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Abstract

In Section 2 of this paper we formulate several conditions (two of them are necessary
and sufficient) which imply that a space of small character has large weight. In Section 3 we
construct a ZFC example of a 0-dimensional space X of size 2 with w(X)=2¢ and
x(X) =nw(X) =w, we show that CH implies the existence of a 0-dimensional space Y of
size @; with w(Y)=nw(Y)=w, and x(Y)=R(Y)=w, and we prove that it is consistent
that 2¢ is as large as you wish and there is a 0-dimensional space Z of size 2 such that
w(Z)=nw(Z) =2 but x(Z)=R(Z*) = w.
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1. Introduction

Since y(X) > | X | implies w(X) = y(X), one possible answer to the question in
the title is that having large character will make a space have large weight. Thus
we arrive at the following more interesting problem: What makes a space have
weight larger than its character? Discrete spaces give examples of such spaces but
the Sorgenfrey line is first countable, has weight 2“ but it has no uncountable
discrete subspace. The reason for the latter space to have weight 2° is that it is
weakly separated, i.e., one can assign to every point x a neighbourhood U, such
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that x #y implies either x & U, or y & U,. So we may ask now whether every first
countable space of “large” weight has a “large” weakly separated subspace? This
question was the actual starting point of our investigations, and while we found a
negative answer to it we also succeeded in finding successively more and more
general conditions that ensure having large weight for spaces of small character.
In Section 2 we introduce the notion of irreducible base of a space (see
Definition 2.3) and investigate its basic properties. This notion is a weakening of
weakly separatedness but the existence of such a base still implies that the weight
of the space cannot be smaller than its cardinality. The main advantage of this
notion, in contrast to weakly separatedness, lies in the fact that, as we will see in
Section 3, a large space with an irreducible base might have small net weight.
This leads to the formulation of the following problem:

Problem 1.1. Does every first countable space of uncountable weight contain an
uncountable subspace with an irreducible base?

In Section 3 we construct examples. First a ZFC example is given of a space Y
with |Y |=w(Y) =2 and x(Y)=R(Y)=nw(Y)=w. After seeing that
x(Y)R(Y)<w(Y) but y(YIR(Y) > nw(Y) in the above mentioned example, we
asked whether nw(X) < R(X)x(X) or just nw(X) < R(X“)x(X) are provable for
every T, or regular space X. Using a CH a 0-dimensional counterexample is given
to the first question and using a ccc forcing argument we disprove the second
inequality in Section 3. However we don’t know ZFC counterexamples.

Problem 1.2. Is there a ZFC example of a space X satisfying R(X*) =x(X)=w
but nw(X) > «?

We know that under MA the cardinality of such a space must be at least 2¢ (see
[4]). In [6, p. 30] Todoréevi€ introduced the axiom (W):

(W) If X is a regular space with R(X)* = & then nw(X) = w,
and he claimed that PFA implies (W).

We use standard topological notation and terminology throughout, cf. [3].

2. Conditions ensuring large weight
Definition 2.1. Given a topological space {X, ) and a subspace Y C X a function

f is called a neighbourhood assignment on Y iff f:Y -1 and y €f( v) for each
yeY.

The notion of weakly separated spaces and the cardinal function R were
introduced by Tkadenko in [5].
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Definition 2.2. A space Y is weakly separated if we can find a neighbourhood
assignment f on Y such that

(Vy#zeY)[yef(z) vzef(y)l]
moreover
R(X) =sup{|Y|: YCX is weakly separated}.

Obviously R(X) < nw(X). Tkafenko asked whether R(X) = nw(X) is provable
for regular spaces. Hajnal and Juhasz, in [2], gave several consistent counterexam-
ples using CH and some ccc forcing arguments. However, their spaces were not
first countable.

If one wants to construct a first countable space on w, without uncountable
weakly separated subspaces a natural idea is to force with finite approximations of
a base of such a space. The space X given by a generic filter satisfies R(X) = w,
but without additional assumptions standard density arguments give w(X) = w,
too. To ensure large weight of the generic space we actually needed that the base
should satisfy a certain property. As it turned out this notion proved to be useful
not only in the special forcing construction. Its definition is now given below.

