitary group.W () = exp(itH),
then

V()W) =e "W (@) V(s), (46)
which is Weyl's form of the canonical commutative relation.
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Conversely, let{ be a prime symmetric operator with index of defeat m), and letH
be a self-adjoint extension 6{. Let W(¢) = exp(it H). Suppose there is a unitary group
{V(s)}, s € R, of shift-type operators such that

VW@ = e STW @)V (s). (47)

Then the Weyl-Titchmarsh functiaWf, g (z) of the pair(H, H) is constant in each half-
plane.

Indeed, from Eq. (47) it follows that fof e ®(H), V(s)f € D(H) andV(s)Hf =
(H—=sDV(s)f.

On the other hand, according to Theorem 2, the ope#étisrunitarily equivalent to the
operatorb? of multiplication by on the Hilbert spacé&?(R, 0M;, do (1)), whereo (1) =
PLE(M) 9, and P, is the orthogonal projection from onto 91;. The domain ofA in
such a representation is the set

D(H) = {f € L*(R, M, do (V) | /xz(da()\)f(x), f) < oo}.

The same unitary operator that transforfhso H transformgH to the symmetric operator
‘H with domain

D(H) = {fei)(ﬁ) | /(A+i)(do(k)f(k),f(k)) =0}.

OperatorsV (s), being of shift-type, are transformed to the operal?)(s) which, accord-
ing to (11), act as follows:
- A—1i
(V) f) o) =D—"""f(r—s), seR.
A—i—s
SinceV (s), s € R, are unitary operators oh?(R, 9%;, do (1)), the same arguments that
were used in proof of Theorem 3, and statement of Theorem 1 give that the Weyl-
Titchmarsh functioM g (z) of the pair(H, H) is s-periodic for any reat and, therefore,
constant. Thus, we have proven the following theorem.

Theorem 52 Let H be a prime symmetric operator with index of defeet m), m < oo,
H D H be its self-adjoint extension, and [8t(t) = exp(it H) be the unitary group gener-
ated byH . Then the following conditions are equivalent

(1) there exists a unitary group/(s) of s-type operators such that (s)W() =
e IBSW@E)V(s):

(2) the Weyl-Titchmarsh functioM y (z) = il for z € C4, and My gy (z) = —ily,
for z € C_, whereft;, dim91; = m, is the defect subspace&f.

Let G be the self-adjoint operator such théats) = exp(isG). Then condition (1) means
that on a dense subset®f (G, H]=i1.

2 K.A. Makarov drew our attention to possible contiess between canonical commutation relations and the
behavior of the correspondingeyl-Titchmarsh functions.



682 M. Bekker, E. Tsekanovskii / J. Math. Anal. Appl. 294 (2004) 666—-686

Consider the case = 1. The groupW(t) = exp(itl—?) is the group of multiplication
by exp(iAr) in the spacey = L%(R, 7~1d)), and the groug7(s) can be selected as the
group of shifts(V (s) f)(A) = J (. —s). This statement follows form the fact that for each
s the 0perator\7(s) satisfiesV (s)H = (H — sI)V (s), from Propositim 1, and from the
group property ¥ (s1 + s2) = V(s1)V (s2)). Thus, we obtain the statement of the Stone—
von Neumann theorem for one degree of freedom (cf. [17]).

Let D be the self-adjoint operator, such thats) = exp(isD). Then

D(D)={feL’®R ntdn | f e ACR); f e L®R,x tan)}, (48)

(DY) =if' (A). (49)
The operatoD is the self-adjoint extension of the operafddefined as follows:

D) ={feLl*R,n 7 dr) | f e ACR); f e L*R,ndr); f(0)=0}, (50)

DHN) =if" (). (51)

Applying Theorem 5, we can show that the Weyl-Titchmarsh function of the pair
(D, D) is constant: a fact that can be checked by direct calculatiob,lfand Hy are
arbitrary self-adjoint extensions @ and, respectively, then aceding to Corollary 1,
the Weyl-Titchmarsh functlonM 1.6 (z) andMp p,(z) are constant. Thereforé-, Hy)

is unitarily equivalent tc(H,NH)J and(D, D,,) is unitarily equivalent taD, D).
Now consider the pai¢H, H) defined by (42)—(45), and the pdik, Hy). According
to the von Neumann formulas, we see that

- 1 0
®(H9)={f|f(k)=fo+(k_i—A+i>z}, (52)
where fo € D(H), |6| = 1, andz € C, where
(Hp /YN = Afo(h) +i[1/ (A —i) +0/(h+ )]z, (53)

and whereH = H,. As pointed out above, the paité{, H) and (H, Hy) are unitarily
equwalent In what follows next, we define the umtary operdiprwhich transforms
(H H) to (H H(.)) that is, F(-)HF* H F(.)H]_F = Hg

For f € L%(R, d)) we have

al

whereF € L2(R, dt). ) )
The unitary operatofy such thatdy = I'y H11 acts as follows:

f)= M E (1) dt, (54)

(Lo YW =0 f () + f- ), (55)
where
fr) = M () xxdt, (56)

)
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and wherey . are indicators functions of the positive and negative semiaxes, respectively.
Itis clear thatl}; = I';. For f € ©(H) the functionF in (54) satisfies”” € L2(R, dt), and
if fe®(H), F(0)=0. From (54)-(56) it follows now that the operatfy has the desired
properties.

