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Abstract

In this paper we study the existence and multiplicity of solutions of the following operator equ
in Banach spaceE:

u = λAu, 0 < λ < +∞, u ∈ P \ {θ},
whereλ is a parameter andP a cone of Banach spaceE. Under certain conditions on the opera
A we findλ∗ such that the operator equation has at least two solutions for 0< λ < λ∗, at least one
solution forλ = λ∗ and no solutions forλ > λ∗. As an application, we investigate the existence
multiplicity of positive solutions of a singular second order boundary value problem. In addition,
briefly outline an application of our results which simplifies a previous theorem that appeared
literature.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the following singular boundary value problem{
y ′′ + λf (t)g(y) = 0, 0 < t < 1,

y(0) = 0 = y(1),
(1.1)
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whereλ is a parameter,f ∈ C((0,1), (0,+∞)) andg ∈ C(R+,R+), R+ = [0,+∞), I =
[0,1].

The boundary value problem (1.1) has been studied by many authors (see [1–
some of the references therein). Choi[1] studied the particular case whereg(y) = ey ,
f ∈ C1(0,1], f > 0 on (0,1) and f can be singular att = 0, but at mostO(tδ−2)as
t → 0+ for someδ > 0. Using the shooting method he established the following resul

Theorem A [1]. There existsλ0 > 0 such that the BVP(1.1)has a solution inC2(0,1] ∩
C[0,1] for 0< λ < λ0, while there is no solution forλ > λ0.

Ha and Lee [2] also studied the BVP (1.1). They proved that iff > 0 on (0,1) and∫ 1
0 sf (s) ds < +∞, g is increasing onR+ andg(y) � ey for all y ∈ R+, then there exist

λ0 > 0 such that the BVP (1.1) has no solution forλ > λ0, but at least one solution fo
λ = λ0, and at least two solutions for 0< λ < λ0.

Let (E,‖ · ‖) be a real Banach space which is ordered by a coneP , θ the zero elemen
of E. Motivated by [1–6], in this paper we will study the following operator equatio
Banach spaceE:

u = λAu, 0 < λ < +∞, u ∈ P \ {θ}, (1.2)

whereλ is a positive parameter.
Our purpose here is to give some existence results for solutions of the operator

tion (1.2). The main results of this paper is a generalization of some results in [1–6]. Th
paper also serves to provide an unified treatment to a variety of results for the existe
multiple solutions of integral equations inC[I,R] andC[I,R2].

This paper is organized as follows. In Section 2 we shall prove the main resu
Section 3, we apply these results to prove the existence of positive solutions of non
singular boundary value problems. Finally, in Section 4, to illustrate the applications of ou
main results, we give a different proof of a result in [5].

2. Main results

Let E be a real Banach space,P a total cone ofE, i.e., E = P − P . Let A = KF :
P �→ P be a completely continuous operator, whereK :P �→ P is a completely continu
ous linear operator andF :P �→ P is a continuous bounded increasing operator. We
study the existence of solutions of the operator equation (1.2). Assume that there
a completely continuous linear operatorK0 :P �→ P such thatKu � K0u for all u ∈ P ,
andr(K0) > 0 (r(K0) denotes the spectral radius ofK0). It follows from the well-known
Krein–Rutman theorem [10] that there existφ ∈ P \ {θ} andh ∈ P ∗ \ {θ} such that

K0φ = r(K0)φ, K∗
0h = r(K0)h,

whereK∗
0 is the conjugated operator ofK0, P ∗ is the dual cone ofP .

Let τ be a positive number andP0 = {u ∈ P | h(u) � τ‖u‖}. It is easy to see thatP0 is
also a cone ofE.
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Definition 2.1 [11]. Let T :D �→ E be an operator andζ a nonzero element ofP . Let
x0 ∈ D be fixed. If for anyε > 0, there existsδ > 0 such that

−εζ < T x − T x0 < εζ

for all x ∈ D with ‖x − x0‖ < δ, thenT is calledζ -continuous atx0. If for anyx ∈ D, T is
ζ -continuous atx, thenT is calledζ -continuous onD.

Let us list some conditions for convenience.

(H1) There exists a coneQ of E such thatQ ⊂ P0, KP ⊂ Q, andK0P ⊂ Q.

(H2) F is Fθ -continuous onQ, h(Fθ) > 0 and

lim
u∈Q,‖u‖→+∞

h(Fu)

h(u)
= +∞.

(H3) There exists a positive numberm such that

h(Fu) � mh(u), ∀u ∈ Q,

and

lim
u∈Q,u→θ

h(Fu)

h(u)
= +∞.

