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Abstract 

In Section 2 of this paper we formulate several conditions (two of them are necessary 
and sufficient) which imply that a space of small character has large weight. In Section 3 we 
construct a ZFC example of a O-dimensional space X of size 2” with w(X) = 2” and 
X(X> = nw(X) = w, we show that CH implies the existence of a O-dimensional space Y of 
size wi with w(Y) = nw(Y) = w1 and x(Y) = R(Y) = w, and we prove that it is consistent 
that 2” is as large as you wish and there is a O-dimensional space Z of size 2” such that 
w(Z) = nw(Z) = 2” but x(Z) = R(Z”) = w. 
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1. Introduction 

Since X(X> > I X 1 implies w(X) = X(X>, one possible answer to the question in 

the title is that having large character will make a space have large weight. Thus 

we arrive at the following more interesting problem: What makes a space have 

weight larger than its character? Discrete spaces give examples of such spaces but 

the Sorgenfrey line is first countable, has weight 2” but it has no uncountable 

discrete subspace. The reason for the latter space to have weight 2” is that it is 

weakly separated, i.e., one can assign to every point x a neighbourhood U, such 

* The preparation of this paper was supported by the Hungarian National Foundation for Scientific 
Research grant no. 1908. 
** E-mail: hll52juh@ella.hu. 

*** Corresponding author. The author was supported by the Magyar Tudomanyert Foundation. 
E-mail: hll53sou@ella.hu. 

Elsevier Science B.V. 

SSDI 0166-8641(94)00013-S 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82254208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


272 I. Juhbz et al. / Topology and its Applications 57 (1994) 271-285 

that x # y implies either x E U, or y 6 U,. So we may ask now whether every first 

countable space of “large” weight has a “large” weakly separated subspace? This 

question was the actual starting point of our investigations, and while we found a 

negative answer to it we also succeeded in finding successively more and more 

general conditions that ensure having large weight for spaces of small character. 

In Section 2 we introduce the notion of irreducible base of a space (see 
Definition 2.3) and investigate its basic properties. This notion is a weakening of 

weakly separatedness but the existence of such a base still implies that the weight 

of the space cannot be smaller than its cardinality. The main advantage of this 

notion, in contrast to weakly separatedness, lies in the fact that, as we will see in 

Section 3, a large space with an irreducible base might have small net weight. 

This leads to the formulation of the following problem: 

Problem 1.1. Does every first countable space of uncountable weight contain an 

uncountable subspace with an irreducible base? 

In Section 3 we construct examples. First a ZFC example is given of a space Y 

with I Y I = w(Y) = 2” and ,y(Y) = R(Y) = nw(Y) = w. After seeing that 

x(Y)R(Y) <w(Y) but x(Y)R(Y) 2 nw(Y> in the above mentioned example, we 

asked whether nw(X) < R(X)x(X) or just nw(X) < R(X”)x(X> are provable for 

every T, or regular space X. Using a CH a O-dimensional counterexample is given 

to the first question and using a ccc forcing argument we disprove the second 

inequality in Section 3. However we don’t know ZFC counterexamples. 

Problem 1.2. Is there a ZFC example of a space X satisfying NX”) =x(X) = w 

but nw(X) > o? 

We know that under MA the cardinality of such a space must be at least 2” (see 

[4]). In [6, p. 301 TodorCeviE introduced the axiom (W): 

(W) If X is a regular space with R(X)O = o then nw(X> = o, 

and he claimed that PFA implies (W). 

We use standard topological notation and terminology throughout, cf. [3]. 

2. Conditions ensuring large weight 

Definition 2.1. Given a topological space (X, T) and a subspace Y c X a function 

f is called a neighbourhood assignment on Y iff f : Y -+ r and ~1 of’ for each 

y E Y. 

The notion of weakly separated spaces and the cardinal function R were 

introduced by TkaEenko in [51. 
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Definition 2.2. A space Y is weakly separated if we can find a neighbourhood 

assignment f on Y such that 

WY +=Y)[Yeff(z) vzwY)l~ 
moreover 

R(X) = sup{ I Y I: Y CX is weakly separated}. 

Obviously R(X) G nw(X). TkaCenko asked whether R(X) = nw(X) is provable 

for regular spaces. Hajnal and Juhasz, in [2], gave several consistent counterexam- 

ples using CH and some ccc forcing arguments. However, their spaces were not 

first countable. 

If one wants to construct a first countable space on wi without uncountable 

weakly separated subspaces a natural idea is to force with finite approximations of 

a base of such a space. The space X given by a generic filter satisfies R(X) = o, 

but without additional assumptions standard density arguments give w(X) = w, 

too. To ensure large weight of the generic space we actually needed that the base 

should satisfy a certain property. As it turned out this notion proved to be useful 

not only in the special forcing construction. Its definition is now given below. 

