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Abstract

For r ≥ 3, n ∈ N and each 3-monotone continuous function f on [a, b] (i.e., f is such that its third
divided differences [x0, x1, x2, x3] f are nonnegative for all choices of distinct points x0, . . . , x3 in [a, b]),
we construct a spline s of degree r and of minimal defect (i.e., s ∈ Cr−1

[a, b]) with n −1 equidistant knots
in (a, b), which is also 3-monotone and satisfies

‖ f − s‖L∞[a,b] ≤ cω4( f, n−1, [a, b])∞,

where ω4( f, t, [a, b])∞ is the (usual) fourth modulus of smoothness of f in the uniform norm. This answers
in the affirmative the question raised in [8, Remark 3], which was the only remaining unproved Jackson-type
estimate for uniform 3-monotone approximation by piecewise polynomial functions (ppfs) with uniformly
spaced fixed knots.

Moreover, we also prove a similar estimate in terms of the Ditzian–Totik fourth modulus of smoothness
for splines with Chebyshev knots, and show that these estimates are no longer valid in the case of
3-monotone spline approximation in the Lp norm with p < ∞. At the same time, positive results in
the Lp case with p < ∞ are still valid if one allows the knots of the approximating ppf to depend on f
while still being controlled.

These results confirm that 3-monotone approximation is the transition case between monotone and
convex approximation (where most of the results are “positive”) and k-monotone approximation with k ≥ 4
(where just about everything is “negative”).
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1. Introduction and main results

Let Sr (zn) be the (linear) space of all piecewise polynomial functions (ppfs) of degree r
(order r + 1) with the knots zn := (zi )

n
i=0, z0 < z1 < · · · < zn−1 < zn , i.e., for each

0 ≤ i ≤ n − 1, s|(zi ,zi+1) ∈ Πr , where Πr denotes the space of algebraic polynomials of
degree ≤ r . Also, let Sr (zn) := Sr (zn) ∩ Cr−1 be the corresponding space of splines of minimal
defect (highest smoothness). Additionally, SN ,r [a, b] is the (nonlinear) space of free knot ppfs of
degree r with at most N pieces in [a, b] (N − 1 knots in (a, b)). (Clearly, for any zn := (zi )

n
i=0,

Sr (zn) ⊆ Sn,r [z0, zn].)
Throughout this paper, “zn is a partition of [a, b]” always means that zn is an ordered set

(zi )
n
i=0, a =: z0 < z1 < · · · < zn−1 < zn := b, and additionally we set z−i := z0 and zn+i := zn

for i ∈ N (a similar convention is used for partitions xn , yn , etc.). In particular, we denote by un
and tn the uniform and Chebyshev partitions of [−1, 1], respectively, i.e., un := (−1 + 2i/n)n

i=0
and tn := (cos ((n − i)π/n))n

i=0.
Now, with J j := [z j , z j+1] let

η(zn) := max
0≤ j≤n−1

|J j±1|/|J j | (1)

be the scale of the partition zn . Also, let

µ(zn) = max
0≤i< j≤n

( j − i)(zi+1 − zi )

z j − zi
(2)

and

ϑ(zn) = max
0≤i< j≤n;

max{3i−2 j,0}≤k≤min{3 j−2i,n}−1

( j − i)(zk+1 − zk)

z j − zi
. (3)

Clearly, µ(zn) ≤ ϑ(zn) (consider k = i in (3)), and 1 ≤ η(zn) ≤ ϑ(zn) (consider j = i +1 in
(3)). It is obvious that η(un) = µ(un) = ϑ(un) = 1, and it is not difficult to show that η(tn) ≤ 3,
µ(tn) ≤ 2, and ϑ(tn) ≤ 6.

As usual, ωm( f, t, J )p is the mth modulus of smoothness of f ∈ Lp(J ) on an interval J , and
ωm( f, J )p := ωm( f, |J |, J )p.

Given k ∈ N and an open interval I = (a, b), let ∆k(I ) (or ∆k(a, b) with a slight abuse
of the notation) be the class of all k-monotone functions on I = (a, b), i.e., all functions
f : I → R such that their kth divided differences [x0, . . . , xk] f are nonnegative for all choices
of (k + 1) distinct points x0, . . . , xk in I . Recall that, if f ∈ Ck(I ), then f ∈ ∆k(I ) if and only
if f (k)

≥ 0 on I . Functions from ∆k(a, b) are not assumed to be defined at the endpoints of the
interval (a, b), and, hence, have to be neither bounded nor integrable on (a, b). For example, if
f (x) = (−1)k x−1−1/p, then f ∈ ∆k(0, 1) for k ∈ N, but f ∉ Lp[0, 1], 0 < p ≤ ∞.

It is well known (see [9,11]) that, if k ≥ 2, then f ∈ ∆k(a, b) iff f (k−2) exists and is convex
on (a, b). Therefore, f (k−2) satisfies a Lipschitz condition on any closed subinterval of (a, b), is
absolutely continuous there, and has left and right nondecreasing derivatives f (k−1)

− and f (k−1)
+

everywhere on (a, b). Moreover, the set E where f (k−1) fails to exist is countable, and f (k−1) is
continuous on (a, b) \ E .

Throughout this paper, c(γ1, γ2, . . .) denote positive constants which depend only on the pa-
rameters γ1, γ2, . . . (note that c(p, . . .) depends on p only as p → 0) and which may be different
for different occurrences (even if they appear in the same line). At the same time, ci (γ1, γ2, . . .),
i ∈ N, denote positive constants which are fixed throughout the paper. If the interval [a, b] is
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[−1, 1], it will be dropped from the notation. For example, Cm
:= Cm

[−1, 1], Lp := Lp[−1, 1],
SN ,r := SN ,r [−1, 1], etc. Also, whenever we write L∞ we mean C. Furthermore, we denote
∆k

:= ∆k(−1, 1) and, for readers’ convenience, emphasize one more time that ∆k(−1, 1) is
different from ∆k

[−1, 1].
For a function f ∈ ∆k , it is natural to require that the objects used to approximate it also

belong to ∆k , i.e., the shape of the function is preserved. Problems of monotone (k = 1) and
convex (k = 2) approximation by ppfs with fixed knots and polynomials have been extensively
investigated with a “good” pattern of the results, i.e., in many situations it is possible to obtain
the same order of approximation as in the unconstrained case. Surprisingly, for k-monotone
approximation with k ≥ 4, the order of approximation is much worse, as was first shown by
Konovalov and Leviatan [3] in the context of shape-preserving widths.