Next, consider paifD, D) defined by (48)—(51), and the p&iP, D,,). For the operator
D, we have

D(D,) ={f € L*R,dn) | f € AC([—R, 0]) NAC([0, R]) VR > 0;
fO)=wf (0, ol =1 f e L2R.dN},  (57)

(Do ) =if" (M), (58)
andD = D;.
The unitary operatoy,, which transformgD, D1) to (D, D,,) is defined as follows:
Jo /) = [x-) +oxs W] f ), (59)

J» = Jz. From (55) and (59) it follows thalty J, = J, I5.
Let Wy be the unitary group generated By, and letV,,(s) be the unitary group gen-
erated byD,,. For example, the groul, (s) acts as follows: Fos > 0,

fo(h—s), A<0O,
(Vo) £)0) = [ of-(t—5), 0<i<s,
fr(h—s), Ax=s,
and fors < 0,
f-(A—¥), A <s,
(Vo($) f)(1) = [@f+()»—S), s <A <0,
fr(x=s), A=0.

Itis clear, thatry D1 = D11y, andJ, Hy = H1J,.
Proposition 3. Let Hy and D,, be the operators Qefined p2)—(53) qnd (57)—(58),

respectively. Then for the unitary group () and V,,(s) generated by, and D,,, re-
spectively, the Weyl commutative relati@®) is fulfilled, that is

Vi () Wy (1) = e 715 Wy (1) Vi (5).

The proposition follows from the followinghain of equalities where above mentioned
properties of the operatofl%y, J,,, D1, andHj are used:

Vo) Wo (1) = Jo Vi) I3 Ty Wi Ty = Ju Ty Vi) Wa(D T
= eI, Ty W) VA(s) T I = e S Ty Wa(t) T Ty Va(s) I
= E_[SIWQ(I)V(»(S)-

The last proposition admits rafmulation in abstract form.
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Proposition 4. Let F1 and G be self-adjoint operators with simple spectra acting in a
Hilbert spaces. LetVi(s) = exp(i F1s) andW1(¢) = exp(i G1t) denote the corresponding
unitary groups which satisf{46). Then,

(1) there are prime symmetric operataFs and Go which have index of defe¢t, 1) such
that Fp C F1 andGo C G1;

(2) for any other self-adjoint extensio#s, and G4 of the operatorsFp and Go, respec-
tively, the corresponding unitary group, (s) and Wy (¢) also satisfy(46);

(3) there exists a unitary operatdfy,, : §§ — L%(R, 7 ~1d1) such thatF,, = U}, Do, Upe,
Gy = U}, HpUge, Fo = U}, DUp,, andGo = U, HUpe.

This proposition follows from the Stone—von dleann theorem and previous consider-
ations. It also gives a refinement of the Stone—von Neumann theorem. The eage- 1
is the best known, and corresponds to momentum and coordinate operators in qguantum
mechanics.
We consider one more example of a pair with constant Weyl-Titchmarsh function. Let
$ = L%(R, dr), and let the self-adjoint operatdrbe defined by the differential expression
2
Lf=—1%+xf, (60)
y dx
wherey is a real constant. The corresponding self-adjoint operator describes a particle in
uniform electrical field. This operator, via Fourier transform, is unitarily equivalent to the
self-adjoint operatof defined by

D(H)={f e L*R,dr)| f e ACR), f' € L>(R,d1), *f(r) € LAR, dn)},

d 1
(H) (1) =id—f + 1.
t Y

The operatof is then defined as follows:

D(H)=|feL?R.dr) | f e ACR), f(0)=0, f' e L3R, d1),
2 (1) e L2(R,dn)},

df 1
(Hf)(t)zid—f + =12 f(0).
t oy

The operator{ is a symmetric operator with index of defe@t, 1), and H is the self-
adjoint extension of{. For any reak, define a unitary operatd@’; on $ by (U, f)(t) =
e £(¢). Then, we havéd/; D (H) = D(H), UsD(H) =D(H), andU;HU; = (H — sI);
that is, the pair(H, H) is (Us, s)-periodic. From Theorem 5, it follows now that the
Weyl-Titchmarsh function of the paif, H) is constant in each half-plane. Therefore,
the operatorH is unitarily equivalent to the operator of multiplication by independent
variable inL2(R, dr).

Thus, the pair consisting of self-adjoint optor, generated by the differential ex-
pression (60) and its appropriate symmetric restriction has a constant Weyl-Titchmarsh
function.
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Consider the self-adjoint operator
Li=L+V,

whereL is defined by (60), andl is a bounded, measurable, real-valued periodic function.
Without loss of generality, we assume that the periotf @ 2. The Fourier series of,
(e.¢]

Z V(k)eikx,

k=—o00

converges td/ (x) a.e., where/ (k) are the Fourier coefficients of the functidh
Then, using a Fourier transform, one can show that the opetatisrunitarily equiva-
lent to the operator

_4 1o )
Hif =i— o f+2k:V(k)f(t+k).

The operatotH; is the self-adjoint extension of the symmetric oper&iwith the same
domain as the operat@{ above. Using the same operaldy as defined above, we then
have

UsHif = HUs f = =se® [+ ) V()@= &™) £t + k),
k

with a similar expression holding fdr, 1 — H1U;. Lettings = 27, we see that/>, H1 —
H1Up, = —27 Uz, With a similar equation holding fdk{;. Therefore, the pai¢H1, H1)
is 2m-periodic. As a consequence, a-periodic Weyl-Titchmarsh function is possessed
by the pair(L1, L1), whereL; is the symmetric restriction of the Schrddinger operatpr
with index of defeci(1, 1) (the inverse Fourier transform &f1).

For an example of a Dirac-type operator with constant Weyl-Titchmarsh functions we
refer to [4] and the references therein.
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