Definition 2.3. Let X be a topological space. A base Z of X is called irreducible if
it has an irreducible decomposition % = U{#%,: x € X}, i.e., (i) and (ii) below hold:
(i) Z, is a neighbourhood base of x in X for each x € X.
(ii) For each x € X the family % = U, ,,%, is not a base of X, hence it does
not contain a neighbourhood base of x in X.

Let Z be an irreducible base with the irreducible decomposition {#,: x € X}.
Then for each x € X, since U, %, does not contain a neighbourhood base of x
in X, we can fix an open neighbourhood U, such that

(Vyex\{z})(VWez)[xeV->V\U, +§].

Let F ={Ue #%,.: UcUJ}. Then * = U{%F: x € X} is an irreducible base of X
and its irreducible decomposition {#%*: x € X} has the following property (= ):

(Vx#yeX)(VUeZX)VVe#fxeVAyeU]>MNU*§ (*)

To simplify our notation we will say that a base % has property () if it has a

decomposition Z = U{#,: x € X} satisfying (i) and (*) above. Obviously, any base
with property (*) is irreducible. So we established the following lemma:

Lemma 2.4. A space X has an irreducible base iff it has a base with property (*).

The next two lemmas establish the basic connection between weakly separated-
ness, existence of irreducible base and the requirement w(X) > | X |.

Lemma 2.5. If X is weakly separated, then X has an irreducible base.
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Proof. Let f be a neighbourhood assignment of X witnessing that it is weakly
separated. Take Z ={G €15: x€ G Cf(x)} and # = U{#,: x €X}. Then {Z,: x
€ X} is an irreducible decomposition of the base . O

The converse of this lemma fails as we will see it later (Theorem 3.1).
Lemma 2.6. If X has an irreducible base, then w(X) = x(X)| X |.

Proof. If y(X)>|X | this is trivial, so assume that A = y(X) <| X |. Consider an
irreducible base % with irreducible decomposition {Z,: x € X}. We can assume
that |# |=w(X) and | %, | <A for each x€X. If ' Cc# with |Z|<|X|, then
there is x €X with Z’ N %, =@, so Z can’t be a base by the irreducibility of Z.
Thus w(X)=1ZI|>|X|. O

Definition 2.7. Given a topological space X, a subspace Y CX, a neighbourhood
assignment f on Y and a set NCX let

D{={yeY:yeNcf(y)}.

The following results show that both weakly separatedness and having an
irreducible base may be characterized with the existence of a neighbourhood
assignment f such that D(f; is “small” in some sense for each open G. For example
we have the following easy result whose proof we leave to the reader.

Theorem 2.8. Given a topological space X, a subspace Y C X is weakly separated iff
there is a neighbourhood assignment f on Y such that | DL | < 1 for each open G C X.

Lemma 2.9. If a space X has an irreducible base, then there is a neighbourhood
assignment f on X such that DL is closed and discrete in G for all open G C X.

Proof. Let % be a base of X having a decomposition {#%,: x € X} with property
(*) and fix a neighbourhood assignment f with f(x) € #%,. Assume on the contrary
that x € G is an accumulation point of Dé for some open G € X. Choose U € Z,
with xeUcG. Pick yeDLNU, y#x. Then yeUe%,, xeGCfly)e%,
and U c f(y), which contradicts property (*) of Z. O

Theorem 2.10. The following statements are equivalent for any regular space (X, 7):

(1) X has an irreducible base.

(2) There is a neighbourhood assignment f on X such that D{ is closed and discrete
in G for all open G C X.

(3) There is a neighbourhood assignment f on X such that Dé is a discrete subspace
of X for each open G C X.
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Proof. (1) — (2). This is just Lemma 2.9,

(2) - (3) Straightforward.

(3) —» (1) Fix a neighbourhood assignment on X witnessing (3). Since X is
regular we can assume that f(x) is regular open for each x&X and that
f(x)={x} provided x is isolated. Given an open G C X set

U(G, x) = (G\D§) U {x}
and put
#,={U(G, x): x€D{ A G is regular open}.