Studies of 3-monotone approximation by ppfs with fixed knots in the uniform norm in [8]
indicated that this case also somewhat fits a pattern of a “good” one, but the proofs turned out
to be more complicated. The question of validity of Jackson-type estimates for approximation
by ppfs with uniformly spaced fixed knots has been answered in all but one case as discussed
in [8, Remark 3]. Namely, it was unknown whether, for any f ∈ ∆3

∩C, it is possible to construct
a cubic ppf s ∈ ∆3 with n − 1 equidistant knots such that

‖ f − s‖L∞
≤ cω4( f, n−1, [−1, 1])∞. (4)

In this paper, we answer this question in the affirmative. This turned out to be the most difficult
case of Jackson-type estimates for k-monotone approximation by ppfs with fixed knots and
required an application of some very recent results on shape-preserving spline smoothing [6].
Note that a weaker estimate with the third modulus of smoothness of the derivative has been
established in [8], where one can also find a detailed discussion on Jackson-type estimates
involving the derivatives of the function. We believe that the difficulty with (4) is that it is a
“boundary” case between the “good” cases and the “bad” ones.

The first step in establishing (4) is the following result. For 3-monotone approximation of
f ∈ ∆3 in the Lp (quasi-) norm by cubic splines, we can achieve the best possible order of
approximation (see (6)), but the location of the knots may depend on f . At the same time, we
can still guarantee that the knots are not too close to each other (see (5)), which makes this result
different from a constrained free-knot spline approximation (see [7] or [10]).

Theorem 1.1. For every η ≥ 1, there exists a constant c1(η) > 0 so that the following statement
is valid. Let f ∈ ∆3

∩Lp, 0 < p ≤ ∞, and let xn be a partition of [−1, 1] such that η(xn) ≤ η.
Then there exist a partition ym of [−1, 1], m ≤ 20n, and a cubic ppf s ∈ S3(ym) ∩ ∆3 such

that, for each 0 ≤ k ≤ m − 1, there exists 1 ≤ j ≤ n − 1 such that [yk, yk+1] ⊆ [x j−1, x j+1]

and

yk+1 − yk ≥ c1(η)(x j+1 − x j−1). (5)

Also, for each 0 ≤ j ≤ n − 1,

‖ f − s‖Lp[x j ,x j+1]
≤ c(η, p)ω4( f, [x j−1, x j+2])p. (6)

For 3-monotone approximation in Lp, p < ∞, by a ppf with fixed knots we cannot even get
an analog of estimate (6) with ω3 instead of ω4 due to [3] (see also [2, Remark 5]). At the same
time, for p = ∞, we can move the knots to the right place and make them independent of the
function using recent results on shape-preserving smoothing [6]. However, in order to be able to
apply [6] we need to guarantee one additional degree of smoothness, i.e., we need to ensure that
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our ppf is in C2, and this can be achieved for p = ∞ by [8, Theorem 5]. We would like to remark
that it is impossible to gain this extra degree of smoothness if approximation takes place in Lp
with p < ∞ as, otherwise, one could follow the proof of Theorem 1.2 and obtain a Jackson-type
estimate in Lp with ω4, which is invalid.

In the case p = ∞, we have the following theorem.

Theorem 1.2. Let ϑ ≥ 1 and r ≥ 3. For any f ∈ ∆3
∩ C and every partition xn of [−1, 1] such

that ϑ(xn) ≤ ϑ , there exists a spline s ∈ Sr (xn) ∩ ∆3 of minimal defect such that

‖ f − s‖L∞
≤ c(r, ϑ) max

1≤ j≤n−1
ω4( f, [x j−1, x j+1])∞.

The next two results are immediate corollaries of Theorem 1.2.

Theorem 1.3. Let r ≥ 3 and n ∈ N. For any f ∈ ∆3
∩ C, there exists a spline s ∈ Sr (un) ∩ ∆3

of minimal defect such that

‖ f − s‖L∞
≤ c(r)ω4( f, n−1, [−1, 1])∞.

Theorem 1.4. Let r ≥ 3 and n ∈ N. For any f ∈ ∆3
∩ C, there exists a spline s ∈ Sr (tn) ∩ ∆3

of minimal defect such that

‖ f − s‖L∞
≤ c(r)ω

ϕ
4 ( f, n−1)∞,

where ω
ϕ
4 ( f, n−1)∞ is the Ditzian–Totik modulus of smoothness of order 4.

Note that one cannot replace ω4 with ω5 in the above estimates (see Theorem 7.1), and recall
that these estimates are not valid for 3-monotone approximation in the Lp norm with p < ∞.

At the same time, for k-monotone approximation, k ≥ 4, the situation is much worse. For
instance, one cannot have estimates with ω4( f, n−1, [−1, 1])p (see [3, Remark (iii), p. 241]).
Moreover, as a simple corollary of the results from [2], we show in Theorem 7.4 that even ω3
does not work.

Remark 1.5. It is possible to verify the validity of Theorem 1.3 completely bypassing
Theorem 1.2 and only using Theorem 1.1 (and the fact that ym is quasi-uniform if xn = un),
[4, Corollary 1.5, Lemma 5.1] and [8, Theorem 6].