Throughout this section, we will assume that (H1) always holds.
By Lemma 2.3.1 and Corollary 2.3.1 in [8], we have

Lemma 2.1. LetΩ1 andΩ2 be two bounded open sets inE such thatθ ∈ Ω1 andΩ̄1 ⊂ Ω2.
Let the operatorA :P ∩Ω̄2 �→ P be completely continuous, andu0 ∈ P \{θ}. Suppose tha

x − Ax �= tu0, ∀x ∈ P ∩ ∂Ω1, t � 0,

and

µAx �= x, ∀x ∈ P ∩ ∂Ω2, µ ∈ [0,1].
ThenA has at least one fixed point inP ∩ (Ω1 \ Ω̄2).

Lemma 2.2. Let Σ = {(λ,u) | λ > 0, u ∈ P \ {θ}, (λ,u) is a solution of(1.2)}. Assume
(H2) or (H3) holds. ThenΣ �= ∅.

Proof. Let R0 > 0 be fixed. Chooseλ0 > 0 such that

λ0 sup
u∈B̄R0∩Q

‖Au‖ < R0, (2.1)

whereBR0 = {u ∈ E | ‖u‖ < R0}. Then (2.1) implies that

µλ0Au �= u, ∀u ∈ ∂BR0 ∩ Q, µ ∈ [0,1]. (2.2)

On the other hand, if (H2) holds, then we have

lim
h(Fu) � lim

h(Fθ) = +∞,

u∈Q,u→θ h(u) u∈Q,u→θ h(u)
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and so

lim
u∈Q,u→θ

h(Fu)

h(u)
= +∞. (2.3)

Obviously, if (H3) holds, then (2.3) also holds. For a fixedδ > 0, by (2.3) there existsR1
with R0 > R1 > 0 such that

h(Fu) � 1

λ0r(K0)
(1+ δ)h(u), ∀u ∈ B̄R1 ∩ Q. (2.4)

Let ψ ∈ Q \ {θ}. Now, we claim that

u �= λ0Au + tψ, ∀u ∈ ∂BR1 ∩ Q, t � 0. (2.5)

Indeed, if there existu1 ∈ ∂BR1 ∩Q andt0 � 0 such thatu1 = λ0Au1 + t0ψ , then, by (2.4)
we have

h(u1) � λ0h(Au1) � λ0h(K0Fu1) = λ0
(
K∗

0h
)
(Fu1)

= λ0r(K0)h(Fu1) � (1+ δ)h(u1),

and soh(u1) � 0, which is a contradiction of

h(u1) � τ‖u1‖ = τR1 > 0.

Thus, (2.5) holds. It follows from (2.2), (2.5) and Lemma 2.1 thatλ0A has at least on
fixed pointu0 ∈ Q ∩ (BR0 \ B̄R1). Hence,(λ0, u0) ∈ Σ . The proof is completed.�
Lemma 2.3. LetΛ = {λ > 0 | there existsu ∈ P \ {θ} such that(λ,u) ∈ Σ}. Assume(H2)
or (H3) holds. ThenΛ is a bounded set. Moreover, ifλ∗ = supΛ, then(0, λ∗) ⊂ Λ.

Proof. Now, we divide the proof into two steps.
Step1. We show thatΛ is a bounded set.
For a givenq1 > 0, by (H2), there existsR > 0 such thath(Fu) � q1h(u) for all u ∈ Q

with ‖u‖ � R. Let q2 be such that

0 < q2 <
h(Fθ)

R‖h‖ .

Then, we have

h(Fu) � h(Fθ) � q2‖h‖R � q2h(u), ∀u ∈ B̄R ∩ Q.

Thus, ifq = min{q1, q2,m}, then, by (H3), we have

h(Fu) � qh(u), ∀u ∈ Q. (2.6)

For any(λ,u) ∈ Σ , by (2.6), we have

‖h‖‖u‖ � h(u) = λh(Au) � λr(K0)h(Fu) � λr(K0)qh(u) � λr(K0)qτ‖u‖,
and soλ � (r(K0)qτ)−1‖h‖, which means thatΛ is a bounded set.

