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Abstract

Prostate-derived Ets transcription factor (PDEF) has re-

cently been associated with invasive breast cancer, but

no expression profile has been defined in clinical spec-

imens. We undertook a comprehensive PDEF transcrip-

tional expression study of 86 breast cancer clinical

specimens, several cell lines, and normal tissues. PDEF

expression profile was analyzed according to standard

clinicopathologic parameters and compared with hor-

monal receptor and HER-2/neu status and to the ex-

pression of the new tumor biomarker Dikkopf-1 (DKK1).

Wide ranging PDEF overexpression was observed in

74% of tested tumors, at higher levels than the average

expression found in normal breasts. High PDEF expres-

sion was associated with hormone receptor positivity

(P < .001), moderate to good differentiation (less than

grade III, P = .01), and dissemination to axillary lymph

nodes (P = .002). PDEF was an independent risk factor

for nodal involvement (multivariate analysis, odds ratio

1.250, P = .002). It was expressed in a different sub-

group compared to DKK1-expressing tumors (P < .001).

Our data imply that PDEF mRNA expression could be

useful in breast cancer molecular staging. Further in-

sights into PDEF functions at the protein level, and

possible links with hormone receptors biology, bear

great potential for new therapeutic avenues.
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Introduction

Genome-wide expression profiles have provided a genotypic

ground that supports the main invasive breast cancer phe-

notypes, namely, the estrogen receptor (ER)-positive lu-

minal epithelial type, the ER-negative basal epithelial type,

and breast carcinoma overexpressing the HER-2/neu recep-

tor [1]. ER-positive tumors form the largest group of breast

cancers, but encompass heterogeneous tumors of variable

aggressiveness [2–4]. ER-positive tumor-specific genes,

which promote or prevent early dissemination or resistance to

antiestrogenic therapies, remain to be identified, included as

molecular staging tools, and used as new therapeutic targets to

personalize breast cancer treatment and improve outcomes.

Epithelial-specific Ets transcription factors could poten-

tially be exploited in this regard [5,6]. Several Ets have been

linked mainly to ER-negativity and HER-2/neu breast cancer

[7–10]. Prostate-derived Ets transcription factor (PDEF), one

of the last Ets identified, was the first to be characterized in

hormone-sensitive prostate cancer as a promoter of the pro-

tease prostate-specific antigen, in cooperation with androgen

receptor and other transcription factors [11,12]. Bioinformatic

tools and various gene expression quantification methods

subsequently documented PDEF mRNA overexpression in

invasive breast cancer [13], in atypical ductal hyperplasias,

and in carcinomas in situ [14], when compared to normal

breasts. PDEF mRNA has also been detected in micrometa-

static axillary lymph nodes [15]. Despite high mRNA expres-

sion, immunohistochemical data suggest that PDEF protein

expression could be lost in prostate and breast carcinomas

[16,17]. PDEF silencing and overexpression assays in breast

and prostate metastatic cancer cell lines resulted in antimeta-

static effects [18–20], but prometastatic effects has also been

documented in other metastatic- and benign disease–derived

breast cell lines [14].

Up to now, however, the PDEF expression profile has not

been described, at the mRNA level, in clinical breast cancer

specimens. In order to orient future work at the protein level,
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Address all correspondence to: Réjean Lapointe, Centre de recherche du Centre hospitalier

de l’Université de Montréal (CHUM) – Hôpital Notre-Dame, Pavillon J.A. DeSève, Room
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we report a comprehensive PDEF transcriptional expression

study of 86 breast cancer clinical specimens, several cell

lines, and normal tissues. PDEF expression profile was

analyzed according to standard clinicopathologic parame-

ters, compared with hormonal receptor and HER-2/neu

status, and to the expression of the new tumor biomarker

Dikkopf-1 (DKK1). We observed that PDEF expression is

strongly associated with the ER-positive breast cancer phe-

notype and that PDEF mRNA overexpression in primary

tumors could also be an independent risk factor for cancer

dissemination to lymph nodes.