2. Special free-knot spline approximation

Recall that f (i)
+ (x) and f (i)

− (x) denote the right and left i th derivatives of f at x , respectively.
By ∆k

∗(a, b) we denote the subclass of those functions f ∈ ∆k(a, b) for which the values
{ f (i)

+ (a)}k−1
i=0 and { f (i)

− (b)}k−1
i=0 are finite.

For f ∈ ∆k
∗(a, b), we define by ∆k

[ f ](a, b) the set of all functions h ∈ ∆k
∗(a, b) such that

h(i)
+ (a) = f (i)

+ (a), h(i)
− (b) = f (i)

− (b), 0 ≤ i ≤ k − 2,

h(k−1)
+ (a) ≥ f (k−1)

+ (a), and h(k−1)
− (b) ≤ f (k−1)

− (b).

Remark 2.1. Suppose that f ∈ ∆k
∗(a, b) and zm is a partition of [a, b]. The fact that h ∈

∆k(zi , zi+1) (or h ∈ ∆k
∗(zi , zi+1)) for all 0 ≤ i ≤ m − 1, does NOT imply that h is k-monotone

on (a, b). At the same time, if h is such that h ∈ ∆k
[ f ](zi , zi+1) for all 0 ≤ i ≤ m − 1, then

h ∈ ∆k(a, b).
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The following lemma shows that, instead of an arbitrary f ∈ ∆k(a, b) ∩ Lp[a, b], we may
consider f ∈ ∆k

∗(a, b), i.e., we may assume that the function f and its derivatives are bounded
at the endpoints of (a, b) and, hence, at all interior points as well.

Lemma 2.2 ([7, Lemma 4.4]). Let k ∈ N, 0 < p ≤ ∞, and f ∈ ∆k(a, b) ∩ Lp[a, b]. Then, for
any ε > 0, there exists fε ∈ ∆k

∗(a, b) such that

‖ f − fε‖Lp[a,b] < ε.

Moreover, fε coincides with f everywhere except perhaps near the endpoints of (a, b).

Proposition 2.3 ([7, Proposition 4.3]). Let k, r ∈ N, k ≥ 2, r ≥ k − 1, 0 < p ≤ ∞, f ∈

∆k
∗(a, b) ∩ Lp[a, b], and let q be such that either q ∈ Πr ∩ ∆k(a, b) or (−q) ∈ (Πr \ Πk) ∩

∆k(a, b). Then there exists s such that

s ∈ Sc(k),r [a, b] ∩ ∆k
[ f ](a, b)

and

‖ f − s‖Lp[a,b] ≤ c(p, r, k) ‖ f − q‖Lp[a,b].

Theorem 2.4. Let k, r ∈ N, k ≥ 2, r ≥ k − 1, 0 < p ≤ ∞, f ∈ ∆k
∩ Lp, xn be a partition of

[−1, 1], and let σ be any ppf from Sr (xn). Then there exist a constant c2 = c2(k, r) ∈ N and a
ppf s ∈ Sc2n,r ∩∆k , such that

(i) s has ≤ c2 pieces in each interval [x j , x j+1], 0 ≤ j ≤ n − 1, and
(ii) ‖ f − s‖Lp[x j ,x j+1] ≤ c(k, r, p)‖ f − σ‖Lp[x j ,x j+1], 0 ≤ j ≤ n − 1.

Proof. In view of Lemma 2.2, we can assume that f ∈ ∆k
∗ and, hence, f ∈ ∆k

∗(a, b), for any
(a, b) ⊆ (−1, 1). The restriction p j of σ to each interval [x j , x j+1], 0 ≤ j ≤ n − 1, is a
polynomial of degree ≤ r whose kth derivative is a polynomial of degree ≤ r − k and, hence,
has at most r − k real zeros inside [x j , x j+1] (or is identically zero there). These zeros partition

[x j , x j+1] into at most r − k + 1 subintervals I
j
1, . . . , I

j
m , 1 ≤ m ≤ max{1, r − k + 1}, and p(k)

j

is either nonnegative or negative in the interior of each I
j
i , 1 ≤ i ≤ m. This implies that either

p j ∈ Πr ∩ ∆k(I
j
i ) or (−p j ) ∈ (Πr \ Πk) ∩ ∆k(I

j
i ), for each 1 ≤ i ≤ m. Proposition 2.3 implies

that, for each 1 ≤ i ≤ m, there exists a spline s j
i such that s j

i ∈ Sc(k),r (I
j
i ) ∩ ∆k

[ f ](I
j
i ) and

‖ f − s j
i ‖Lp(I

j
i )

≤ c(p, r, k) ‖ f − p j‖Lp(I
j
i )

.

We now “glue” all pieces s j
i together, obtaining the spline s defined on [−1, 1] and whose

restriction to I
j
i is s j

i . Using Remark 2.1, it is easy to see that s ∈ Sc2n,r ∩∆k , c2 = c2(k, r), and
(i) and (ii) are satisfied. �

3. Local approximation by splines with controlled knots and the proof of Theorem 1.1

Lemma 3.1. For any interval I , k ∈ N0, 0 < p ≤ ∞, and q ∈ Πr ,q(k)

L∞(I )

≤ c(r, p)|I |−k−1/p
‖q‖Lp(I ) ≤ c|I |−k

‖q‖L∞(I ) .
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Lemma 3.2. For any intervals I ⊆ J , 0 < p ≤ ∞ and q ∈ Πr ,

‖q‖Lp(J ) ≤ c(r, p)(|J |/|I |)r+1/p
‖q‖Lp(I ) .

Lemma 3.3 ([1, Lemma 3.2]). Let r ∈ N, d := 2r2. For any q1, q2 ∈ Πr and knot sequence
xd = (xi )

d
i=0, x0 < x1 < · · · < xd , there exists a spline s ∈ Sr (xd) such that s(x) is a number

between q1(x) and q2(x) for all x ∈ [x0, xd ], s ≡ q1 on (−∞, x0] and s ≡ q2 on [xd , ∞).