Since D{ is discrete and x € D{, we have that U(G, x) is also open, and %, is a
neighbourhood base of x because x € U(G, x) € G. We claim that %= U{#%,: x
€ X} is an irreducible base because the decomposition {%,: x € X} has property
(*). Assume on the contrary that x#y € X, U(G, x) €%, U(H, y) €%, with
{x, y} cU(G, x)NU(H, y)and U(G, x) CU(H, y). Since |G|>1and | f(x)|=1
whenever x is isolated in X, it follows that D/ cannot contain isolated points from
X. But this set is also discrete, so D{ is nowhere dense in X. Since H is regular
open, U(G, x) = (G\D_(f;) U {x} c H implies G c H. Thus y € D/, for y € U(G, x)
cGcHcf(y)and so y & U(G, x), which is impossible. O

We don’t know if the assumption on the regularity of X is essential in Theorem
2.10.

Next we show that the existence of an f with D{ “small” for all open sets G
already implies that the weight of our space is large.

Definition 2.11. A topological space Y is pseudo weakly separated if it contains a
weakly separated subspace Z with | Z|=|Y .

Theorem 2.12. Let X be a topological space, Y C X, f be a neighbourhood assignment
onY and A <|Y | be a regular cardinal. If D{, is the union of <\ many pseudo
weakly separated subspaces for each open G C X, then w(X) > |Y |.

Proof. Assume on the contrary that . is a base with | # | <|Y |and let k =| & "
+ A. Since Y= Ug e DL, there is a G €% with | DL | > k. But D{ is the union of
< A many pseudo weakly separated subspaces, so one of them has cardinality > «.
Thus D/ contains a weakly separated subspace Z with | Z|> . Hence w(X) >
w(Y)=w(Z) =k >|.%|>w(X), which is impossible. O

Since weakly separated spaces have not just large weight but also large net
weight, if we assume that D{ is like in Theorem 2.12 for all subsets N C X, the
same argument yields that even the net weight of X is large.
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Theorem 2.13. Let f be a neighbourhood assignment on a topological space X and
A<|X| be a regular cardinal. If D, is the union of <\ many pseudo weakly
separated subspaces for each N C X, then nw(X) >| X |.

The following results show that the above type of “smallness” assumptions on
D/ can actually be used to characterize spaces of small character and large weight!

Theorem 2.14. Let « be a cardinal and X a topological space with x(X) <. (If k is
regular then the assumption x(p, X) <k for each p € X would suffice.) Then the
following are equivalent:

(@) w(X) =«

(b) There is a subspace Y C X of size k and a neighbourhood assignment fon'Y
such that D, is right separated for each open G C X.

(c) There is a subspace Y C X of size x, a neighbourhood assignment fon Y and a
regular cardinal A <« such that D is the union of <A many pseudo weakly
separated subspaces for each open G C X.

Proof. (a) — (b). For each x €X fix a neighbourhood base &, of x in X with
minimal cardinality. Since w(X) > « we can construct a sequence {y,: 7 <k} CX
such that for each n <« the family U, . n%’ does not contain a base of y, in X
and we can pick an open set f(n) <1y which witnesses this, i.e., y, €f(n) and
there isno U€ U, ., &), with y € U cf(n). We claim that the neighbourhood
assignment f on Y ={y,: n <«} has the property that D{, is right separated in its
natural order for each open G. Assume on the contrary that there is an open G
and ¢ < k such that ygeDé N {y eDL:n> §} Since H C G implies Dé NHcC
DH we can assume that G €, . Then there is 7 > ¢ with y, €G N D{. Hence

s €EGCf(n)and G € contradlctmg the choice of y, and f(7).

(b) = (c) Stralghtforward

(c) — (a) This is immediate from Theorem 2.12. O

Conditions (b) and (¢) in Theorem 2.14 have the (perhaps just aesthetic)
drawback that the requirements on the subspace Y are external in nature, i.e., they
do not only depend on Y. This drawback is eliminated in the following result,
which however works only for regular spaces and regular cardinals.

Theorem 2.15. Ler X be a regular topological space and « a regular cardinal with
x(p, X) <« for each p € X. Then the following are equivalent:

(@) w(X) = «.

(b) There is a subspace Y C X of size k and a neighbourhood assignment f:Y — 7y
such that | DL | <« for each open G € 1.