Materials and Methods

Patient Specimens and Cell Lines

Breast cancer tissues of consecutive patients who had

provided written consent to contribute to the CHUM-FRSQ

Tumor Bank (Montreal, QC, Canada) between September

2003 and February 2006 were selected by the pathologist

after surgical resection of tumors 1.5 cm or greater in

diameter. The recruitment protocol and management of

clinical specimens and information were previously approved

by institutional authorities. Fresh tissues were stored at 4jC
in RNAlater (Sigma, St. Louis, MO) for RNA stabilization. All

patients underwent sentinel node dissection and, when

positive for nodal metastasis, complete axillary lymph node

dissection. Cell lines used for the first detection of PDEF at

the mRNA and protein levels (breast cancer MCF7, MDA-

MB-231, BT-20, HCC-1428, HCC-2218, renal embryonic

293T, and melanoma SK23) were obtained from the Amer-

ican Type Culture Collection (Manassas, VA) and cultured in

RPMI 1640 (Wisent, St.-Bruno, QC, Canada) supplemented

with 10% heat-inactivated FBS, 100 U/ml penicillin/strepto-

mycin (both from Wisent), 2 mM L-glutamine, and 10 mg/ml

gentamicin (both from Invitrogen, Grand Island, NY). HCC

breast cancer lines also required 10 mM Hepes solution plus

1 mM sodium pyruvate (both from Invitrogen). Mononuclear

cells were obtained by patient blood centrifugation on a

lymphocyte separation medium (Cellgro, Herndon, VA) and

culture in complete AIM-V medium (Invitrogen), as described

previously [21].

RNA Extraction and Reverse Transcription–Polymerase

Chain Reaction (RT-PCR)

Cancer specimens were homogenized with Medimachine

(Dako Cytomation, Glostrup, Denmark) according to the

manufacturer’s instructions. Total RNA was extracted with

a reagent (Qiazol; QIAGEN GmbH, Hilden, Germany), fol-

lowed by a cleanup and concentration procedure, using the

RNeasy Mini or Micro Kit (QIAGEN) and stored at �80jC.
Five of 91 clinical specimens were rejected because of poor

quality of the extracted mRNA (OD260/OD280 absorption ratio

below 1.6) or a b-actin expression level detected beyond the

last dilution of the standard curve when tested in real-time

PCR (see below). A panel of pooled mRNA from 19 normal

tissues and 6 peritumoral normal breast mRNA were also

analyzed (both from Clontech, Mountain View, CA).

We synthesized cDNA from 1 mg of mRNA with the Omni-

script Reverse Transcriptase (RT) Kit (QIAGEN), using oligo-

dT (Invitrogen) at 42jC for 1 hour. Intron-spanning PCR

primer pairs were designed for PDEF (5V primer GACATCGA-

GACGGCCTGCAAGCTG; 3V primer ACATGGCGCACA-

GCTCCTTG; amplicon 150 bp) and for b-actin, exploited as

a housekeeping gene (5V primer GGAAGGCTGGAAGA-

GTGCC; 3V primer GTGATGGTGGGC ATGGGT C; amplicon

300 bp) (Invitrogen). PCR was performed with the Quantitect

SYBR Green PCR kit (QIAGEN). Optimal annealing tem-

peratures for both PDEF and b-actin were determined by a

gradient (51–65jC). Real-time quantitative RT-PCR was per-

formed with 0.4 mM of each PDEF primer or 0.8 mM of each

b-actin primer, 6.25 ml of 2� SYBR Green mix (providing

2.5 mM MgCl2), 2.5 ml of cDNA (1:25 dilution), and water in

a thermal cycler (Rotorgene 3000; Corbett Life Science,

Sydney, Australia). The optimized cycling conditions were

10 minutes at 95jC for the initial polymerase activation, then

32 cycles for 40 seconds at 94jC, 40 seconds at 56jC,
50 seconds at 72jC, and a final melting curve from 72 to

95jC. Fluorescence was measured at the end of each ex-

tension step. The gain was adjusted automatically on the first

tube at the end of the first cycle (channel FAM/SYBR, source

470 nm, detector 510 nm, gain adjusted between 2 and

5 fluorescence). The absence of primer dimers and the

specificity of the PCR products were documented by melting

curve analysis and electrophoresis migration in 2% agarose

gel stained with ethidium bromide.