Lemma 3.4. Let y0 < y1 < y2 < y3, h := y3 − y0 and for some θ > 0

y1 − y0 ≥ θh and y3 − y2 ≥ θh.

Suppose that f ∈ ∆3
[y0, y3] is such that

f |[y0,y1] =: q1 ∈ Π3 and f |[y2,y3] =: q2 ∈ Π3

(i.e., q1 and q2 are cubic polynomials), and so f ∈ C1
[y0, y3]. Then, for every 0 < p ≤ ∞,

there exists a cubic spline z ∈ SN ,3[y0, y3] satisfying

(i) z ∈ ∆3
[y0, y3];

(ii) z has ≤ 19 knots in (y0, y3), i.e., N ≤ 20;
(iii) the distance between any two knots of z is ≥ c3(θ)h;
(iv) z ≡ f in some neighborhoods of y0 and y3 (i.e., the left- and right-most pieces of z are q1

and q2, respectively);
(v) ‖ f − z‖Lp[y0,y3]

≤ c(θ, p)ω4( f, [y0, y3])p.

Proof. Everywhere in this proof, for simplicity, we set ω4 := ω4( f, [y0, y3])p. If q∗ is a cubic
polynomial satisfying Whitney’s inequality ‖ f − q∗‖Lp[y0,y3]

≤ cω4, then, using Lemma 3.2

and recalling that ‖ f + g‖p ≤ 2max{0,(1−p)/p}(‖ f ‖p + ‖g‖p), we have

‖ f − q1‖Lp[y0,y3]
≤ c ‖ f − q∗‖Lp[y0,y3]

+ c ‖q∗ − q1‖Lp[y0,y3]

≤ cω4 + c ‖q∗ − q1‖Lp[y0,y1]

= cω4 + c ‖q∗ − f ‖Lp[y0,y1]
≤ cω4.

The same estimate is clearly also valid for q2 in place of q1, and so f − q j

Lp[y0,y3]

≤ cω4, j = 1, 2, (7)

and

‖q1 − q2‖Lp[y0,y3]
≤ cω4. (8)

Denote a j := q ′′′

j , j = 1, 2, and note that a j ≥ 0 are constants. We consider two cases depending
on how large a1 is.

Case I. Suppose that

a1 ≥ A1h−3−1/pω4, (9)

where A1 = A1(θ, p) will be chosen shortly. Take x0 := (y0 + y1)/2, x18 := (y2 + y3)/2 and
xi := x0 + i(x18 − x0)/18, 1 ≤ i ≤ 17, and apply Lemma 3.3 to obtain a spline z. Conditions (ii),
(iii) and (iv) of the lemma are clearly satisfied for this z. Taking into account (8) and Lemma 3.3,
we obtain

‖q1 − z‖Lp[y0,y3]
≤ ‖q1 − q2‖Lp[y0,y3]

≤ cω4. (10)
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Together with (7), this implies that

‖ f − z‖Lp[y0,y3]
≤ c ‖ f − q1‖Lp[y0,y3]

+ c ‖q1 − z‖Lp[y0,y3]
≤ cω4,

which is (v). It remains to verify (i). Since z ∈ C2 and z′′′ exists everywhere on [y0, y3] ex-
cept possibly at xi , 0 ≤ i ≤ 18, it is sufficient to prove that z′′′(x) ≥ 0, x ≠ xi . For
x ∈ [y0, x0) ∪ (x18, y3] this is obvious because of (iv), and for x ∈ (xi , xi+1), 0 ≤ i ≤ 17,
taking into account that xi+1 − xi ≥ θh/18 and using Lemma 3.1 and (10), we have

|a1 − z′′′(x)| ≤
(q1 − z)′′′


L∞[xi ,xi+1]

≤ ch−3−1/p
‖q1 − z‖Lp[xi ,xi+1]

≤ c4h−3−1/pω4.

If we select A1 := c4, then (9) guarantees that z′′′(x) ≥ 0.
Case II. Suppose now that (9) does not hold, i.e., a1 < c4h−3−1/pω4. Lemma 3.1 and (8) yield

|a1 − a2| =
(q1 − q2)

′′′

L∞[y0,y3]

≤ ch−3−1/p
‖q1 − q2‖Lp[y0,y3]

≤ ch−3−1/pω4,

and so we have

a j ≤ ch−3−1/pω4, j = 1, 2. (11)

Take z0 := (y0 + y1)/2, z1 := y1, z2 := y2, z3 := (y2 + y3)/2, denote

l j (x) := q ′′

1 (z j )(x − z j ) + q ′

1(z j ), j = 0, 1,

and

l j (x) := q ′′

2 (z j )(x − z j ) + q ′

2(z j ), j = 2, 3

and define

s1(x) :=


f ′(x), x ∉ [z0, z3],

max
j=0,1,2,3

l j (x), x ∈ [z0, z3].

By convexity of f ′, s1 is a convex quadratic ppf satisfying

s1(x) ≤ f ′(x), x ∈ [y0, y3]. (12)

Since the tangent lines to any quadratic polynomial at points x = a and x = b intersect at
x = (a + b)/2, we conclude that the knots of s1 are z0, (z0 + z1)/2, z̃, (z2 + z3)/2, z3, where
z̃ ∈ [z1, z2] = [y1, y2], and, consequently, they are not closer than θh/4 to one another.

Now, let

s2(x) :=


f ′(x), x ∉ [z0, z3],

l(x), x ∈ [z0, z3],

where l is the linear function interpolating f ′ at z0 and z3. The convexity of f ′ implies that s2 is
a convex quadratic spline with knots z0 and z3 such that

f ′(x) ≤ s2(x), x ∈ [y0, y3]. (13)

Inequalities (12) and (13) now guarantee that we can choose α ∈ [0, 1] so that

z(x) := f (z0) +

∫ x

z0

(αs1(t) + (1 − α)s2(t))dt
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satisfies z(z3) = f (z3) and, hence, z is a cubic spline satisfying (iv). Clearly, (i)–(iii) are fulfilled
as well, and so we only need to verify (v).