(c) There is a subspace Y C X of size k and a neighbourhood assignment f:Y — 7y
such that DL is the union of <« many pseudo weakly separated subspaces for each
open G E1y.
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Proof. (2) — (b) If there is a weakly separated subspace Y C X with |Y |=« then
we are done by Theorem 2.8. Otherwise we have A(X) < k and d(X) < k, hence
we can pick a dense D CX with | D|<«k. For each x € X fix a neighbourhood
base #, of x in X with minimal cardinality containing only regular open sets.
Since w(X) >« we can construct a sequence {y,: n <«} CX\D such that for
each n <k writing D, ={y,: £ <n} the family U{%,: yeDUD,} does not
contain a base of y, in X and we can pick a regular open set f'(n) which
witnesses this, i.e., y, €f'(n) and there isno U€ U{B,: yeDUD,} with y, €U
cf'(m). Let Y=D U{y,: n <«} and define the neighbourhood assignment f on Y
by f(y)=f(y)NnY for n <k and f(d)=Y for d € D. We claim that the space

(Vv \ nd tha naighhanrhand accionmant £ have tha nranerty that 7 =N\ N
NI Py ly/ auu Lll\.« 11p1511uuu1uuuu AddIZILIIvIIL _/ llave uiv pilupuity waaat LJG - UG \U

is right separated in the order inherited from the indexing for each open G.
Assume on the contrary that there is an open G and & <« such that y, € Zg;
N (yn eZsin> f} Since H € G implies Dcf; N H c D}, we can assume that there
is G' €%, with G = G'NY. Then there is n > ¢ with y, e GNZ;. But DCY is
dense in X and G’ is regular open, so y, € G Cf(n) implies G’ Cf'(n) which
contradicts the choice of y, and f'(n). Thus Z; is right separated and so
| Z | < . Therefore | DL |=|Z;|+|D| <k, which means that (Y, r,,) and the
neighbourhood assignment f satisfy (b).

(b) — (c) Straightforward.

(©) - (@) w(X) = w(Y) >k by Theorem 2.12. O

3. Examples of spaces with large weight and small character

Denote by {.#, £) the space of irrational numbers endowed with the Euclidean
topology. For x €.#" and n > 0 write U(x, n) =(x—n, x + ) N7

Theorem 3.1. There is a set X C# of size 2¢ and a 0-dimensional first countable
refinement © of € on X such that

() X=YUZ, where 1y=¢y and 7, =¢,,

(ii) (X, 7) has an irreducible base.
Thus x(X) =0w(X) = w but w(X)=2°.

Proof. Let Z ={z,: n € w} C.# be dense. Fix a nowhere dense closed set Y € 4\ Z
of size 2“. Let X =Y U Z. For each y € Y choose a strictly increasing sequence of
pairwise disjoint intervals with rational endpoints, .#” ={I): n € w}, such that
Y converges to y and JY = U Y is disjoint from Y. This can be done because
Y is nowhere dense. Set J°=@ for z€Z. For x€Y and 1 >0 let V(x, n)=
(U(x, 1\J*) N X. Let the neighbourhood base of x €Y in 7 be

B, ={V(x,m): n>0}.
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If z=2z,€Z then pick n, > 0 such that U(z,, n,,) is disjoint from YU {z;: i <n}
and put

B, = {U(x,n): m,>n>0}.
Since

(V0 >0)(VxeV(y, )\ {y})(38>0)[U(x, 8) nX ¥V (y, n)] ()

it follows that # = U{%,: x € X} is a base of a topology. We claim that U{Z,: x
€ X} is an irreducible decomposition of & because it has property (*). So let
u,veX, UEB,, VESB, with {u,v}cUNV. Then u,v €Y because WeZ,
implies WN X c{z,: k >n}. The density of Z in .#° implies

(Y1 >0) (V6 >0)[U(y, 8)nNXZV(y, n)] (+)

for each y €Y. But v € U implies that there is some n with U(v, n) C U, so
U\V#{. Thus the base # is irreducible. On the other hand, 7, =¢, and
T, =&, because U(y, ) NY=V(y,n)NY for yeY and U(z, P NZ=V(z, n)
NZforzeZ O

Definition 3.2. Let Y C.#. We say that a topological space (Y, 7) is a standard
refinement of Y, &) provided that for each y €Y we can choose a sequence of
pairwise disjoint intervals with rational endpoints, .#¥ ={I}: n € w}, which con-
verges to y such that taking /7 = U .#?” the family

B,={U(y, n)\J”: 1 >0}

is a neighbourhood base of y in 7.