Step2. We show that(0, λ∗) ⊂ Λ.
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For anyλ ∈ (0, λ∗), we prove thatλ ∈ Λ. By the definition ofλ∗, there existsλ1 ∈ Λ

such thatλ < λ1 � λ∗. Suppose that(λ1, u1) ∈ Σ . It is easy to see thatu1 is a sup-solution
of λA. Let u(0) = u1, andu(n) = λAu(n−1) (n = 1,2, . . .). SinceλA is increasing and
completely continuous, there existsuλ such that

uλ = λAuλ,

uλ � · · · � u(n) � u(n−1) � · · · � u(1) � u(0) = u1, (2.7)

and

u(n) → uλ asn → ∞. (2.8)

Obviously, if (H2) holds, thenuλ > θ .
Now, we will show thatuλ > θ if (H3) holds. First, we claim that

h(u(n)) > 0, n = 1,2, . . . . (2.9)

In fact, if h(u(n0)) = 0 for somen0 ∈ N , then, by (2.6) we have

0 = h(u(n0)) = λh(Au(n0−1)) � λr(K0)h(Fu(n0−1)) � λr(K0)qh(u(n0−1)) � 0,

and soh(u(n0−1)) = 0. By inductive method, we haveh(u(0)) = 0, which is a contradiction
to

h(u(0)) = h(u1) � τ‖u1‖ > 0.

Hence, (2.9) holds. On the other hand,

h(u(n)) = λh(Au(n−1)) � λr(K0)h(Fu(n−1)).

Then, by (2.7) and (2.9), we have

lim
n→+∞

h(Fu(n−1))

h(u(n−1))
� lim

n→+∞
h(Fu(n−1))

h(u(n))
� 1

λr(K0)
.

If uλ = θ , together with (2.8), we have made a contradiction to (H3). Hence,uλ > θ , and
soλ ∈ Λ. The proof is completed.�
Lemma 2.4. LetΛ,λ∗ be defined as in Lemma2.3. Assume(H2) holds. ThenΛ = (0, λ∗].

Proof. It follows from Lemma 2.3 that we only need to prove thatλ∗ ∈ Λ. Now, choose
{λn} ⊂ Λ such thatλn → λ∗ asn → +∞, andλn � λ∗/2 (n = 1,2, . . .). Let (λn,un) ∈ Σ .
Choose a positive numberM > 2(λ∗r(K0))

−1; then, by (H2) there existsR > 0 such that
h(Fu) � Mh(u) for all u ∈ Q,‖u‖ � R. Let B = {un} andω = {λn − λ∗}. Now, we claim
thatB is a bounded set. In fact, if not, then there existsun0 ∈ B such that‖un0‖ � R. Thus,
we geth(Fun0) � Mh(un0). Since

h(un0) = h(λn0Aun0) � λn0r(K0)h(Fun0) � λn0r(K0)Mh(un0),

and soM � 2(λ∗r(K0))
−1, which is a contradiction to the assumption ofM. Therefore,

B is a bounded set.
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Using the formula [9, p. 10]

α(Λ̄S) =
(

sup
λ∈Λ̄

|λ|
)
α(S),

whereΛ̄ is a bounded set of real numbers andΛ̄S = {λx: x ∈ S, λ ∈ Λ̄}, we get

α(B) � α
(
ωA(B)

) + λ∗α
(
A(B)

)
� λ∗

2
α
(
A(B)

) + λ∗α
(
A(B)

) = 3λ∗

2
α
(
A(B)

) = 0,

which means thatB is a compact set, and hence, there exists a subsequence{unk } of {un}
andu∗ ∈ Q such thatunk → u∗ ask → +∞. Fromunk = λnk Aunk , letting k → +∞, we
getu∗ = λ∗Au∗. Thus,λ∗ ∈ Λ. The proof is completed. �
Lemma 2.5. Let λ∗ be defined as in Lemma2.3. Assume(H2) holds. Then the operato
equation(1.2)has at least two solutions for0 < λ < λ∗.

Proof. It follows from Lemma 2.4 that(λ∗, u∗) ∈ Σ . For any 0< λ < λ∗, let

Uλ = {x ∈ Q | there existsη > 0 such thatλAx � u∗ − ηAθ}.
Since

u∗ = λ∗Au∗ = (λ∗ − λ)Au∗ + λAu∗ � (λ∗ − λ)Aθ + λAu∗,

we get

λAu∗ � u∗ − (λ∗ − λ)Aθ. (2.10)

Therefore,u∗ ∈ Uλ, and soUλ is a nonempty set.
For anyu ∈ Uλ, there existsη > 0 such that

u∗ � ηAθ + λAu � λK0(Fu).