Let ỹ := (y0 + y3)/2; then Lemma 3.1 and (8) imply that

|q ′′

1 (ỹ) − q ′′

2 (ỹ)| ≤
q ′′

1 − q ′′

2


L∞[y0,y3]

≤ ch−2−1/pω4. (14)

Inequality (11) yields

q ′′

1 (ỹ) − q ′′

1 (y0) ≤ ch−2−1/pω4

and

q ′′

2 (y3) − q ′′

2 (ỹ) ≤ ch−2−1/pω4,

which combined with (14) provide (recall that q ′′

1 (y0) = f ′′(y0) and q ′′

2 (y3) = f ′′(y3))

f ′′(y3) − f ′′(y0) ≤ ch−2−1/pω4. (15)

Recall that, if g ∈ ∆3(I ), then g′′(x) exists for all x ∈ I with a set of exceptions which is at most
countable, and g′′ is nondecreasing on its domain of definition. Hence, since f ∈ ∆3

[y0, y3], we
have

f ′′(y0) ≤ f ′′(x) ≤ f ′′(y3) a.e. on [y0, y3].

Similarly, since z ∈ ∆3
[y0, y3], (iv) implies that

f ′′(y0) ≤ z′′(x) ≤ f ′′(y3) a.e. on [y0, y3],

and so we obtain, by (15),

| f ′′(x) − z′′(x)| ≤ ch−2−1/pω4 a.e. on [y0, y3].

Integrating twice, we arrive at

‖ f − z‖L∞[y0,y3]
≤ ch−1/pω4,

which implies (v). �

Remark 3.5. It may appear that in Case II we have a lot of freedom to construct z. However, for
some f , the required z is unique; for example, when f (x) = (x − y)2

+ for a fixed y ∈ [y1, y2],
our only choice is z ≡ f .

Proof of Theorem 1.1. First, let σ be such that σ |[x j ,x j+1] is a cubic polynomial of best Lp
unconstrained approximation to f on [x j , x j+1]. Then, by Whitney’s inequality, we have

‖ f − σ‖Lp[x j ,x j+1]
≤ cω4( f, [x j , x j+1])p, 0 ≤ j ≤ n − 1.

Theorem 2.4 implies that there exists s̃ ∈ Sc2n,3 ∩∆3 such that

‖ f − s̃‖Lp[x j ,x j+1]
≤ cω4( f, [x j , x j+1])p, 0 ≤ j ≤ n − 1,

and s̃ has ≤ c2 = c2(3, 3) pieces in each [x j , x j+1]. Hence, for each 0 ≤ j ≤ n − 1, we can find
an interval I j := [a j , b j ] ⊆ [x j , x j+1] of length ≥ (x j+1 − x j )/c2 such that s̃ has no knots in
I j . With t j := (a j + b j )/2, for every 0 ≤ j ≤ n − 2, we apply Lemma 3.4 to s̃ with y0 := t j ,
y1 := b j , y2 := a j+1, y3 := t j+1 and θ := 1/(2ηc2) to obtain z j on [t j , t j+1]. We now define s
so that s|[t j ,t j+1] := z j , 0 ≤ j ≤ n − 2, and near the endpoints of [−1, 1], i.e., on the intervals
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[−1, t0] and [tn−1, 1], the required spline s is defined extending the polynomials z|[t0,t0+ε] and
z|[tn−1−ε,tn−1], where ε > 0 is small enough. (Note that (iv) of Lemma 3.4 implies that these
z|[t0,t0+ε] and z|[tn−1−ε,tn−1] are the same polynomials as s̃|[a0,b0] and s̃|[an−1,bn−1], respectively.)

It follows from Lemma 3.4 that s ∈ ∆3 (by (i) and (iv)), s is in S20(n−1)+1,3, has at most
40 pieces in each interval [x j , x j+1] (by (ii)), and the distance between any two knots of s in
[x j , x j+2] is not less than c(η)(x j+2 − x j ) (by (iii)). Now, (v) of Lemma 3.4 implies that

‖s̃ − s‖Lp[t j ,t j+1]
≤ cω4(s̃, [t j , t j+1])p,

and so, for 1 ≤ j ≤ n − 2,

‖ f − s‖Lp[x j ,x j+1]
≤ c ‖ f − s̃‖Lp[x j ,x j+1]

+ c ‖s̃ − s‖Lp[t j−1,t j ]
+ c ‖s̃ − s‖Lp[t j ,t j+1]

≤ cω4( f, [x j , x j+1])p + cω4(s̃, [t j−1, t j ])p + cω4(s̃, [t j , t j+1])p

≤ cω4( f, [x j−1, x j+2])p.

Finally, it remains to prove the above estimate for j = 1 and j = n − 1. We only consider
the case j = 1 (i.e., approximation on [−1, x1]) since the proof in the case for j = n − 1 is
similar. Let q∗ be the cubic polynomial satisfying Whitney’s inequality ‖ f − q∗‖Lp[−1,x1]

≤

cω4( f, [−1, x1])p, and recall that s̃ has no knots inside [a0, b0] of length ≥ c(x1 + 1), and
s̃|[a0,b0] = s|[−1,t0] =: p0 ∈ Π3. We have

‖ f − s‖Lp[−1,x1]
≤ c ‖ f − s‖Lp[−1,t0] + c ‖ f − s‖Lp[t0,t1]

≤ c ‖ f − q∗‖Lp[−1,t0] + c ‖q∗ − p0‖Lp[−1,t0]

+ c ‖ f − s̃‖Lp[t0,t1] + c ‖s̃ − s‖Lp[t0,t1]

≤ cω4( f, [−1, x2])p + c ‖q∗ − p0‖Lp[−1,t0] .