PDEF Quantification

The relative PDEF expression ratio over b-actin was

reported in relation to MCF7 cell line expression established

at a value of 1 [22]. The equation takes into account the PCR

efficiencies (E ) of both genes and the difference (D) between

the moment at which the fluorescence of a given sample

versus MCF7 crosses the threshold (Ct). The equation is

as follows:

Ratio PDEF=� � actin ¼ EPDEFð ÞDCtðMCF7�sampleÞ for PDEF�

�
E��actinÞDCtðMCF7�sampleÞ for ��actin

Standard curves were generated every two runs with

serial dilutions of a pool of cDNA taken from the above-

mentioned breast cancer cell lines. The curves allowed the

software from Corbett to calculate the lowest thresholds of

the log-linear amplification phase above the fluorescence

background and the efficiencies of PCRs derived from the

high linearity slopes (Pearson correlation coefficient r >

0.99). Mean thresholds and efficiencies were used to com-

pare the expression of all samples. Ct obtained at or after the

last detectable point of the dilution curves (1:3125 for PDEF

and 1:15,625 for b-actin) was considered negative. All sam-

ples were tested in duplicate in at least two independent

runs, whereas MCF7 and the controls (MCF7 without RT,

water, or lymphocytes) were systematically included in every

run. Intra- and interassay Ct variations, calculated with the

Relative Expression Software Tool, are represented by error

bars [23].
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DKK1 Expression Measurements and Quantification

Real-timeRT-PCRwith intron-spanning DKK1 primerswas

performed in a thermal cycler (LightCycler; Roche, Mann-

heim, Germany) and revealed with SYBR Green (QIAGEN)

as described previously [24]. cDNA was synthesized as

described for PDEF, from the same RNA extracts, tested

at the same time period, and the amplified material was sub-

mitted to the same specificity validation as PDEF.

Measurement of PDEF Protein Expression

For Western blot analysis, protein extracts were prepared

from the above-mentioned cell lines for 20 minutes in lysis

buffer (20 mM Tris–HCl, pH 8, 137 mM NaCl, 10% glycerol,

1% Triton X-100, 1 mMNa3VO4, and 2 mMEDTA) containing

protease inhibitors (1 mM PMSF, 2 mM pepstatin A, and 2 mM
leupeptin, all from Sigma). Protein concentration was mea-

sured by Lowry’s assay with a DC Protein Assay kit (Bio-

Rad, Hercules, CA). For recombinant PDEF, the coding

sequence was cloned in pQE-30 (QIAGEN) and the re-

combinant protein was produced in Escherichia coli DH5-a.

Cell extracts (10 mg/well), resolved by 12% sodium dodecyl

sulfate–polyacrylamide gel electrophoresis, were trans-

ferred to polyvinylidene fluoride membranes (Immun-Blot,

Bio-Rad). The membranes were subjected to 1-hour incuba-

tion with rabbit affinity-purified polyclonal anti-PDEF antibody

(1:400), kindly provided by Dr. Dennis K. Watson (Hollings

Cancer Center, Charleston, SC) [16], or with mouse actin-

specific antibody (1:4000; Chemicon, Temecula, CA). The

membranes were then washed and proteins revealed after a

1-hour incubation with secondary peroxydase–conjugated

antibodies (1:5000 goat anti-rabbit from Santa Cruz Bio-

technology, Inc., Santa Cruz, CA; 1:40,000 goat anti-mouse

antibody from Chemicon) were detected with a reagent (ECL

Plus; Amersham Biosciences, Picastaway, NJ). Chemifluo-

rescence was quantified with an imaging system (Omega

12ic; Ultralum, Clarement, CA).