Definition 2.3. Let X be a topological space. A base Z! of X is called irreducible if 

it has an irreducible decomposition %! = U {‘2Yx: x E X}, i.e., (i) and (ii) below hold: 

(9 Zx is a neighbourhood base of x in X for each x E X. 

(ii) For each x EX the family %‘; = U y + x%y is not a base of X, hence it does 

not contain a neighbourhood base of x in X. 

Let Z! be an irreducible base with the irreducible decomposition {‘Zx: x EX). 

Then for each x E X, since U y + x??/y does not contain a neighbourhood base of x 

in X, we can fix an open neighbourhood U, such that 

(VyEX\{X})(~‘I/E~)[XEI/~I/\Ux#pl]. 

Let %‘z = (U E Zx’,: U c U,}. Then %* = UC%“: x EX} is an irreducible base of X 

and its irreducible decomposition {%” : x E X} has the following property ( * ): 

(Vnc#yEX)(~uE~~)(~I/E~~)[XEI/AyEU]~V\U#~ (*) 

To simplify our notation we will say that a base Z has property (*) if it has a 

decomposition % = U{‘%“: x E X1 satisfying (i) and ( *) above. Obviously, any base 

with property ( * > is irreducible. So we established the following lemma: 

Lemma 2.4. A space X has an irreducible base ijjf it has a base with property ( *). 

The next two lemmas establish the basic connection between weakly separated- 

ness, existence of irreducible base and the requirement w(X) 2 I X I. 

Lemma 2.5. Zf X is weakly separated, then X has an irreducible base. 
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Proof. Let f be a neighbourhood assignment of X witnessing that it is weakly 
. separated. Take 2” = {G E TV. x E G cf(x)} and Z= lJ{‘Zx: x E X}. Then {‘&‘x: x 

EX) is an irreducible decomposition of the base %. 0 

The converse of this lemma fails as we will see it later (Theorem 3.1). 

Lemma 2.6. If X has an irreducible base, then w(X) = X(X> 1 X 1. 

Proof. If X(X) 2 I X I this is trivial, so assume that h = X(X) < I X I. Consider an 
irreducible base Z! with irreducible decomposition {‘Zx: x EX}. We can assume 
that 1%2/=w(X) and I%‘5/,<h for each XEX. If WC’?/ with I~I<lXl, then 
there is x E X with ZR’n 2” = @, so W can’t be a base by the irreducibility of Z. 
Thus w(X>=l%l>lXI. 0 

Definition 2.7. Given a topological space X, a subspace Y cX, a neighbourhood 
assignment f on Y and a set N CX let 

Di={yEY: yWcf(y)}. 

The following results show that both weakly separatedness and having an 
irreducible base may be characterized with the existence of a neighbourhood 
assignment f such that D& is “small” in some sense for each open G. For example 
we have the following easy result whose proof we leave to the reader. 

Theorem 2.8. Given a topological space X, a subspace Y c X is weakly separated iff 
there is a neighbourhood assignment f on Y such that I D& 1 =G 1 for each open G C X. 

Lemma 2.9. If a space X has an irreducible base, then there is a neighbourhood 
assignment f on X such that D& is closed and discrete in G for all open G c X. 

Proof. Let 2! be a base of X having a decomposition {‘Zx: x E X} with property 
( * ) and fix a neighbourhood assignment f with f(x) E Zx. Assume on the contrary 
that x E G is an accumulation point of D& for some open G cX. Choose U E 2%” 
with XEUCG. Pick y~D&nu, y#x. Then ~EUE%~, xEGcf(y)E%y, 
and U c f ( y >, which contradicts property ( * ) of Z. 0 

Theorem 2.10. The following statements are equivalent for any regular space (X, 7): 
(1) X has an irreducible base. 
(2) There is a neighbourhood assignment f on X such that DA is closed and discrete 

in G for all open G cX. 
(3) There is a neighbourhood assignment f on Xsuch that D& is a discrete subspace 

of X for each open G cX. 
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Proof. (1) - (2). This is just Lemma 2.9. 

(2) + (3) Straightforward. 

(3) - (I) Fix a neighbourhood assignment on X witnessing (3). Since X is 

regular we can assume that f(x) is regular open for each x EX and that 

f(x) = {x} provided x is isolated. Given an open G CX set 

and put 

%” = {U(G, x): x ED& A G is regular open}. 