Now, Lemma 3.2 implies that

‖q∗ − p0‖Lp[−1,t0] ≤ c ‖q∗ − p0‖Lp[a0,t0] = c ‖q∗ − s̃‖Lp[a0,t0]

≤ c ‖q∗ − f ‖Lp[a0,t0] + c ‖ f − s̃‖Lp[a0,t0]

≤ cω4( f, [−1, x1])p,

which implies that

‖ f − s‖Lp[−1,x1]
≤ cω4( f, [−1, x2])p,

and the proof of Theorem 1.1 is now complete. �

4. Smoothing and moving knots to the right place

Given a partition zn of [−1, 1], we recall (see [6]) that a partition z̃m of [−1, 1] is called a
δ-remesh of zn if, for each 0 ≤ j ≤ n − 1,

max{z̃i+1 − z̃i | [z̃i , z̃i+1] ∩ (z j , z j+1) ≠ ∅} ≤ δ min
ν= j−1, j, j+1

|zν+1 − zν |

with z−1 and zn+1 defined to be (in this definition only) −∞ and +∞, respectively.

Lemma 4.1 ([6, Theorem 1.1 (q = 3)]). Let r ≥ 3, and let yl be a partition of [−1, 1]. There
exists a constant δ = δ(r) such that, for each s∗ ∈ Sr (yl) ∩ ∆3 such that

s∗ ∈ C2, (16)
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and any partition xn which is a δ-remesh of yl , there exists a spline s̃ ∈ Sr (xn) ∩ ∆3 of minimal
defect satisfying

‖s∗ − s̃‖Lp(I j ) ≤ c(r, p)ωr+1(s∗, I j )p, 0 ≤ j ≤ l,

for all 0 < p ≤ ∞, where I j := [(y j−1 + y j )/2, (y j + y j+1)/2].

It can be noted that the case for r = 3 in Lemma 4.1 was not included in the statement
of [6, Theorem 1.1], but it is not difficult to check that the same proof works and is, in fact,
simpler.

As will be shown below, Lemma 4.1 allows us to smooth 3-monotone splines to achieve
minimal defect and to change the location of the knots. However, an arbitrary 3-monotone ppf,
while being in C1, is not necessarily in C2, and so the extra smoothness condition (16) has to be
taken care of before Lemma 4.1 can be applied. The following lemma provides this smoothing
to C2 in the case p = ∞.

Lemma 4.2 ([8, Theorem 5]). Suppose that yl is a partition of [−1, 1] and s ∈ S3(yl) ∩ ∆3.
Then, there is a ppf s∗ ∈ S3(yl) ∩ ∆3 such that

s∗ ∈ C2

and

‖s − s∗‖L∞
≤ c(η(yl), µ(yl)) max

1≤ j≤l−1
ω4(s, [y j−1, y j+1])∞.

5. Auxiliary results

Given δ > 0 and a partition xn of [−1, 1] with bounded ϑ(xn), we will show that there exists
a partition zm such that xn is its δ-remesh and, at the same time, ϑ(zn) is still bounded.

Lemma 5.1. For any δ > 0, ϑ ≥ 1 and any partition xn of [a, b] with ϑ(xn) ≤ ϑ , there is a
partition zm satisfying

(i) xn is a δ-remesh of zm ,
(ii) η(zm) ≤ 2ϑ ,

(iii) ϑ(zm) ≤ c(δ, ϑ),
(iv) for any 0 ≤ j ≤ m − 1 and 0 ≤ k ≤ n − 1 such that (xk, xk+1) ∩ [z j , z j+1] ≠ ∅

z j+1 − z j ≤ c(δ, ϑ)(xk+1 − xk).

Proof. Let := max {⌈ϑ/δ⌉, 1}, m := ⌊n/ ⌋ and define zm = (z j )
m
j=0 as follows:

z j := x j , 0 ≤ j ≤ m − 1, and zm := xn .

(Note that zm−1 = x (m−1) < x m ≤ xn = zm .)
We will now show that xn is a δ-remesh of zm . Let J j := [z j , z j+1], and suppose that k is

such that [xk, xk+1] ∩ (z j , z j+1) ≠ ∅ (i.e., [xk, xk+1] ⊆ J j ). We need to show that

xk+1 − xk ≤ δ


min{|J0|, |J1|}, if j = 0,

min
ν= j−1, j, j+1

|Jν |, if 1 ≤ j ≤ m − 2,

min{|Jm−2|, |Jm−1|}, if j = m − 1.

(17)

First, if 0 ≤ j ≤ m − 2, the fact that ϑ(xn) ≤ ϑ implies that

xk+1 − xk

|J j |
≤ ϑ

x ( j+1) − x j

|J j |
=

ϑ
≤ δ
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and, if j = m − 1,

xk+1 − xk

|Jm−1|
≤

ϑ

n − (m − 1)
≤

ϑ
≤ δ.

If 1 ≤ j ≤ m − 2, then we also have

xk+1 − xk

|J j±1|
≤ ϑ

x ( j±1+1) − x ( j±1)

|J j±1|
≤

ϑ
≤ δ.

Finally, if j = m − 1, then

xk+1 − xk

|Jm−2|
≤ ϑ

x (m−1) − x (m−2)

|Jm−2|
=

ϑ
≤ δ.

Now, for any 0 ≤ j ≤ m − 1, let k j be such that

xk j +1 − xk j = max
[xi ,xi+1]⊆[z j ,z j+1]

(xi+1 − xi ).