Theorem 3.3. If CH holds, then there is a O-dimensional first countable standard
refinement 7 of € on W such that
D RS, ) =w,
(i) nw({7", 1)) =2°,
(i) {4, 7) has an irreducible base.

Proof. First observe that for each D .7 the set {x € D: x & (», x) N D} is at
most countable. Applying CH and this observation for each y €.#" we can choose
a sequence of pairwise disjoint intervals with rational endpoints, £” = {I): n € w},
which is strictly increasing and converges to y, such that taking J = U .#” the
assumptions (A) and (B) below are satisfied:

AW WDe[#N{yeD: yeDNI"} <ol
To formulate property (B) we need the following notation: for D €[.#']* and
ye write Dlyl={deD: y&Ji.

®) (WD elsrPNyer: yeD[yT ADlylclM <ol
Write V(y, n) = U(y, n)\J? for n > 0. Let the neighbourhood base of y in 7 be

B, = (V(y.m): n>0}.
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Since
(V0 >0)(VxeV(y, H\{¥})(36>0)[U(x, 8) <V (y, n)] ()
it follows that & ={%B,: yes } is a base of a topology. Since
(Y0 >0)(¥6>0)[U(y, 8) €V (y, n)] (+)

it follows that the base % is irreducible.

It is not hard to see that (A) implies that nw({.#", 7)) > w. Indeed, assume on
the contrary that {M,,: m <w} is a network. Pick countable sets K,, C M, with
K, =M, . Then, by (A), there is y €./ such that for each m €w either
veK, =M, or yeK, NnJ" cM,, NJ". Thus there is no m €w with y eM,,
CAHN\S.

We will show that (B) implies R({.#", 7)) = w. Assume on the contrary that X
is an uncountable weakly separated subspace of {.#, r). Since {(.#, &) has
countable weight, we can assume that x €J” or y €J* holds for each x #y € X.

Claim. (WD e [X]°) [{x e X: xeD[x]}I < w].

Proof. If the above defined set is uncountable, then, by (B), there is x € X with
D[x]¢ J*. Let d € D[x]\J* be arbitrary. Then d ¢J* and x &J¢ which contra-
dicts our assumption on X.

Using this claim, we can find an uncountable subset Y ={y,: u <o} of X such
that y, € Y,[ yM]E, where Y, ={y,: v <u}. So for each u <w, we have an interval
K, with rational endpoints such that y, € K, and for each v <pu if y, €K, then
v, €Y,[y,], that is, y, €J7. Since there are only countable many intervals with
rational endpoints, we can assume that K, = K for each » < w,. Since .#" does not
contain uncountable decreasing sequences, there are v <u <w; with y, <y, . But
J? € (—oo, y) by the construction, which contradicts y, €J°. So R/, 7)) = w.

a

Let us remark that Todordevié, in [6], proved earlier that CH implies the
existence of a 0O-dimensional space Y of size o, with w(Y)=nw(Y)=w, and
xY)=R(Y)=o.

The next theorem shows that some set theoretic assumption is necessary to
construct a standard refinement having the above described properties. To start
with let us recall the Open Coloring Axiom (OCA) (see [6] and [1]).

Open Coloring Axiom. For each second countable T, space X and open HC[X )
either (1) or (ii) below holds:

() X=U,.,X, where X, is H-independent,

(i) X contains an uncountable H-complete subset.

Theorem 3.4 (OCA). If Y <. and <Y, 7) is a standard refinement of {Y, &) then
either R(Y) > w or (Y, 1) is o-second countable.
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Proof. For each y €Y choose a sequence of pairwise disjoint intervals with
rational endpoints, .#* = {I’: n € w}, which witnesses that (Y, 7) is a standard
refinement. Let JV = U 77,

Unfortunately the set E'={{y, )€Y XY: ye&lJ, or y'€J} is not open in
Y X Y, so we need some extra work before applying OCA.

Fix an enumeration {K,: k <o} of the intervals with rational endpoints. For
y€Y let us define the function f,:w —2 by taking fk)=1iff K, cJ,.
Consider the second countable space Z = {(y, f,): y €Y} CY X D(2)* and define
the set of edges E on Z as follows:

{r, Y fN}EE = (yed ory el

It is easy to see that E is open. So OCA implies that either there is an
uncountable E-complete Z' C Z or Z is the union of countable many E-indepen-
dent subsets {Z,: n € w}.