Since DA is discrete and x E 06, we have that lJ(G, x) is also open, and %x is a 

neighbourhood base of x because x E U(G, x) c G. We claim that g= tJ{%‘I: x 

E X) is an irreducible base because the decomposition (?Px: x E X} has property 

(*). Assume on the contrary that x # y EX, U(G, x) E ?Vx/,, U(H, y) E %y with 

{x, y} c U(G, x) f7 U(H, y) and UCG, x) c U(H, y>. Since ( G I > 1 and I f(x) I = 1 

whenever x is isolated in X, it follows that D& cannot contain isolated points from 

X. But this set is also discrete, so D& is nowhere dense in X. Since H is regular 

open, U(G, x) = (G\ D&j U {x) c H implies G c H. Thus y E DA for y E U(G, x) 

c G c H cf(y) and so y @ U(G, x1, which is impossible. 0 

We don’t know if the assumption on the regularity of X is essential in Theorem 

2.10. 

Next we show that the existence of an f with D& “small” for all open sets G 

already implies that the weight of our space is large. 

Definition 2.11. A topological space Y is pseudo weakly separated if it contains a 

weakly separated subspace 2 with I Z I = IY I. 

Theorem 2.12. Let X be a topological space, Y c X, f be a neighbourhood assignment 

on Y and h < I Y I be a regular cardinal. If D& is the union of < A many pseudo 

weakly separated subspaces for each open G cX, then w(X) > I Y I. 

Proof. Assume on the contrary that 58 is a base with ) 9 1 < ) Y ) and let K = ) ~2 I+ 

+ A. Since Y= IJ GEBDi, there is a G ~5% with I DA 1 a K. But D& is the union of 

< h many pseudo weakly separated subspaces, so one of them has cardinality 2 K. 

Thus DA contains a weakly separated subspace Z with I Z I 2 K. Hence w(X) 2 

w(Y) > w(Z) > K > 19 ( a w(X), which is impossible. 0 

Since weakly separated spaces have not just large weight but also large net 

weight, if we assume that Dif is like in Theorem 2.12 for all subsets N cX, the 

same argument yields that even the net weight of X is large. 
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Theorem 2.13. Let f be a neighbourhood assignment on a topological space X and 
h 6 I X I be a regular cardinal. If D,$ is the union of < A many pseudo weakly 

separated subspaces for each N c X, then nw(X> > I X I. 

The following results show that the above type of “smallness” assumptions on 
D& can actually be used to characterize spaces of small character and large weight! 

Theorem 2.14. Let K be a cardinal and X a topological space with X(X> < K. (If K is 
regular then the assumption X(p, X) < K for each p EX would suffice.) Then the 
following are equivalent: 

(a) w(X) > K. 
(b) There is a subspace Y CX of size K and a neighbourhood assignment f on Y 

such that 06 is right separated for each open G cX. 
(c) There is a subspace Y CX of size K, a neighbourhood assignment f on Y and a 

regular cardinal h < K such that Do f is the union of < A many pseudo weakly 
separated subspaces for each open G cX. 

Proof. (a) + (b). For each x EX fix a neighbourhood base ~3~ of x in X with 
minimal cardinality. Since w(X) > K we can construct a sequence (y,: 77 < K} CX 

such that for each 77 < K the family U5 < ?I LB,,~ does not contain a base of yl, in X 
and we can pick an open set f(T) E rx which witnesses this, i.e., y7 E f(v) and 
there IS no UE U5+ y6 ~8’ with y, E U c f(q). We claim that the neighbourhood 
assignment f on Y = {y,: 77 < K} has the property that D& is right separated in its 
natural order for each open G. Assume on the contrary that there is an open G 

and (<K such that ygeDin ylleD&: 77 >[ . Since HcG implies D&nHc 

DL we can assume that G ~99~~. Then there is 77 > 5 with yV E G n D&. Hence 

yll E G cf(q) and G EB’+, contradicting the choice of y, and f(q). 
(b) -+ (c) Straightforward. 
(c) + (a) This is immediate from Theorem 2.12. 0 

Conditions (b) and (c) in Theorem 2.14 have the (perhaps just aesthetic) 
drawback that the requirements on the subspace Y are external in nature, i.e., they 
do not only depend on Y. This drawback is eliminated in the following result, 
which however works only for regular spaces and regular cardinals. 

Theorem 2.15. Let X be a regular topological space and K a regular cardinal with 
X(p, X> < K for each p E X. Then the following are equivalent: 

(a) w(X) 2 K. 
(b) There is a subspace Y CX of size K and a neighbourhood assignment f : Y + ry 

such that 1 D& I< K for each open G E ry. 
Cc> There is a subspace Y c X of size K and a neighbourhood assignment f : Y + ry 

such that DA is the union of < K many pseudo weakly separated subspaces for each 
open G E ry. 
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Proof. (a) + (b) If there is a weakly separated subspace Y CX with 1 Y I= K then 

we are done by Theorem 2.8. Otherwise we have h(X) < K and d(X) < K, hence 

we can pick a dense D CX with 1 D I < K. For each x EX fix a neighbourhood 

base 9x of x in X with minimal cardinality containing only regular open sets. 