If 0 ≤ j ≤ m − 2, we have

|J j+1|

|J j |
≤

2 (xk j+1+1 − xk j+1)

x ( j+1) − x j
≤ 2ϑ,

and
|J j |

|J j+1|
≤

(xk j +1 − xk j )

x ( j+2) − x ( j+1)

≤ ϑ,

and so (ii) is verified.
Now, suppose that k ≥ 0 is such that [xk, xk+1] ⊆ [z j , z j+1], for some 0 ≤ j ≤ m − 1. Then,

z j+1 − z j ≤ xmin{ j+2 ,n} − x j =

min{ j+2 ,n}−1−
ν= j

(xν+1 − xν)

≤

min{ j+2 ,n}−1−
ν= j

ϑ |k−ν|(xk+1 − xk) ≤ (xk+1 − xk)

j+2 −1−
ν= j

ϑ |k−ν|

≤ 2 ϑ2 −1(xk+1 − xk),

and so (iv) follows.
We will now show that ϑ(zm) is bounded. Suppose that i , j and k are such that 0 ≤ i < j ≤ m,

max{3i − 2 j, 0} ≤ k ≤ min{3 j − 2i, m} − 1, and

ϑ(zm) =
( j − i)(zk+1 − zk)

z j − zi
,

and let i ′ := i , j ′ := j , k′
:= k. Clearly, 0 ≤ i ′ < j ′ ≤ m ≤ n and

max{3i ′ − 2 j ′, 0} ≤ k′
≤ min{3 j ′ − 2i ′, m} − ≤ min{3 j ′ − 2i ′, n} − 1, and so

ϑ(zm) =
( j ′ − i ′)(zk+1 − zk)

(z j − zi )
≤

( j ′ − i ′)(zk+1 − zk)

(x j ′ − xi ′)

≤
( j ′ − i ′)

(x j ′ − xi ′)
(xmin{k′+2 ,n} − xk′) ≤

ϑ(xn) (xmin{k′+2 ,n} − xk′)

xk′+1 − xk′

≤ 2ϑ2 .

Hence, the proof is now complete. �
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Lemma 5.2. For any y0 < y1 < · · · < yN such that

yN − y0 ≤ λ min
0≤ j≤N−1

(yi+1 − yi )

and f ∈ C[y0, yN ], we have

ωk( f, [y0, yN ])∞ ≤ c(k, λ) max
1≤ j≤N−1

ωk( f, [y j−1, y j+1])∞.

Proof. Let β := k−1 min0≤ j≤N−1(yi+1 − yi ). Then

ωk( f, [y0, yN ])∞ ≤ c(k, λ)ωk( f, β, [y0, yN ])∞ = c(k, λ)ωk( f, β, [yν−1, yν+1])∞,

for some 1 ≤ ν ≤ N − 1, and so the lemma is proved. �

6. Proof of Theorem 1.2

Let f ∈ ∆3
∩ C, r ≥ 3, and suppose that xn is a partition of [−1, 1] such that ϑ(xn) ≤ ϑ .

Step 1. We set c5 := c1(2ϑ) and δ1 := (δc2
5)/(8ϑ2) (where δ = δ(r) is given in Lemma 4.1)

and use Lemma 5.1 to construct a partition zm of [−1, 1] such that xn is a δ1-remesh of zm ,
η(zm) ≤ 2ϑ , ϑ(zm) ≤ c(r, ϑ), and, for any 0 ≤ j ≤ m − 1 and any 0 ≤ k ≤ n − 1 such that
(xk, xk+1) ∩ [z j , z j+1] ≠ ∅,

z j+1 − z j ≤ c(r, ϑ)(xk+1 − xk). (18)

Step 2. It follows from Theorem 1.1 (with xn := zm) that there exists a partition yl of [−1, 1]

with l ≤ 20m, and a cubic ppf s ∈ S3(yl) ∩ ∆3 such that, for each 0 ≤ k ≤ l − 1, there exists
1 ≤ j ≤ m − 1 such that [yk, yk+1] ⊆ [z j−1, z j+1] and

yk+1 − yk ≥ c5(z j+1 − z j−1).

Also,

‖ f − s‖L∞[z j ,z j+1]
≤ c(ϑ)ω4( f, [z j−1, z j+2])∞, 0 ≤ j ≤ m − 1.

It is easy to see that

η(yl) ≤ 2η2(zm)/c5 ≤ 8ϑ2/c5.

It is also rather straightforward to show that µ(yl) is bounded by c(r, ϑ).
We also note that xn is a δ-remesh of yl . Indeed, suppose that [xi , xi+1] ∩ (yk, yk+1) ≠ ∅,

where 0 ≤ k ≤ l − 1, and let 1 ≤ j ≤ m − 1 be such that [yk, yk+1] ⊆ [z j−1, z j+1], and so
yk+1 − yk ≥ c5(z j+1 − z j−1). Since xn is a δ1-remesh of zm and, clearly, (xi , xi+1) ∩ [z j−1, z j ]

≠ ∅ or (xi , xi+1) ∩ [z j , z j+1] ≠ ∅, we also have

xi+1 − xi ≤ δ1(z j+1 − z j−1) ≤
δ1

c5
(yk+1 − yk)

≤
δ1η(yl)

c5
min

ν=k−1,k,k+1
(yν+1 − yν)

≤
8δ1ϑ

2

c2
5

min
ν=k−1,k,k+1

(yν+1 − yν)

≤ δ min
ν=k−1,k,k+1

(yν+1 − yν).
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Step 3. It follows from Lemma 4.2 that, for s ∈ S3(yl) ∩ ∆3, there is a ppf s∗ of degree ≤ 3
with the same knots such that s∗ ∈ ∆3

∩ C2 and

‖s − s∗‖L∞
≤ c(η(yl), µ(yl)) max

1≤ j≤l−1
ω4(s, [y j−1, y j+1])∞

≤ c(r, ϑ) max
1≤ j≤l−1

ω4(s, [y j−1, y j+1])∞.

Step 4. It follows from Lemma 4.1 that there exists a spline s̃ ∈ Sr (xn) ∩ ∆3 (i.e., s̃ is of
minimal defect) satisfying, for each 0 ≤ j ≤ l,

‖s∗ − s̃‖L∞[(y j−1+y j )/2,(y j +y j+1)/2] ≤ c(r)ωr+1(s∗, [(y j−1 + y j )/2, (y j + y j+1)/2])∞.