By the definition of E, if Z' is E-complete, then Y ={y € Y:(y, f,) € Z'} is
weakly separated. On the other hand, if Z, is E-independent, then 7 and & agree
onY,={yeY:(y, fy€Z}) O

Theorem 3.5. For each uncountable cardinal k there is a ccc poset P of cardinality
Kk such that in V7" there is a O-dimensional first countable topological space
X = {k, 7y and there are ccc posets Q, and Q, satisfying the following conditions:
(@) V" =“X has an irreducible base”,
(b) V7" * Qo =“X is o-discrete”,
(©) VZ"* Q=X is o-second countable”.
So, in V", w(X) =« by (a), nw(X) =« by (b) and R(X*) = w by ().

Proof. We say that a quadruple (A4, n, f, g is in P§ provided (1)-(5) below hold:

(D Aelk]™,

Q) new,

(3) f and g are functions,

4) f:AXAXn—2,

(5) g:AXnXAXn—3.

For p € Pf we write p=(A”, n?, f7, g?). If p,qeP; we set p<q iff
fPof9 and gPog? If peP;, a€AP, i<n? set Wea, i)=UP(a,i)={B <
AP fP(B, a, i) =1}.

A quadruple (A, n, f, g) € P§ is in P* iff (1)—(iv) below are also satisfied.

Q) Va e AVi <n)la € Ula, i),

(i) Wa € A)Vi <j <n)U(a, j) < Ula, 1],

(i) (Va #BeAVi, j<mlU(a, U, j) iff gla, i, B,))=0, Ula, )N
U, j) =9 iff g(a, i, B, ) =11.

(iv) (Va # B € ANVi, j <n) [if a € U(B, j) and B € U(a, i) then gla, i, B, j) =
21.

We claim that &#* = {( P*, < ) satisfies the requirements.
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Definition 3.6. Assume that p,={A,, n,, f;, g7 € P§ for i € 2. We say that p,
and p, are twins iff no=n,, | Ayl =1 A, | and taking n = n; and denoting by o the
unique < -preserving bijection between A4, and A, we have

D olAgnA; =id, 4,

(2) o is an isomorphism between p, and p,, i.e., Va, B €Ay Vi, j <n),

@) fola, B, D =flo(a), o(B), D),

®) gola, i, B, ) =g(o(a), i, a(B), j).
We say that o is the twin function of p, and p,. Define the smashing function & of
po and p, as follows: =0Uid,. The function o* defined by the formula
o* =0 Vo ![A, is called the exchange function of p, and p,.

Definition 3.7. Assume that p, and p, are twins and ¢: A”'\ 47 — 2. A common
extension g € P* of p, and p, is called an e-amalgamation of the twins provided

(Ya € AP AAPY[ fi(a, o*(a), i) =&(T(a))].

Lemma 3.8. If p,, p; EP* are twins and €: API\AP — 2, then p, and p, have an
s-amalgamation in P*.

Proof. Write A=A ,UA,, fT=f,Uf,, 8 =g,Yg,.- Let B and C be disjoint
subsets of k\ A4 of size | A]andlet p: B—A and n:C >Abe 1-1. Put g=<(AU
BUC, n, f, g) where

(D fcf, g7 cg.

) Va#B € ANV, j<n)

(f(5(a), F(B), i) if o*(a) #B,
f(“’ﬁ”)‘{s(a(a» it o*(a) =,
and
sl #(a), i, 3(B). J) if a*(a) %P,
g(a,lg B7])—{2 1fo'*(a)=ﬁ

B) (VB e BUCXVi <nUUB, i)={B}]
4) Wa € AXVi, j <nXVB €B)
BeU%(a,i) iff (3! <n)[g(p(,3), l,a,i) =D]
and
0 if elUla,i),
g(B’j’“’i)={1 ifZEg;eran,i;
B) Vacs ANV, I <n)VyeC)
yeUa,i) iff F(n(y))€U(F(a),i).
and
0 if n(y)€elUi(a,i),

g(v, b a, i) = {1 if n(y) € U%(e,i).
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Let us remark that (4) and (5) contain no circularity because (1) and (2) define g
on A. Obviously g € P§ and g <p,,p;, so we have to show that g € P*. (i) is
straightforward. Before checking (ii)~(iv) we need some preparation. If o, B €A
and i,j <n write {a, i) <{B, j) iff g(a, i, B, j)=0.