Statistical Analysis

Associations between PDEF continuous expression and

categorical clinicopathologic parameters were evaluated by

the independent-sample t test or by the one-way analysis of

variance (if more than two categories, with previous Levine

test to ensure the homogeneity of variance). PDEF versus

DKK1 proportions clustered by clinicopathologic factors were

compared by the Pearson chi-square test or Fisher’s exact

test for small samples. These tests were done using a soft-

ware for Windows (SPSS 13.0; LEAD Technologies, Chi-

cago, IL), with the generation of receiver–operator curves

(ROCs) to evaluate the sensitivity of PDEF expression for

the prediction of clinicopathologic factors. Univariate and

multivariate logistic regressions were used to compare the

strength of associations between PDEF continuous expres-

sion and metastatic lymph node involvement. Logistic re-

gression analysis was performed with software R, version

2.3.1, with the deviance test for multivariate analysis (The R

project for statistical computing [http://www.r-project.org]).

Figure 1. PDEF mRNA and protein expression in cancer cell lines. (A) Mi-

gration of PDEF amplicon obtained in cancer cell lines by real-time RT-PCR,

with relative quantification (PDEF/�-actin, if MCF7 = 1.0). Four cell lines de-

rived from metastatic breast cancer (MCF7, BT-20, MDA-MB-231, and HCC-

1428) figure with SK23 melanoma, and 293T renal embryonic cells used as

negative controls. (B) PDEF expression at the protein level by Western blot

analysis. All results are representative of at least three independent experi-

ments. ER, estrogen receptor; PR, progesterone receptor; �RT, without re-

verse transcription; rPDEF, recombinant PDEF; 293T + PDEF, 293T cells

transfected with PDEF.

Figure 2. PDEF expression in normal tissues. PDEF mRNA expression of

a panel of 19 mRNA pools of normal tissues. *‘‘Normal breast’’ corresponds to

the average level of six normal peritumoral breast tissues taken from patients

operated on for breast cancer. Controls (Ctl) include the MCF7 breast cancer

cell line and lymphocytes taken from the blood of breast cancer patients who

contributed to the CHUM-FRSQ Tumor Bank. The error bars represent the

intra- and interassay Ct variations, calculated with the Relative Expression

Software Tool, except for the normal breast, where it represents the standard

deviation of the six samples tested.
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All tests were two-sided and P values < .05 were regarded

as statistically significant.

Results

PDEF mRNA and Protein Expression in Breast

Cancer Cell Lines

PDEF expression at the mRNA and protein levels was

first evaluated in four breast cancer cell lines (Figure 1). The

ER-negative MDA-MB-231 breast cancer cell line expressed

the lowest PDEF level, five times lower than other ER-

positive lines. As reported previously, protein detection did

not always follow mRNA levels [16,17]. For further PDEF

mRNA expression analysis of clinical specimens, the MCF7

expression level was chosen as a reference because it

corresponded to the median PDEF/b-actin expression level

in breast cancer cell lines and is widely available.

PDEF mRNA is Weakly or Not Detected in Vital Organs

PDEF expression was previously reported by different

quantification methods in some high epithelial content tis-

sues, namely, the prostate, salivary glands, colon, and normal

breast [11,13,16]. We reassessed PDEF expression in normal

tissues to compare its magnitude with PDEF expression in

breast cancer by a reproducible method (Figure 2). Besides

weak expression in the lungs and colon, PDEF was not

detected in other vital organs, such as the heart, brain, and

Figure 3. PDEF expression in invasive breast carcinoma. (A) PDEF expression in 86 tested clinical samples. Sixty-four tumors were found to express PDEF at a

level at least equal to the MCF7 breast cancer cell line. (B) Higher PDEF expression was associated with moderate to well-differentiated (grades I and II) tumors,

with hormone receptor positivity (estrogen and/or progesterone), and with metastatic nodal involvement at the time of surgery. The same scale was used for the

three graphs. (C) Receiver –operator curves (ROCs) allowed the determination of the sensitivity and specificity at which the PDEF expression level was positively

associated with the three clinicopathological factors illustrated in (B). The MCF7 expression level (PDEF = 1) is indicated by arrows. AUC, area under the curve;

SE, standard error.
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kidneys. Mean PDEF expression in six peritumoral breast

tissues was 1.04 ± 0.68, a level similar to MCF7. PDEF was

absent from lymphocytes that often infiltrate solid tumors.