Since w(X) 2 K we can construct a sequence {y,: 77 <K) CX\D such that for 

each n < K writing D, = (y,: .$ < 77) the family lJ(9Py: y ED U D,,} does not 

contain a base of y, in X and we can pick a regular open set f’(n) which 

witnesses this, i.e., y, of’ and there is no U E l_l{~9~: y ED U DJ with y, E U 

cf’(~). Let Y = D U { y,: 77 < K} and define the neighbourhood assignment f on Y 

by f( y,) = f’( y,) n Y for n < K and f(d) = Y for d E D. We claim that the space 

(Y, TV) and the neighbourhood assignment f have the property that Z, = Ds\D 
is right separated in the order inherited from the indexing for each open G. 

Assume on the contrary that there is an open G and 5 <K such that yg E Z, 

n { y, E Z, : 77 > [}. Since H c G implies 06 f~ H c Di we can assume that there 

is G’ ~9~~ with G = G’ n Y. Then there is n > 5 with y7 E G n Z,. But D c Y is 

dense in X and G’ is regular open, so y,, E G cf(n) implies G’ cf’tn) which 

contradicts the choice of y, and f’(q). Thus Z, is right separated and so 

I Z, I < K. Therefore I D& I = I Z, I + I D I < K, which means that (Y, ~~~ and the 

neighbourhood assignment f satisfy (b). 

(b) + (c) Straightforward. 

(cl + (a) w(X) > w(Y) > K by Theorem 2.12. 0 

3. Examples of spaces with large weight and small character 

Denote by (_N, E) the space of irrational numbers endowed with the Euclidean 

topology. For x E H and 77 > 0 write U(x, 7) = (x - 7, x + 71 n M. 

Theorem 3.1. There is a set X CN of size 2” and a O-dimensional first countable 
rejkement r of E on X such that 

(i) X=YUZ, where ry=ey and T~=E~, 
(ii> (X, r) has an irreducible base. 

Thus ,Y(X) = nw(X> = w but w(X) = 2”. 

Proof. Let Z = {z,: n E w} cN be dense. Fix a nowhere dense closed set Y cM\Z 

of size 2”. Let X = Y u Z. For each y E Y choose a strictly increasing sequence of 

pairwise disjoint intervals with rational endpoints, yy = (1,‘: n E w), such that 

yy converges to y and Jy = U yy is disjoint from Y. This can be done because 

Y is nowhere dense. Set J’ = fl for z E Z. For x E Y and q > 0 let I/(x, VI) = 

(U(x, rl)\Jx) nX. Let the neighbourhood base of x E Y in r be 

‘9?~={V(x, 77): ?J >O}. 
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If z = z, E Z then pick nn > 0 such that U(z,, qn) is disjoint from Y U {zi: i < n) 

and put 

B*, = {D(“, 77): 77n > 77 > O}. 

Since 

(t/n >O)(VxEqY, TJ)\{Y))(3~>O)KJ(-? 6) nx=vy, $1 CT) 
it follows that $3 = U {sx: x E X} is a base of a topology. We claim that U 1.~8~: x 

EX) is an irreducible decomposition of 53’ because it has property (*). So let 

U, u EX, U EBB, VEIL with {u, u} c U n V. Then u, u E Y because WEJG%‘~~ 

implies WnX c {z,: k 2 n}. The density of Z in .M implies 

(~77>O)(~~>O)[~(Y,~)~X~~(Y,77)1 (t-1 

for each y E Y. But u E U implies that there is some 77 with U(u, 7) C U, so 
U\ V# @. Thus the base 9 is irreducible. On the other hand, 7y = Ed and 

rz = E=, because U( y, 7) n Y = V(y, 77) n Y for y E Y and U(z, 7) n Z = V(z, 7) 
nz for zEZ. 0 

Definition 3.2. Let Y c.N. We say that a topological space (Y, 7) is a standard 
refinement of (E: E) provided that for each y E Y we can choose a sequence of 

pairwise disjoint intervals with rational endpoints, yy = {Zi: IZ E w), which con- 

verges to y such that taking Jy = U yy the family 

~y={qY,77)\Jy: 77>0} 

is a neighbourhood base of y in 7. 

Theorem 3.3. Zf CH holds, then there is a O-dimensional first countable standard 
refinement r of E on Jz/ such that 

(i) R((N, 7)) = w, 
(ii) nw((N, 7)) = 2”, 

(iii) (.N, r) has an irreducible base. 