Claim 3.8.1. The relation < is transitive on A X n.

Proof. Assumc that {a, i) <4 {8, j> < {y, I}. Then, by (2), {(o(a), i)
<1 {a(B), jy < (a(y), 1), so {a(a), i) 4 {(F(y), I). Thus {a, i) < {y, I) provided
a*(a) # y. Assume that o*(a) =vy. Then U(a(a), i) cU(a(B), j) cUfa(a), )
and so a(a) € U(F(B), /) and a(B) € U(a(a), D). Thus gL(a(B), j, o(a), D=2
because p, satisfies (iv). This contradiction proves that o*(a) # y.
Claim 3.8.2. Va # 8 € AXVi, j <n) [if ga, i, B, j) =0 then U«a, i) C UYB, j)].
Proof. We have g,(d(a), i, 7(B), j) =0. Thus

U (a), i) CU(T(B), j)- (t)
Let ye AN U%a, i). If a*(y)# B then (¥) implies y € U9(B, j) by (2). Assume
now that o*(y)=pB. Then &(B)=a5(y) € U(a(a), i) and, on the other hand,
ala) € Ua(B), j) by (1). Thus g(a(a), i, 7(B), j) =2 because p, satisfies (iv).
Contradiction, o*(v) # 8. So we have shown U%a, i)NACU9B, j)NA. Next
we can see that U%a, i) N B c U%B, j) N B by Claim 3.8.1 and by (4). Finally let
vy € U%a, )N C. Then a(n(y)) € Ua(a), i), so a(n(y)) € U(a(B), j). Thus y
€ U4(B, j) by (5).

Claim 3.83. (Va # B € Vi, j <nlifgla, i, B, j) =1 then UNa, i) N UUB, j) =
9.

Proof. Since g(a, i, B, j) =1 we have o*(a) # 8, so U(a(a), )N UF(B), ) =9
implies U%(a, i) N UYB, j)NA=@. Assume now that y € U%a, i) NUUB, j)N
B. Then p(y) e U%a, i) N UY(B, j)N A, contradiction. Finally assume that y <
Uia, ) NUYB, ))NC. Then &(n(y)) € UG(a), i) N UL&(B), j) =@, which is
impossible.

Claim 3.84. Va#B€AUBUCXYi, j<n) [if g, i, B, ) =2 then § + U¥(a,
INUUB, )+ U%a, i)

Proof. The assumption implies «, 8 € A. If a # ¢*(B) then g(a(a), i, 7(B), j) =2,
which implies the statement. So we can assume that o =o*(B). Let y =p~ }a).
Then y € U%a, i) and, on the other hand, y & U%(B, j), because gla, I, 8, j) =2
for each [ <n by (2). So y € U%(a, D\ U B, j). Let § =n"'(a). Then a(n(8)) =
7(B) = 6(a) € ULa(a), ) N ULF(B), j), so 8 € UNa, )N UXB, j).

So we have proved (iii) for g, which implies (ii). To check (iv) assume that
a#B€AUBUC, i j<n with a € U4, j)and B € U¥a, i). Then a, BE€A. If
o*(a) # B, then o(c) € U(F(B), j) and 7(B) € Ufa(a), i) implies g,(o(a), i,
a(B), j)=2. Hence gla, i, B, j)=2.If c*(a) =B, then gla, i, B, j) =2 by defi-
nition. The lemma is proved. O
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The previous lemma implies that &* satisfies ccc because among uncountably
many elements of ¢ there are always two twins. Let & be the & generic filter
and let F=U{f’: pe¥&). For each a<k and n€w let V(ia,i)={B<
k: F(B, a, i) =1}. Put &, ={V (e, i): i <k} and & = U{B,: a <k}. By standard
density arguments we can see that & is base of a first countable topological space
X =<k, 7). Since P~ satisfies (iv), U{%,: a <k} is an irreducible decomposition
of .

We are now ready to define the posets Q, and Q, in V< "

A triple (B, d e) is in Q, iff

(a) Be[k]<>,

b)d:B-w,

(¢c) e:B- w,

(d) (Va # B € B)lif d(a) = d(B) then a & V(B, e(B)].