Then, by (2.6) we have

h(u∗) � λr(K0)h(Fu) � λr(K0)qτ‖u‖,
and so‖u‖ � (λqτr(K0))

−1h(u∗), which means thatUλ is a bounded set.
Let x0 ∈ Uλ such thatλAx0 � u∗ − η0Aθ for someη0 > 0. For the givenη0/(2λ) > 0,

by (H2), there existsδ > 0 such that

Fx − Fx0 � η0

2λ
Fθ

for x ∈ Q with ‖x − x0‖ < δ. Thus,

λAx = λ(Ax − Ax0) + λAx0 = λK(Fx − Fx0) + λAx0

� η0

2
Aθ + u∗ − η0Aθ = u∗ − η0

2
Aθ

for x ∈ Q with ‖x − x0‖ < δ. This means thatx ∈ Uλ. Hence,Uλ is a open set.
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Now, we shall show that

µλAu �= u, ∀µ ∈ [0,1], u ∈ ∂Uλ, (2.11)

where∂Uλ denotes the boundary ofUλ in Q. In fact, if not, then there existµ0 ∈ [0,1]
andu0 ∈ ∂Uλ such thatµ0λAu0 = u0. Sinceu0 ∈ ∂Uλ, there exists{un} ⊂ Uλ such that
un → u0 asn → +∞. For anyn ∈ N, we have

λAun � u∗ − ηnAθ � u∗

for someηn > 0. Lettingn → +∞, we haveλAu0 � u∗, and henceu0 = µ0λAu0 � u∗.
Then, by (2.10), we have

λAu0 � λAu∗ � u∗ − (λ∗ − λ)Aθ.

This means thatu0 ∈ Uλ, a contradiction to thatu0 ∈ ∂Uλ. Hence, (2.11) holds. By th
properties of the fixed point index, we have

i(λA,Uλ,Q) = i(θ,Uλ,Q) = 1. (2.12)

By (H2), there existsR > (λτr(K0)q)−1h(u∗) such that

h(Fu) � 2

λr(K0)
h(u), ∀u ∈ Q, ‖u‖ � R.

Let ψ ∈ Q \ {θ}. Now, we will show that

u �= λAu + tψ, ∀u ∈ ∂BR ∩ Q, t � 0. (2.13)

In fact, if not, there existu0 ∈ ∂BR ∩ Q andt0 � 0 such thatu0 = λAu0 + t0ψ . Then we
have

h(u0) � h(λAu0) � λr(K0)h(Fu0) � λr(K0)
2

λr(K0)
h(u0) = 2h(u0).

Thus,h(u0) = 0, a contradiction of

h(u0) � τ‖u0‖ = τR > 0.

Thus, (2.13) holds. By the properties of the fixed point index, we have

i(λA,BR ∩ Q,Q) = 0. (2.14)

Then, by (2.12) and (2.14), we have

i(λA,BR ∩ Q \ Ūλ,Q) = i(λA,BR ∩ Q,Q) − i(λA,Uλ,Q) = −1. (2.15)

It follows from (2.12) and (2.15) that there existx1 ∈ BR ∩ Q \ Ūλ andx2 ∈ Uλ such that
xi = λAxi (i = 1,2). Therefore, the operator equation (1.2) has at least two solution
0 < λ < λ∗. The proof is completed.�
Theorem 2.1. Assume(H1) and(H2) hold. Then there existsλ∗ > 0 such that the operato
equation(1.2) has at least two solutions for0 < λ < λ∗, at least one solution forλ = λ∗
and no solution forλ > λ∗.
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Proof. Clearly, Theorem 2.1 is an immediate consequence of Lemmas 2.2–2.5.�
Theorem 2.2. Assume(H1) and(H3) hold. Then there existsλ∗ > 0 such that the operato
equation(1.2)has at least one solution for0< λ < λ∗ and no solution forλ > λ∗.

Proof. Theorem 2.2 is an immediate consequence of Lemmas 2.2–2.3.�
Remark 2.1. In [7], some results for the existence of multiple solutions of operator e
tion also had been obtained. Theorems 2.1 and 2.2 are different from the main
in [7]. Here, a special coneP0 has been employed to discuss the existence and multip
of solutions of the operator equation.

3. Positive solutions of singular boundary value problems

In this section, we shall consider the existence of positive solutions of the sin
boundary value problem (1.1).

Concerning the BVP (1.1), we make the following assumptions:

(H4) g is increasing onR+; f > 0 is continuous on(0,1) and can be singular att = 0,1;

1∫
0

s(1− s)f (s) ds < +∞.

(H5) g(0) > 0, and

lim
u→+∞

g(u)

u
= +∞.

(H6) lim
u→0+

g(u)

u
= +∞,

and there existsd > 0 such thatg(z) � dz for z ∈ R+.

We have the following results.

Theorem 3.1. Assume(H4) and(H5) hold. Then there existsλ∗ > 0 such that the BVP(1.1)
has at least two solutions for0 < λ < λ∗, at least one solution forλ = λ∗ and no solution
for λ > λ∗.

Theorem 3.2. Assume(H4) and (H6) hold. Then there existsλ∗ > 0 such that the BVP
(1.1)has at least one solution for0 < λ < λ∗ and no solution forλ > λ∗.