Proof. First observe that for each D CA the set Ix E B: x @ (~0, x) fl D] is at 

most countable. Applying CH and this observation for each y EN we can choose 

a sequence of pairwise disjoint intervals with rational endpoints, yy = {Ii: n E WI, 
which is strictly increasing and converges to y, such that taking Jy = U yy the 

assumptions (A) and (B) below are satisfied: 

(A) (VD E [Nlw)[ l{y E DE: y P m] I< w]. 
To formulate property (B) we need the following notation: for D E [Xl”’ and 

YEN write D[y]={dED: yEJd]. 

(B)(VDE[NI~[I{YEJV: Y~~ADD[YIcJ~]]=GwI. 
Write V(y, n) = U(y, q)\Jy for 77 > 0. Let the neighbourhood base of y in r be 

s”={v(Y,77): QO). 
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Since 

(Vrl >O)(V’xEVY> 77)\IY])(3S>O)[U(X> 6)CV(Y, 7711 
it follows that 9 = (gy: y E-N} is a base of a topology. Since 

(~77>O)(V~>O)[U(Y,6)~I/(Y,77)1 

it follows that the base 9 is irreducible. 

(?I 

(+) 

It is not hard to see that (A) implies that nw((.M, 7)) > o. Indeed, assume on 

the contrary that {M,n: m < w} is a network. Pick countable sets K, CM,,, with 

K,” = KC. Then, by (A), there is y E _N such that for each m E w either 

YEK,” 
-.5 

=M, or yEK,nJypcM,nJy”.ThusthereisnomEwwith YEM, 

We will show that (B) implies R((M, T)) = w. Assume on the contrary that X 

is an uncountable weakly separated subspace of (N, r >. Since (.N, E) has 

countable weight, we can assume that x E Jy or y E J” holds for each x f y E X. 

Claim. (VD E [ Xl”>[ 1 {x E X: x E D[xl”} I < w]. 

Proof. If the above defined set is uncountable, then, by (B), there is x EX with 

D[x] VZ J”. Let d E D[x]\J” be arbitrary. Then d EJ” and x E Jd which contra- 

dicts our assumption on X. 

Using this claim, we can find an uncountable subset Y = (y,: /1 < wi) of X such 

that Y, E y,[‘, where Y, = ( y,: v < ~1. So for each p < wi we have an interval 

K, with rational endpoints such that yp E K, and for each v <I* if y, E K, then 

y, @ Y,] y,l, that is, y, l Jyu. Since there are only countable many intervals with 

rational endpoints, we can assume that K, = K for each v < w,. Since J” does not 

contain uncountable decreasing sequences, there are v < p < wi with y, < y,. But 

Jy c ( - 03, y) by the construction, which contradicts y, E Jyv. So R(( M, T)) = o. 

q 

Let us remark that TodorEeviE, in [6], proved earlier that CH implies the 

existence of a O-dimensional space Y of size oi with w(Y) = nw(Y> = wr and 

X(Y > = R(Y) = w. 

The next theorem shows that some set theoretic assumption is necessary to 

construct a standard refinement having the above described properties. To start 

with let us recall the Open Coloring Axiom COCA) (see [6] and [l]). 

Open Coloring Axiom. For each second countable T3 space X and open H c [ Xl2 
either (i) or (ii) below holds: 

(i) X = tJ n E w X,, where X,, is H-independent, 
(ii) X contains an uncountable H-complete subset. 

Theorem 3.4 (OCA). If Y c_N and (Y, T > is a standard refinement of (Y, E > then 
either R(Y) > w or (Y, r ) is u-second countable. 



280 I. Juhrisr et al. /Topology and its Applications 57 (1994) 271-285 

Proof. For each y E Y choose a sequence of pairwise disjoint intervals with 

rational endpoints, /Y = (1:: y1 E w), which witnesses that (Y, T) is a standard 

refinement. Let Jy = U .Yy. 
Unfortunately the set E’ = {( y, y’) E Y x Y: y E .I,, or y’ E J,} is not open in 

Y x Y, so we need some extra work before applying OCA. 
Fix an enumeration (K,: k < w) of the intervals with rational endpoints. For 

y E Y let us define the function f, : o + 2 by taking f,(k) = 1 iff K, cJ,. 

Consider the second countable space Z = {( y, f,>: y E Yl c Y X D(2)” and define 

the set of edges E on Z as follows: 

{(Y, f,>, (Y’, f,O} EE CJ (Y EJ~~ or Y’EJ,). 

It is easy to see that E is open. So OCA implies that either there is an 

uncountable E-complete Z’ c Z or Z is the union of countable many E-indepen- 

dent subsets {Z,: n E wl. 