A quadruple {B, d, m, e) is in Q, iff

(A) Be[k]=®,

(B)d:B—w,

O mew,

(D) e:BXm - w,

(B) (Va, B, y € BXVi, j <m) [if d(a)=d(B)=d(y) and e(a, i) =e(B, j) then
vy € Wa, i) iff y = V(8, ).

The orderings on (0, and @, are defined in the straightforward way. If g and r are
compatible elements of Q,, then denote by g A r their greatest lower bound in Q,.

Lemma 3.9. #* = Q, satisfies ccc.

Proof. Let ({p,, g, ): v<w;) CP* * Q,. We can assume that p,6 decides gq,.
Write p,={A", n”, f*, g”) and g, = {B?, d”, e”). By standard density arguments
we can assume that 4” D B”. Applying standard A-system and counting arguments
we can find » < u <, such that p, and p, are twins and denoting by o the twin
function of p, and p, we have d"(a)=d*(s(a)) and e”(a) = e*(a(a)) for each
a € B*.

Define the function £°: 4#\ 4* — 2 by the equation % @) =0. By Lemma 3.8
the conditions p* and p* have an ¢%amalgamation p. We claim that

pFaq,Nnq, €0,

It is enough to check that if a€B”, 8 €B"*, d*(a)=d*(B8), then pia¢
V(B, e*(B). If o*(a)+# B, then (2) implies this. If oc*(a)=g, then pra¢
V(B, e*(B)) because p is an £%-amalgamation. O

Lemma 3.10. P* = Q, satisfies ccc.

Proof. Let ({p,, q,): v<w;) CP* * Q,. We can assume that p, decides g,.
Write p, = (A%, n*, f¥, g*> and q, = (B*, d”, m”, e¢”). By standard density argu-
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ments we can assume that A” D B*. Applying standard arguments we can find
v <u <o, such that p, and p, are twins and denoting by o the twin function of
p, and p, we have m” =m" and d”’(a) =d"(o(a)) and e’(a, i) = e*(o(a), i) for
each a € A" and i <m*.
Define the function e!: 4#\ 4* > 2 by the equation ¢'(«) = 1. By Lemma 3.8

the conditions p* and p* have an e!-amalgamation p. We claim that

pl=g" AgteQ,.
Set d=d”Ud* and e =¢"Ue". Let a, B, y €B”UB* with d(a)=d(B)=d(y)
and e(a, i) =e(B, j). We have to show that

pi=*yeV(a,i)iff y €eV(B, J)”. (*)
We know that p I-“a(y) € V(a(a), i) iff a(y) e V(a(B), j)’, so we can assume
that p I-“a(y) € V(d(a), i) and a(y) € V(a(B), j)”. So if a*(y) is different from
a and B, then we are done. Assume finally that o*(y) =a. Then pi—“a(y)
V(g(a), i), so pi“a(y) e V(a(B), j)’, thus pI-“y e V(B, j) by (2). But p is
an &'-amalgamation, so p I-“o*(a) € V(a, i), ie., p“y € Wa, i)”. O

Lemma 3.11.

V& Qo “X is o-discrete”.
Proof. Let # be the Qg-generic filter over V" Set d = U{d% g < #)} and
e = U{e?:. g € #)}. By standard density arguments the domains of the functions d
and e are k. We have V(x, e(x)) Nnd~Hd(x)} = {x} by (d), so d~!(n) is discrete for
eachnew. 0O

Lemma 3.12.

VO - “X is o-second countable”.

Proof. Let /# be the Q,-generic filter over V¥ *. Take d = U{d?: g €.#} and
e = U{e?: g € #). By standard density arguments dom(d) = x and dom(e) = x X w.
Fix n € w and let X, =d~'{n}. We claim that w(X,) = w. Indeed, U{V(a, i): a €
X,, i <w} is a base of X, and by (E), if a, BEX,, i, j<w and ela, i) =e(B, j)
then V(a, DNX,=V(B, HNX,. O

This completes the proof of Theorem 3.5. O

We have shown in [4] that every first countable T, space satisfying R(X“) =
becomes o-second countable in a suitable ccc extension. Thus (c) of Theorem 3.5
may be considered as the natural way to insure R(X*) = w.
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