Let E = C[I,R]. For anyx ∈ E, let ‖x‖C = maxt∈I |x(t)|. It is easy to see thatE is a
Banach space with the norm‖ · ‖C . Let P = {x ∈ E | x(t) � 0, t ∈ I } andQ = {x ∈ P |
x(t) � ‖x‖Ct (1 − t), t ∈ I }. Clearly,P andQ are cones ofE. Let [α,β] ⊂ (0,1) be a
fixed subinterval ofI , and
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f0(t) =
{

f (t), t ∈ [α,β],
0, t ∈ [0, α) ∪ (β,1].

Let K,K0 be two linear operators defined by

(Kx)(t) =
1∫

0

G(t, s)f (s)x(s) ds, x ∈ P,

(K0x)(t) =
1∫

0

G(t, s)f0(s)x(s) ds, x ∈ P,

where

G(t, s) =
{

t (1− s), t � s,

s(1− t), t > s.

Let F,A be two nonlinear operators defined by

(Fx)(t) = g
(
x(t)

)
, x ∈ P

andA = KF . Clearly,Ku � K0u for all u ∈ P .

Lemma 3.1 [8]. LetΩ be a bounded open set inE andθ ∈ Ω . Suppose thatA :P ∩Ω̄ �→ P

is completely continuous,Aθ = θ and

inf
x∈P∩∂Ω

‖Ax‖ > 0.

ThenA has at least one eigenvector onP ∩ ∂Ω , which corresponds to a positive eige
value.

Lemma 3.2. Assume(H4) holds. ThenK,K0 andA are completely continuous operato
from P into Q.

Proof. We only prove thatK :P �→ Q is a completely continuous operator. In a simi
way, we could prove thatK0 andA are completely continuous operators fromP into Q.

For a fixedx ∈ P , let

y(t) =
1∫

0

G(t, s)f (s)x(s) ds

for t ∈ I . Then there existst0 ∈ (0,1) such thaty(t0) = ‖y‖C . It is easy to see that

G(t, s)

G(t0, s)
=




t
t0

, t, t0 � s,

1−t
1−t0

, t, t0 � s,

s(1−t )
t0(1−s)

, t � s, t0 � s,

t (1−s)
, t � s, t0 � s,




� (1− t)t for t, s ∈ (0,1), (3.1)
(1−t0)s
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and so

y(t) =
1∫

0

G(t, s)

G(t0, s)
G(t0, s)f (s)x(s) ds � ‖y‖Ct (1− t),

which implies thatK :P �→ Q.
Now, we show thatK is a completely continuous operator. LetB ⊂ Q be a bounded se

such that‖x‖ � L for all x ∈ B and someL > 0. For anyε > 0, it follows from (H4) that
there existsδ1 > 0 such that

2g(L)

( δ1∫
0

G(s, s)f (s) ds +
1∫

1−δ1

G(s, s)f (s) ds

)
<

ε

2
. (3.2)

Let a0 = maxs∈[δ1,1−δ1] f (s). SinceG(t, s) is uniformly continuous onI × I , then for the
givenε > 0 there existsδ1 > δ > 0 such that∣∣G(t1, s) − G(t2, s)

∣∣ � ε

2a0g(L)
, t1, t2, s ∈ I, |t1 − t2| � δ. (3.3)

Then, by (3.2), (3.3) and using the fact thatG(t, s) � G(s, s) for any (t, s) ∈ I × I , we
have

∣∣(Kx)(t1) − (Kx)(t2)
∣∣ �

1∫
0

∣∣G(t1, s) − G(t2, s)
∣∣f (s)g(L) ds

� 2g(L)

( δ1∫
0

G(s, s)f (s) ds +
1∫

1−δ1

G(s, s)f (s) ds

)

+ a0g(L)

1−δ1∫
δ1

∣∣G(t1, s) − G(t2, s)
∣∣ds

< ε

for any x ∈ B, t1, t2 ∈ I , |t1 − t2| � δ, which means thatK(B) is equicontinuous onI .
Therefore,K is a completely continuous operator. The proof is completed.�
Lemma 3.3. Assume(H4) holds. Thenx ∈ C2(0,1)∩C[0,1] is a solution of the BVP(1.1)
if and only ifx ∈ C[0,1] is a solution of the following integral equation:

x(t) = λ

1∫
0

G(t, s)f (s)g
(
x(s)

)
ds, t ∈ I. (3.4)

Proof. This result can be easily obtained. For the sake of simplicity, we omit
process. �
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Lemma 3.4. r(K0) > 0.