By the definition of E, if Z’ is E-complete, then Y’ = {y E Y: ( y, f,> E Z’l is 

weakly separated. On the other hand, if Z, is E-independent, then r and E agree 

onY,={yEY:(y,fy)EZ,l. 0 

Theorem 3.5. For each uncountable cardinal K there is a ccc poset PK of cardinality 

K such that in V9” there is a Q-dimensional first countable topological space 

X = (K, r) and there are ccc posets Q, and Q, satisfying the following conditions: 

(a) VyK L “X has an irreducible base”, 
(b) V”“*Qo k “X is v-discrete”, 
(C) I/~~*QI b “X is u-second countable”. 

So, in I/+, w(X) = K by (a), nw(X) = K by (b) and R(X”) = w by (Cl. 

Proof. We say that a quadruple (A, n, f, g> is in Pa” provided (l)-(5) below hold: 

(I) A E [Kl<“, 

(2) n E 0, 
(3) f and g are functions, 

(4) f:AXAXn+2, 
(5) g:AxnXAXn-+3. 
For p E P; we write p = (AP, np, fP, gp>. If p, q E Pi we set P =G4 iff 

f” zf” and gpzgq. If p EP;, CY EAT, i <nP set U(a, i> = UP(a, i> = {P E 

AP: fP(p, (Y, i) = 11. 
A quadruple (A, n, f, g) E PO” is in P” iff (i)-(iv) below are also satisfied. 

(i) (Vcu EA)(Vi < n)[a E U(cr, ill, 
(ii) (Va EAWi <j < n)[U(cx, j) C U(cu, i>l, 

(iii) (Vcu f p EAOi, j < n)[U(a, i) C U(P, j) iff d a, i, p, j) = 0, U(a, i> n 

U(p, j) = Pr iff g(c.u, i, P, j) = 11. 
(iv) (Vcu f /3 E A)(V i, j < n) [if (Y E U(p, j) and p E U(LY, i) then g(a, i, P, j) = 

21. 
We claim that Pa” = (P”, G > satisfies the requirements. 
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Definition 3.6. Assume that pi = (Ai, ni, fifi, gi> E P; for i E 2. We say that p0 

and p1 are twins iff n, = n,, I A, I = ( A, I and taking n = no and denoting by (T the 

unique < -preserving bijection between A, and A, we have 

(1) a[&, nA, = idAonA, 
(2) CT is an isomorphism’between p,, and pl, i.e., (tla, p CA,) (Vi, j <n), 

(a) f,<c~, p, i) =fr(a(a>, a(P), 9, 

(b) g,(a, i, P, j) =gr(a(a), i, a@>, j). 
We say that u is the twin function of pO and pl. Define the smashingfunction a of 

p,, and p, as follows: (T = (T u id,,. The function U* defined by the formula 

u * =auu- ‘[A 1 is called the exchange function of p,, and pl. 

Definition 3.7. Assume that p,, and p, are twins and E : AP1\APu * 2. A common 

extension q E P” of pO and p1 is called an ~-amalgamation of the twins provided 

(Va EA~oAA~‘) [ fq( a, a*(a), i) =s((T(fx))]. 

Lemma 3.8. If pO, p1 •9~ are twins and E : APl\APo 4 2, then p,, and p, have an 

e-amalgamation in P”. 

Proof. Write A =A, uA,, f-= f. u fl, g-=g, Ug,. Let B and C be disjoint 

subsets of K\A of size I A I and let p : B -+Aandn:C+Abel-l.Putq=(Au 

B u C, n, f, g> where 

(1) f-cf, g-cg. 
(2) (Vcr #p EAXVi, j <n) 

f(a, P, i) = 
i 

fl(@(a), a(P), i) if a*(a)+p, 
4%)) if a*(a) =p, 

and 

g(a, i, P, j) = 
i 

g,((T(a), i, c(P), j) if a*(cf> +P, 
2 

if V*(CY) =/3. 

(3) (VP E B U C>(Vi < n>[U”(P, i) = IPII. 
(4) (Vcu E A)(Vi, j < n>(Vj3 E B) 

p E Uq(a, i) iff (31 <n)[g(p(P), 2, a, i) =Ol 
and 

g(P, j, a7 i) = 
i 

0 if p(p) E Uq(a, i), 

1 if p(p) P Uq(a, i). 

(5) (Vda E A)(Vi, I< n)(Vr E C> 

y E Uq(a, i) iff a(n(r)) E Uq(F(~), i). 

and 

g(y, 1, o, i) = 
0 if 77(y) E Uq(a, i), 

1 if n(y) E Uq(~, i). 



282 I. Juha’sz et al. / Topology and its Applications 57 (1994) 271-285 

Let us remark that (4) and (5) contain no circularity because (1) and (2) define g 
on A. Obviously q EP~ and q <po,pl, so we have to show that q E I’“. (i) is 
straightforward. Before checking (ii>- we need some preparation. If LY, p EA 
and i,j <n write (a, i) a (p, j) iff g(a, i, @, j) = 0. 