Altogether, the absence of PDEF expression in most normal

tissues and vital organs represents an essential prerequisite

for the validation of future tumor biomarker or antigen.

Measurement of PDEF in Breast Cancer Clinical Specimens

PDEF expression in breast cancer cell lines, which are

free of normal epithelium, combined with a similar level of

expression in peritumoral normal breasts, called for a com-

prehensive PDEF transcriptional analysis of breast cancer

clinical specimens. We were able to extract sufficient RNA

from 86 of 91 consecutive tumors. Mean patient age at

diagnosis was 64.5 years, and the majority presented with

moderately differentiated, sporadic, invasive ductal carcino-

mas. Among the 86 tumors, 64 (74.4%) were found to

express PDEF at a level at least equal to the established

MCF7 breast cancer cell line, and higher than the normal

breast average expression level (Figure 3A). PDEF expres-

sion ranged from 0 to 32 times higher than MCF7. Mean

PDEF expression in all tumors was 3.76 ± 4.46, with a

median of 2.80.

Cluster Analysis of PDEF By Clinicopathologic Parameters

Table 1 summarizes the clinicopathologic parameters of

patients and their tumors as well as the significance of the

different average PDEF expression cluster levels. Overall,

Table 1. PDEF Expression and Clinicopathological Factors of 86 Invasive Breast Cancers.

Clinicopathological Characteristics Frequencies* PDEF Expression and Association with Clinicopathological Factors

N (%) Mean 95% CI Py

Age

< 50 15 (17.6) 2.6 1.4–3.7

50 to 70 36 (42.4) 4.1 2.9–5.3

> 70 34 (40.0) 3.9 1.8–6.0 .516

Primary or relapse

Primary 68 (79.1) 3.2 2.5–3.9

Recurrence 10 (11.6) 7.5 0.2–14.8

Second primary, contralateral 8 (9.3) 4.0 1.7–6.2 .278

Familial history

No 60 (69.8) 4.4 3.1–5.7

Yes 26 (30.2) 2.4 1.4–3.4 .060

Histology

Ductal 66 (76.7) 3.4 2.6–4.3

Lobular 13 (15.1) 5.7 0.6–10.7

Other 7 (8.1) 3.6 0.6–6.7 .267

Histopathological gradez

I (good) 13 (15.1) 6.0 1.1–10.9

II (moderate) 41 (47.7) 4.6 3.5–5.8

III (poor) 31 (36.0) 1.7 0.9–2.5 .003**

Tumor size

T1 (V 2 cm) 33 (38.4) 3.6 1.7–5.6

T2 (2.1–5 cm) 46 (53.5) 4.1 3.0–5.2

T3 (> 5 cm) 7 (8.1) 2.3 0.1–4.6 .614

Metastatic axillary nodes§

Negative 40 (46.5) 2.4 1.6–3.2

Positive 37 (43.0) 4.3 3.4–5.3 .002

Combined staging (American Joint Committee on Cancer)

I 20 (23.3) 2.3 1.5–3.2

IIA 28 (32.6) 2.7 1.7–3.8

IIB 16 (18.6) 5.8 4.2–7.3 V .003yy

IIIA 8 (9.3) 3.1 0.7–5.5

IIIC 5 (5.8) 3.4 �0.3–7.1

Estrogene receptor statusb

Negative 31 (36.0) 2.0 0.6–3.4

Positive 54 (62.8) 4.9 3.6–6.1 .003

Progesterone receptor statusb

Negative 37 (43.0) 2.0 1.1–2.9

Positive 48 (55.8) 5.2 3.8–6.7 .001

HER-2/neu overexpression#

Negative 73 (84.9) 4.0 2.9–5.2

Positive 5 (5.8) 2.9 �0.5–6.3 .596

PDEF, prostate-derived Ets transcription factor; CI, confidence interval.

*Data do not always add up to 86 due to missing values.
yP value of Student’s t test for independent samples or one-way ANOVA when there was more than two categorical variables.
zScarff Bloom and Richardson classification, combined grade.
§Nodal status is dichotomized since only 11 tumors were associated with four or more nodes (N2 and N3).
bImmunohistochemical classification.
#Immunohistochemical classification (TAB 250 and CB11) confirmed by fluorescent in situ hybridization when doubtful.