Proof. Let

ψ(t) =
1∫

0

G(t, s)f0(s) ds, t ∈ I.

Then, we have

ψ(t) =
1∫

0

G(t, s)f0(s) ds �
( β∫

α

f0(s) ds

)
t (1− t), t ∈ I. (3.5)

It follows from Lemma 3.2 thatK0ψ ∈ Q, and so

(K0ψ)(t) � ‖K0ψ‖Ct (1− t), t ∈ I. (3.6)

Let b = ‖K0ψ‖C [∫ β

α
f0(s) ds]−1. By (3.5) and (3.6), we have

(K0ψ)(t) � bψ(t), t ∈ I. (3.7)

SetS = {φ ∈ Q | ‖φ‖ = 1}. For anyn ∈ N , let Kn be a linear operator defined by

(Knφ)(t) =
1∫

0

G(t, s)f0(s)

(
φ(s) + 1

n
ψ(s)

)
ds, φ ∈ Q.

By (3.7), we get

Knφ � 1

n
K0ψ � b

n
ψ, ∀φ ∈ P.

Thus,

inf
φ∈S

‖Knφ‖C � b

n
‖ψ‖C > 0.

By Lemma 3.1, there existλn > 0 andφn ∈ S such that

λnφn = Knφn, n = 1,2, . . . .

Let ε0 = α(1− β) andϑn = λ−1
n . Sinceφn ∈ Q, we get

‖φn‖C � φn(t) = ϑn

1∫
0

G(t, s)f0(s)

(
φn(s) + 1

n
ψ(s)

)
ds

� ϑn

1∫
0

G(t, s)f0(s)φn(s) ds

� ϑnε0

β∫
f0(s)s(1− s) ds‖φn‖C
α
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r,

,

for t ∈ [α,β], and so

ϑn �
(

ε0

β∫
α

f0(s)s(1− s) ds

)−1

,

which means that{ϑn} is a bounded set. SinceK0 is a completely continuous operato
there exists a subsequence{ni} of {n} andϑ � 0, φ ∈ S such thatϑni → ϑ , φni → φ as
i → +∞. Clearly,φ = ϑK0φ. Let λ = ϑ−1. It is easy to see thatϑ > 0, and therefore
λ > 0 is a positive eigenvalue. Hence,r(K0) > 0. The proof is completed.�
Proof of Theorem 3.1. By the Krein–Rutman theorem and Lemma 3.4, there existφ ∈ P

andh ∈ P ∗ such that

r(K0)φ = K0φ, r(K0)h = K∗
0h.

Obviously,φ ∈ Q. We claim thath can be taken in the following form:

h(u) =
1∫

0

φ(t)f0(t)u(t) dt, u ∈ E. (3.8)

In fact, by the Fubini theorem, foru ∈ E, we have

r(K0)h(u) =
1∫

0

r(K0)φ(t)f0(t)u(t) dt

=
1∫

0

f0(t)u(t) dt

1∫
0

G(t, s)f0(s)φ(s) ds

=
1∫

0

φ(s)f0(s) ds

1∫
0

G(s, t)f0(t)u(t) dt

= h(K0u) = (
K∗

0h
)
(u). (3.9)

Thus, (3.8) holds.
For anyu ∈ P , we have

h(u) =
1∫

0

φ(t)f0(t)u(t) dt �
β∫

α

φ(t)f0(t)t (1− t) dt‖u‖C.

Setτ = ∫ β

α φ(t)f0(t)t (1− t) dt andP0 = {u ∈ P | h(u) � τ‖u‖C}. Obviously,P0 is a cone
of E andQ ⊂ P0. It follows from Lemma 3.2 thatKP ⊂ Q andK0P ⊂ Q. Thus, (H1)
holds.

For anyM > 0, by (H5), there existsR > 0 such thatg(x) � Mx for x � R. Then, for
anyu ∈ Q with ‖u‖C � R(α(1 − β))−1, we have
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to

r

h(F (u))

h(u)
�

∫ β

α
φ(t)f0(t)g(‖u‖Ct (1− t)) dt∫ β

α
φ(t)f0(t) dt‖u‖

�
M

∫ β

α φ(t)f0(t)t (1− t) dt‖u‖C∫ β

α
φ(t)f0(t) dt‖u‖C

� Mα(1− β). (3.10)

This means that

lim
u∈Q,‖u‖→+∞

h(Fu)

h(u)
= +∞.