Claim 3.8.1. The relation a is transitive on A X n. 

Proof. Assume that ((Y, i) a C/3, j) a (y, 1). Then, by (2), (Z(cr>, i> 
a (i?(p), j) a (C(y), I>, so (&a>, i> a (G(y), 1). Thus (cu, i> a (y, I> provided 
a*(cu> # y. Assume that a*(a) = y. Then U,(&a>, i) c U,(C+@), j) c U,(&a), E) 

and so Z(a) E U,(c+(p>, j> and G(p) E U,(Z(a), 0. Thus gi(c(p), j, a(a), 1) = 2 
because pi satisfies (iv). This contradiction proves that (T*((Y) # y. 

Claim 3.8.2. (Va # p l A)(VL’, j <n) [ifg(cr, i, p, j) = 0 then P((Y, i) c Uq(/?, j)l. 

Proof. We have g,(G(cr), i, F(p), j) = 0. Thus 

U,(c(a), i) cUi(e(P), j). (T) 

Let y EA n Uq((u, i). If a*(y) # /3 then (t) implies y E Uq@, j) by (2). Assume 
now that a*(y) = p. Then i?(p) = a(y) E U,(~((Y), i) and, on the other hand, 
Z((Y) E U,(F(p), j) by (t). Thus gi(Z(ar), i, @c/3), j) = 2 because pi satisfies (iv). 
Contradiction, a*(r) # p. So we have shown Uq((-u, i) n A c Uq(fI, j) n A. Next 
we can see that Uq(a, i) n B c Uq(p, j) n B by Claim 3.8.1 and by (4). Finally let 
y E Uq(q i) n C. Then a(~(-y)) E U,(F(a), i), so F(q(y)) E UJLQ), j). Thus y 

E Us@, j) by (5). 

Claim 3.8.3. (Vcu z p EA)Wi, j < n)[ifg(cu, i, p, j) = 1 then Uq((w, i) n U‘Q, j) = 

@I. 

Proof. Since g(cr, i, p, j) = 1 we have V*(CY) z p, so U,(~((Y), i) n UJ(T@), j) = fl 
implies Uq(a, i) n Uq(p, j) nA = @. Assume now that y E Uq(a, i) n Uq@, j) n 

B. Then p(y) E Uq( (Y, i) n Uq(p, j) nil, contradiction. Finally assume that y E 
Uq(a, i) n Uq(p, j) n C. Then Z($y)> E U,(Z(cu), i) n U,(Q), j) = @, which is 
impossible. 

Claim 3.8.4. (‘da # /3 EA U B U CXVi, j < n) [if g(cx, i, 0, j) = 2 then $ + U4(a, 

i)\Uq@, j) # Uq((w, ill. 

Proof. The assumption implies (Y, 6 E A. If (Y Z a*(p) then g(C(a), i, C(P), j) = 2, 
which implies the statement. So we can assume that (Y = a*(P). Let y = p-‘(a). 
Then y E Uq(a, i) and, on the other hand, y E Uq(P, j), because g(c.u, f, P, j) = 2 
for each 1 <n by (2). So y E Uq(a, i)\Uq(P, j). Let 6 = q-‘(a). Then G(r1(6>> = 
e(p) = a(ff) E Ul(iXff), i> n u,(Z(p), j), so 6 E Uq(ff, i) n Uq(p, j). 

So we have proved (iii) for q, which implies (ii>. To check (iv> assume that 
LY # p EA u B u C, i,j < n with (Y E Uq(p, j) and p E Uq(a, i). Then cy, /3 EA. If 
a*(a) f p, then c(a) E U,(iF(/?), j> and c(p) E Ul(C(a), i) implies gi(a(cr), i, 
c(p), j) = 2. Hence g(a, i, p, j) = 2. If U*(U) = p, then g(cr, i, /3, j) = 2 by defi- 
nition. The lemma is proved. 0 
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The previous lemma implies that 9’” satisfies ccc because among uncountably 

many elements of 9“ there are always two twins. Let 5Y be the ga” generic filter 

and let F=U{fP:p=S). For each a<~ and HEW let v(cu,i)={p< 

K: F(p, a, i) = l}. Put ~8~ = {T/(cu, i): i <K) and SE? = UIS?a: (Y <K). By standard 

density arguments we can see that B is base of a first countable topological space 

X = (K, T). Since 9” satisfies (iv), U {Sa: cx < K} is an irreducible decomposition 

of 9’. 

We are now ready to define the posets Q, and Q, in vTK. 