**Average PDEF expression of grade III tumors is significantly lower than grade II or I.
yyAverage PDEF expression of stage IIB is higher than stage I or IIB tumors, but not significantly different from stage III tumors.
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these results provide an association between PDEF expres-

sion and sporadic epithelial ER-positive breast cancers that

are better differentiated (histopathological grades I and II)

than ER-negative tumors (Figure 3B). At the time of diag-

nosis, breast cancer can be regionally disseminated to the

axillary lymph nodes. PDEF overexpression in the primary

tumor was associated with these more advanced node-

positive tumors (Figure 3B). No association was found with

patient age, tumor size, ductal, or lobular histological type.

The limited number of recurrent tumors and tumors over-

expressing HER-2/neu did not yield statistical significance.

PDEF Expression is Strongly Associated with Hormone

Receptor Status

We observed that seven patients who presented an ER-

positive primary tumor and who had taken a 5-year course of

Table 2. Univariate and Multivariate Analyses of Metastatic Nodal Involvement in the Set of Clinical Samples Tested for PDEF Expression.

Clinicopathological Characteristics Univariate Multivariate*

P Odds Ratio (95% CI) P Odds Ratio (95% CI)

PDEF expression (continuous) .002 1.34 (1.10–1.62) .002 1.250 (1.004–1.540)

Differentiation, grade III vs I and II .08 0.41 (0.14–1.08) .42 0.51 (0.14–1.88)

Tumor size, > 2 cm vs V 2 cm .03 3.12 (1.12–8.70) .10 2.75 (0.89–8.34)

HER-2/neu, positive vs negative .93 1.09 (0.14–8.25) .48 2.38 (0.21–27.00)

CI, confidence interval.

*The multivariate model included 69 tumors, with 8 recurrent tumors for women who had already undergone axillary dissection for the primary tumor, 8 missing

values for HER-2/neu, and 1 missing tumor grade.

Figure 4. PDEF and DKK1 differential expression pattern. PDEF (upper charts) and DKK1 (lower charts) transcriptional expression are presented in three groups.

Group A comprises less differentiated, hormone receptor–negative tumors. DKK1 is overexpressed in Group B, with concomitant null or weak PDEF expression.

Group C corresponds to tumors in which PDEF is overexpressed. Compared with Groups A and B, Group C tumors more frequently involve axillary lymph nodes

(Nodes+), although better differentiated (less than grade III) and hormone receptor–positive. ER, estrogen receptor; MDA231, breast cancer cell line (experimental

control); PR, progesterone receptor; T cell, T lymphocytes.
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antiestrogen therapy (Tamoxifen) to prevent tumor recur-

rence nevertheless relapsed with ER-positive tumors coex-

pressing PDEF. The mean PDEF expression in these tumors

was 8.1, but the sample size was insufficient to reach

statistical significance (data not shown). Among all tumors

expressing PDEF, only 10 did not express ER, further

reinforcing a close link between ER and PDEF. We then

generated a ROC analysis to appreciate the sensitivity and

specificity at which PDEF expression could predict an asso-

ciation with hormone receptor positivity (Figure 3C). As

expected from the five times higher mean PDEF expression

in hormone receptor–positive tumors (Figure 3B), the ROC

analysis allowed us to predict hormone receptor positivity

with 98.3% sensitivity (58/59) and 76.9% specificity (20/26),

when PDEF was at or above the MCF7 level. These findings

all suggest a strong association between PDEF and the

hormone receptor–positive phenotype of breast cancer.

PDEF Overexpression is an Independent Risk Factor

for Cancer Dissemination to Axillary Lymph Nodes

The ROC generated for the prediction of nodal involve-

ment was less discriminatory than for hormone receptors

(Figure 3C). We, however, compared the strength of this

association to standard pathological characteristics, be-

cause regional dissemination of cancer to lymph nodes is

the strongest predictor of recurrence and death from breast

cancer. Univariate analysis revealed that PDEF expression

was a better predictor of nodal involvement than the degree

of differentiation, tumor size and HER-2/neu status (Table 2).