Let x0 ∈ Q be fixed. By the uniformly continuity ofg on [0,‖x0‖C + 1], for anyε > 0,
there exists 1> δ > 0 such that∣∣g(x) − g(x ′)

∣∣ < εg(0)

for anyx, x ′ ∈ [0,‖x0‖C + 1] and|x − x ′| < δ. Then, we get

−εg(0) < g
(
x(t)

) − g
(
x0(t)

)
< εg(0)

for any x ∈ Q and‖x − x0‖C < δ. This implies thatF is Fθ -continuous onQ. Hence,
(H2) holds. It follows from Theorem 2.1 that Theorem 3.1 holds.�
Proof of Theorem 3.2. It follows from the proof of Theorem 3.1 that we only need
check the condition (H3) holds. For anyu ∈ Q, we have

h(Fu) =
1∫

0

φ(t)f0(t)g
(
u(t)

)
dt � d

1∫
0

φ(t)f0(t)u(t) dt = h(u).

In a similar way as (3.10), we could prove that

lim
u∈Q,u→θ

h(Fu)

h(u)
= +∞.

Hence, (H3) holds. It follows from Theorem 2.2 that Theorem 3.2 holds.�
Example. Consider the following singular boundary value problem:{

y ′′ + λt−3/2(1− t)−3/2g(y) = 0, 0 < t < 1,

y(0) = 0 = y(1),

where

g(y) =
{

y1/2, y ∈ [0,1],
y, y ∈ (1,+∞).

(3.11)

Conclusion. There existsλ∗ > 0 such that the BVP(3.11)has at least one solution fo
0 < λ < λ∗, has no solution forλ > λ∗.

Proof. It is easy to check (H4) and (H6) hold. By Theorem 3.2, the conclusion holds.�
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Remark 3.1. Theorems 3.1 and 3.2 are improvements of Theorem 3 in [2] and Theore
in [3], respectively. In the Example, sinceg(0) = 0, the conclusion cannot be obtained
Theorem 1.1 in [3].

Remark 3.2. In a recent paper [6], an existence result of positive solutions of Stu
Liouville type singular boundary value problemwas obtained. Obviously, Theorems 2
and 2.2 can also be applied to that case.

4. Multiple positive radial solutions for an elliptic system on an annulus

Dunninger and Wang [5] studied the existence of positive radial solution of the ellip
system



�u + λk1(|x|)f (u, v) = 0, in Ω,

�v + λk2(|x|)g(u, v) = 0, in Ω,

α1u + β1
∂u
∂n

= 0, α2v + β2
∂v
∂n

= 0, on |x| = R1,

γ1u + δ1
∂u
∂n

= 0, γ2v + δ2
∂v
∂n

= 0, on |x| = R2,

(4.1)

whereαi,βi, γi, δi � 0 andρi = γiβi + αiγi + αiδi > 0 for i = 1,2.
It is easy to see that (4.1) is equivalent to the following system of integral equation

[5]): {
u(t) = λ

∫ 1
0 k1(t, s)h1(s)f (u(s), v(s)) ds,

v(t) = λ
∫ 1

0 k2(t, s)h2(s)g(u(s), v(s)) ds,
(4.2)

wherehi ∈ C[0,1], andki(t, s) (i = 1,2) is the Green’s function

ki(t, s) = 1

ρi

{
(βi + αis)[δi + γi(1− t)], s � t,

(βi + αi t)[δi + γi(1− s)], s > t.

Dunninger and Wang proved the following result.

Theorem 4.1 [5, Theorem 1.1].Assume

(A1) λ is a positive parameter.
(A2) k1, k2 : [R1,R2] �→ R+ are continuous and do not vanish identically on any subin

val of [R1,R2].
(A3) f,g :R+ × R+ �→ (0,+∞) are continuous.
(A4) f (u1, v1) � f (u2, v2), g(u1, v1) � g(u2, v2) for 0 � u1 � u2, 0 � v1 � v2.

(A5) f∞ = lim
u+v→∞

f (u, v)

u + v
= +∞, g∞ = lim

u+v→+∞
g(u, v)

u + v
= +∞.

Then there exists a positive numberλ∗ such that(4.1)has at least two positive solutions f
0 < λ < λ∗, at least one positive solution forλ = λ∗ and no positive solution forλ > λ∗.

As an application of Theorem 2.1, in this section, we will give a different proo
Theorem 1.1 in [5].
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In what follows of this section, the norms in the Banach spacesE = C[I,R2] and
C[I,R] are denoted by‖ · ‖ and‖ · ‖C , respectively, i.e.,‖φ‖C = maxt∈I |φ(t)| for any
φ ∈ C[I,R] and

‖φ‖ = ‖φ(1)‖C + ‖φ(2)‖C, ∀φ =
(

φ(1)

φ(2)

)
∈ C[I,R2].