A triple (B, d e) is in Q, iff 

(a) B E [K]<“‘, 
(b) d:B+w, 
(c) e:B+o, 
(d) (Vex # p E B)[if d(a) = d(P) then (Y P V@, e(P))]. 

A quadruple (B, d, m, e) is in Q, iff 

(A) B E [K]<“, 
(B) d: B-w, 

(0 m Ew, 
(D) e:BXm+o, 

(El Ok P, y E BW z, j <m> [if d(a) = d(P) = d(y) and e(cu, i) = e(P, j) then 

y E vC/‘((y, i) iff y E V(p, j)]. 

The orderings on Q, and Q, are defined in the straightforward way. If q and r are 

compatible elements of Qi, then denote by q A r their greatest lower bound in Qi. 

Lemma 3.9. ga” * Q, satisfies ccc. 

Proof. Let ((p,, 4,): v < oI> cPa” * Q,. We can assume that p, decides q,. 

Write p, = (A”, n”, f “, g”) and q, = (B”, d”, e”). By standard density arguments 

we can assume that A” 2 B”. Applying standard A-system and counting arguments 

we can find Y < p < wr such that p, and pP are twins and denoting by u the twin 

function of p, and p,, we have d”(a) = d@(a(a)) and e”(cu) = eYa(a)) for each 

(YEBU. 
Define the function a0 : Ap \A” -+ 2 by th e equation E’(CU) = 0. By Lemma 3.8 

the conditions p” and pp have an e”-amalgamation p. We claim that 

I,~~q,w,~Qo. 

It is enough to check that if LY E B”, p E Bp, d”(a) = dp(p), then p lk (Y e 

V@, e@(P)). If (+*(a) #p, then (2) implies this. If a*(a) =p, then p ~a Q? 

V(p, ep(P)) because p is an &‘-amalgamation. q 

Lemma 3.10. P” * Q, satisfies ccc. 

Proof. Let ((p,, 4,): v <ml> cpd” * Q,. We can assume that p, decides 4,. 
Write p, = (A”, ny, f “, g”) and q, = (B”, d”, my, ev>. By standard density argu- 
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ments we can assume that A” 3B”. Applying standard arguments we can find 

u < F < wr such that p, and p, are twins and denoting by u the twin function of 

p, and pF we have m” = rnw and d”(a) = d”(cr(a>) and e”(cz, i) = eYa(cu>, i) for 

each CY E A” and i < mP. 
Define the function a1 : AP\A” + 2 by th e equation S’(LY> = 1. By Lemma 3.8 

the conditions py and pP have an E’-amalgamation p. We claim that 

pIkqq”AqPEQl. 

Set d = d” U dF and e = eV U e@. Let (Y, p, y E B” u Bfi with d(a) = d(/3) = d(y) 
and e(a, i) = e(P, j). We have to show that 

pll-“yEV(cy,i) iff rEV(P, j)“. (*) 

We know that p IF“C(~) E V(C(cr>, i) iff C(r) E I’(&@>, j)“, so we can assume 

that p IF “C(y) E V(&a>, i) and C(y) E V(Z(p), j)“. So if a*(-y) is different from 

CY and p, then we are done. Assume finally that a*(r) = cr. Then p IF “F(y) E 

V(F(a), i)“, so p lk“F(y> E V(F(p>, j)“, thus p k“y E V(fl, j)” by (2). But p is 

an &‘-amalgamation, so p IF“a*(a) E V(a, i)“, i.e., p IF“y E I/(&, i>“. 0 

Lemma 3.11. 

V P’y * Q. IF “X is u-discrete “. 
Proof. Let Z? be the Q,-generic filter over I/“*. Set d = UIdq: q E 33 and 

e = U(e4: q E Z}. By standard density arguments the domains of the functions d 

and e are K. We have I/(x, e(x)) n d-‘{d(x)) = {xl by Cd), so d-‘(n) is discrete for 

each y1 E o. q 

Lemma 3.12. 

VPK * Ql It “X is cr-second countable “. 

Proof. Let .Z be the Q,-generic filter over Vy’“. Take d = LJ(d4: q E E} and 

e = U {eq: q E 2). By standard density arguments dam(d) = K and dam(e) = K X w. 

Fix y1 E w and let X,, = d-l{n}. We claim that w(X,) = o. Indeed, U{V(a, i): LY E 
X,,, i <w} is a base of X, and by (E), if LY, /3 EX~, i, j <o and e(a, i) = e(P, j> 
then V(a, i) nX, = V(p, j) nx,. 0 

This completes the proof of Theorem 3.5. 0 

We have shown in [4] that every first countable T2 space satisfying R(X”) = w 

becomes a-second countable in a suitable ccc extension. Thus (c) of Theorem 3.5 

may be considered as the natural way to insure R(X”) = w. 
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