Continuous PDEF expression remained the only signifi-

cant independent risk factor in multivariate logistic regres-

sion analysis. In this model, sensitivity and specificity were

87.8% (29/33) and 38.8% (14/36), respectively. The asso-

ciated positive predictive value was 56.9% (29/51), and the

negative predictive value, 77.8% (14/18). The odds of pres-

enting nodal metastasis at the time of surgical management

were hence increased by 25% for each one-point elevation

of PDEF expression (odds ratio 1.250, 95% confidence in-

terval 1.004–1.540, P = .002). PDEF expression in the pri-

mary tumor thus appeared to be of interest as a molecular

staging tool.

PDEF and DKK1 Expressions Delineated Different

Subgroups of Aggressive Breast Cancers

The secreted protein DKK1, involved in the Wnt/b-catenin
canonic pathway, is emerging as a biomarker of shorter

cancer survival [25]. We recently reported that DKK1 was

preferentially expressed, at the transcriptional level, in the

aggressive subgroup of ER-negative invasive breast can-

cers [24]. Since it was recently documented that PDEF could

modulate the Wnt/b-catenin pathway [19], we wanted to

compare the PDEF and DKK1 expression profiles. PDEF

expression was effectively lower in DKK1-expressing tumors

(1.7 ± 1.4 vs 5.9 ± 3.2, P < .001) (Figure 4), and DKK1 was

not detected among high PDEF-expressing tumors. It was

confirmed that PDEF was expressed in a different subgroup

of tumors than DKK1. PDEF-expressing tumors were better

differentiated (lower than grade III, P = .01); a higher pro-

portion expressed ER (93% vs 43%, P = .001) and were

disseminated to axillary lymph nodes (66% vs 38%, P =

.01). In summary, PDEF and DKK1 could delineate distinct

aggressive subgroups of invasive breast cancers. The prog-

nostic significance of DKK1 and PDEF in terms of disease-

free survival and overall survival remains to be evaluated.

Discussion

This is the first study to assess the expression profile of

PDEF, measured as a continuous variable, by a highly

reproducible quantification method, in a substantial number

of clinical specimens, characterized for classic clinicopatho-

logic parameters. The first main finding was the strong

association between PDEF and the hormone receptor–

positive breast cancer phenotype. The second was that high

PDEF mRNA expression in the primary tumor was associ-

ated with a higher risk of regional metastasis to the lymph

nodes, which remains the most important prognostic factor

for survival at the time of breast cancer diagnosis.

High PDEF mRNA expression needs to be interpreted in

relation to low PDEF protein expression found in prostate

and breast carcinomas, when compared to normal tissues

[16,17,20]. Specifically for breast cancer, immunohistochem-

ical nuclear staining of PDEF was shown to be higher in the

peritumoral normal breast epithelium compared to carci-

noma cells of all differentiation grades, among 7 and 14 clinical

samples [16,20]. These authors noted the near absence of

PDEF in the less differentiated grade III tumors. PDEF

protein expression was unfortunately not compared with

respective mRNA expression or ER status in the clinical

samples tested, which limits comparison with our study.

Several observations can, however, be made. We have

described significantly low PDEF mRNA expression in

grade III tumors when compared to grades I and II (Fig-

ure 3B), which appears consistent with a PDEF downregu-

lation and low protein detection in grade III tumors. This is

reconcilable with a scheme of epithelial to mesenchymal

transition to neoplasia, in which PDEF expression could be

lost during cancer progression. However, we cannot exclude

that the majority of the few clinical specimens stained for

PDEF was ER-negative in the studies cited. Low PDEF

protein detection could also reflect the expected low PDEF

transcription level in this ER-negative tumor phenotype, as

we have observed at the mRNA level.