Let P = {x ∈ E | x(t) � θ, t ∈ I }, andq(t) = min{q1(t), q2(t)}, where

qi(t) = [
(αi + βi)(γi + δi)

]−1
(βi + αi t)

[
δi + γi(1− t)

]
for i = 1,2. Set

Q =
{
x =

(
x1(t)

x2(t)

)
∈ P

∣∣∣ xi(t) � ‖xi‖Cqi(t) for i = 1,2, t ∈ I

}
.

It is easy to see thatQ is also a cone ofE. Let us define the linear operatorKi by

(Kix)(t) =
1∫

0

ki(t, s)hi(s)x(s) ds, x ∈ C[I,R]

for i = 1,2. Then define the operatorsK,F andA by

(Kx)(t) =
(

(K1x1)(t)

(K2x2)(t)

)
, ∀x =

(
x1(t)

x2(t)

)
∈ P,

(Fx)(t) =
(

f (x1(t), x2(t))

g(x1(t), x2(t))

)
, ∀x =

(
x1(t)

x2(t)

)
∈ P,

andA = KF .

Lemma 4.1. The operatorsA andK are completely continuous operators fromP into Q.

Proof. The complete continuity ofA andK are obvious.
Now, we prove thatK :P �→ Q. For anyx = ( x1(t)

x2(t)

) ∈ P , in a similar way as (3.1), w
have

ki(t, s)

ki(ti , s)
� qi(t), i = 1,2, t, s ∈ (0,1),

whereti ∈ I such that‖K1x1‖C = (K1x1)(t1) and‖K2x2‖C = (K2x2)(t2). Then, we get

(K1x1)(t) � ‖K1x1‖Cq1(t), (K2x2)(t) � ‖K2x2‖Cq2(t).

This means thatK :P �→ Q. In a similar way, we show thatA :P �→ Q. The proof is
completed. �
Lemma 4.2. r(K) > 0.

Proof. The proof is similar to that of Lemma 3.4, we only sketch it.
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hat

.

LetS = {x ∈ E | ‖x‖ = 1}, andψ = (ψ(1)

ψ(2)

)
, whereψ(i) = Kiω for i = 1,2, andω(t) = 1

for t ∈ I . Then, we have

Kψ =
(

K1ψ
(1)

K2ψ
(2)

)
�

(‖K1ψ
(1)‖Cq1

‖K2ψ
(2)‖Cq2

)
. (4.3)

On the other hand,

ψ =
(

ψ(1)

ψ(2)

)
�

(
ρ−1

1 (α1 + β1)(γ1 + δ1)q1
∫ 1

0 h1(s) ds

ρ−1
2 (α2 + β2)(γ2 + δ2)q2

∫ 1
0 h2(s) ds

)
. (4.4)

Let

di = ρi

[
(αi + βi)(γi + δi)

1∫
0

hi(s) ds

]−1

, i = 1,2,

and

c = min
{
d1‖K1ψ

(1)‖C,d2‖K2ψ
(2)‖C

}
.

By (4.3) and (4.4), we getKψ � cψ .
Then, by a similar argument as Lemma 3.4, we can show thatr(K) > 0. The proof is

completed. �
Proof of Theorem 4.1. It follows from Lemma 4.2 and the Krein–Rutman theorem t

there existsϕ = (ϕ(1)

ϕ(2)

) ∈ P andh ∈ P ∗ such that

r(K)ϕ = Kϕ, r(K)h = K∗h.

By a similar argument as (3.9), we see thath can be taken in the form

h(u) =
1∫

0

ϕ(1)(t)h1(t)u1(t) dt +
1∫

0

ϕ(2)(t)h2(t)u2(t) dt, ∀u =
(

u1(t)

u2(t)

)
∈ E.

Let

τ = min

{ 1∫
0

ϕ(1)(t)h1(t)q1(t) dt,

1∫
0

ϕ(2)(t)h2(t)q2(t) dt

}

andP0 = {u ∈ P | h(u) � τ‖u‖}. It is easy to see thatP0 is a cone ofE andQ ⊂ P0. Let
[α,β] be a fixed subinterval ofI andε0 = mint∈[α,β] q(t). For anyu = (

u1(t)
u2(t)

) ∈ Q, we
have

u1(t) + u2(t) �
(‖u1‖C + ‖u2‖C

)
q(t) � ε0‖u‖, ∀t ∈ [α,β]. (4.5)

By (A5) and (4.5), in a similar way as (3.10), we can show that

lim
u∈Q,‖u‖→+∞

h(Fu)

h(u)
= +∞.

By Theorem 2.1, the conclusion of Theorem 1.1 in [5] holds. The proof is completed�
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