Nevertheless, low PDEF mRNA expression in normal

breasts still translates into high protein nuclear detection

[16]. Furthermore, low PDEF mRNA expression in breast

cancer cell lines can be associated with sizeable protein

expression (see MDA-MB-231, Figure 1), and high PDEF

mRNA expression, with barely detectable protein (see HCC-

1428, Figure 1). If PDEF is not mutated in cancer cells, it sug-

gests the occurrence of posttranscriptional mechanisms, such

as protein cleavage, homo- or heterodimerization, as reported

for other Ets factors [6], fast degradation due to two sequences

rich in proline, glutamic acid, serine, and threonine motifs con-

tained in PDEF [11], or cytoplasmic instead of nuclear pooling

[20]. If PDEF would qualify as a therapeutic target, it would
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further be important to investigate its protein expression in low

PDEF mRNA normal tissues, such as the lungs and colon

(Figure 2).

The link between PDEF and cell motility has been the

subject of recent publications. In clinical samples, we ob-

served an increased risk of nodal metastasis when PDEF

was highly transcript in the primary tumor (Figure 3B and

Table 2). Other groups have documented PDEF mRNA

overexpression in breast cancer micro- and macrometas-

tasis to lymph nodes [15,26]. These data suggest that PDEF

can be transcribed in invasive breast cancer and that PDEF

could have a role in molecular staging, provided that an

impact on patient survival would be further demonstrated

prospectively and have an impact on clinical decision making.

Considering the heterogeneity of breast cancers presenting

lymph node metastasis, it is too speculative to think that the

altered expression of one gene alone could accurately predict

nodal involvement from a primary tumor sample. We believe

that the potential role of PDEF in molecular staging lies in

multigene predictive models [3,27].

The association between PDEF mRNA overexpression

and nodal metastatis has to be discussed in light of the

recent work done on cell migration. Most studies have

concluded that PDEF was antimetastatic [16,18–20]. In

short, PDEF overexpression in transfected cell lines derived

from approximately eight breast or prostate cancer metas-

tases resulted in decreased cell migration, loss of pseudopods,

spheroid–morphological changes, and increased proportion

of cells in the G0 phase of the cell cycle. Opposite effects

were observed in PDEF knockdown cells (small interfering

RNA). Some underlying genetic mechanisms were also

proposed to support the decrease in cell invasiveness,

conditioned by PDEF, namely, the reduced urokinase plas-

minogen activator and increased Maspin [16], Survivin

downregulation [20], and interaction with the transforming

growth factor-b pathway [19]. In contrast, PDEF overexpres-

sion yielded prometastatic effects in transfected normal

endothelial cells, in normal breast cells, in the MCF10A be-

nign breast fibrocystic disease, in four pleural metastasis–

derived breast cancer cell lines, in one melanoma, and in

one colon cancer cell line [14]. Interestingly, coexpression of

PDEF and activated receptor tyrosine kinase Her-2/neu, or

colony-stimulating factor receptor, synergistically enhanced

MCF10A metastatic attributes. How can the apparent bimodal,

anti-, and prometastatic effects of PDEF be explained?

Three aspects may be considered in this regard. First, the

loss of PDEF protein expression, combined with high PDEF

mRNA expression, could be a stronger marker of prometa-

static characteristics in advanced breast cancers. Secondly,

PDEF overexpression in lower-grade tumor, as well as in

normal breast, may participate in the initiation or progres-

sion of early breast cancer. In fact, most antimetastatic

results have been documented in MDA-MB-231 mesenchymal-

like, ER- and HER-2/neu–negative pleural metastasis

breast cancer cell lines [16,18], and in the PC-3 androgen–

independent prostate cancer bone metastasis cell line [19].

Conversely, convincing prometastatic effects were noted in

the benign breast disease MCF10A cell line [14]. Finally,

PDEF may function as a transcription activator or repressor,

contingent on the cellular context, particularly through coop-

eration with hormone receptors [11] and the extracellular-

regulated kinase/mitogen-activated protein kinase signaling

pathway.

In conclusion, the PDEF transcriptional expression profile

in clinical samples suggests potential uses in molecular

staging, possibly for the heterogeneous subgroup of ER-

positive tumors, and for early lymph node metastasis diag-

nostic purposes. Further findings on PDEF protein biology

are needed to conclude if PDEF could represent an appro-

priate therapeutic target.
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