It remains to estimate the norm of f − s̃. Suppose that ‖ f − s̃‖L∞
= | f (x∗) − s̃(x∗)|, and

x∗ ∈ [yν, yν+1), for some 0 ≤ ν ≤ l − 1. Also suppose that 1 ≤ ν1 ≤ m − 1 is such that
[yν, yν+1] ⊆ [zν1−1, zν1+1] (and so yν+1 − yν ≥ c5(zν1+1 − zν1−1)).

Using Lemma 5.2, and taking into account that the scales of yl and zm are bounded, we have
(with c = c(r, ϑ))

‖ f − s̃‖L∞
≤ | f (x∗) − s(x∗)| + |s(x∗) − s∗(x∗)| + |s∗(x∗) − s̃(x∗)|

≤ ‖ f − s‖L∞
+ ‖s − s∗‖L∞

+ ‖s∗ − s̃‖L∞[(yν−1+yν )/2,(yν+1+yν+2)/2]

≤ ‖ f − s‖L∞
+ ‖s − s∗‖L∞

+ cω4 (s∗, [yν−1, yν+2])∞

≤ c ‖ f − s‖L∞
+ c max

1≤ j≤l−1
ω4(s, [y j−1, y j+1])∞ + cω4 ( f, [yν−1, yν+2])∞

≤ c ‖ f − s‖L∞
+ c max

1≤ j≤l−1
ω4( f, [y j−1, y j+1])∞ + cω4 ( f, [yν−1, yν+2])∞

≤ c max
0≤ j≤m−1

ω4( f, [z j−1, z j+2])∞ + c max
1≤ j≤l−1

ω4( f, [y j−1, y j+1])∞

≤ c max
1≤ j≤m−1

ω4( f, [z j−1, z j+1])∞

≤ c max
1≤ j≤n−1

ω4( f, [x j−1, x j+1])∞,

where the last inequality follows from (18).

7. Counterexamples and “negative” results

The following result implies that the fourth modulus of smoothness in the statement of
Theorem 1.2 (and its corollaries) cannot be replaced by any modulus of higher order.

Theorem 7.1. For any k ∈ N, A > 0, 0 < p ≤ ∞, r ∈ N, n ∈ N and 0 < ϵ < 2 there exists a
function f ∈ Ck

∩ ∆k such that

‖ f − qr‖Lp[1−ϵ,1] > Aωk+2( f, [−1, 1])p (19)

for any qr ∈ Πr satisfying q(k)
r (1) ≥ 0.

Proof. The idea of the construction belongs to Shvedov [12], and the following proof is very
similar to that of [5, Theorem 3.2]. Let f be such that f (k)(x) = (1−h−x)+ := max{1−h−x, 0},
where h > 0 will be selected later. Let Q ∈ Πk+1 be such that Q(k)(x) = 1 − h − x , and
Q(i)(−1) = f (i)(−1) for all 0 ≤ i ≤ k − 1. Since

f (x) − Q(x) =
1

(k − 1)!

∫ x

−1
(x − t)k−1


f (k)(t) − Q(k)(t)


dt,
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we get

‖ f − Q‖L∞
≤

1
(k − 1)!

∫ 1

−1
(1 − t)k−1

 f (k)(t) − Q(k)(t)
 dt

≤
hk−1

(k − 1)!

∫ 1

1−h
(t − 1 + h) dt = chk+1.

Consequently,

‖ f − Q‖Lp
≤ 21/p

‖ f − Q‖L∞
≤ chk+1

and

ωk+2( f, [−1, 1])p = ωk+2( f − Q, [−1, 1])p ≤ c ‖ f − Q‖Lp
≤ chk+1.

Assuming that (19) is not true, for some polynomial P ∈ Πr such that P(k)(1) ≥ 0, we have
‖ f − P‖Lp[1−ϵ,1] ≤ Aωk+2( f, [−1, 1])p. Then, using Lemma 3.1, we obtainP(k)(1) − Q(k)(1)

 ≤

P(k)
− Q(k)


L∞[1−ϵ,1]

≤ c ‖P − Q‖Lp[1−ϵ,1]

≤ c

‖P − f ‖Lp[1−ϵ,1] + ‖ f − Q‖Lp[1−ϵ,1]


≤ c


Aωk+2( f, [−1, 1])p + ‖ f − Q‖Lp


≤ c̃hk+1,

where c̃ depends on k, r , p, ϵ, and A, but is independent of h. Hence,

P(k)(1) ≤ Q(k)(1) +

P(k)(1) − Q(k)(1)

 ≤ −h + c̃hk+1 < 0,

for sufficiently small h, which is a contradiction. �

In order to prove a negative result for k-monotone approximation by a ppf with k ≥ 4 we need
to use several results from [2]. The next lemma follows immediately from [2, Theorem 1].

Lemma 7.2. Suppose that ξ ∈ R, F ∈ ∆3
[ξ −

1
2 , ξ +

1
2 ] and

d :=
F ′(x) − (x − ξ)+


L∞[ξ−

1
4 ,ξ+

1
4 ]

.

Then there exists an interval I ⊆ [ξ −
1
2 , ξ +

1
2 ] with |I | ≥ 1/64 such that

|F(x) − (x − ξ)2
+/2| ≥ c min{d, d2

} for all x ∈ I,

where c is an absolute constant.

Lemma 7.3 ([2, Lemma 5]). Let r ∈ N and a function G ∈ Cr
[a, b] be such that |G(r)(x)| ≥ h,

for all x ∈ [a, b]. Then there exists an interval I ⊆ [a, b], |I | ≥ 4−r (b − a) such that

|G(x)| ≥ 2−r2
−r h(b − a)r , for all x ∈ I.

Theorem 7.4. For any k ≥ 4, r ∈ N, 0 < p ≤ ∞ and A > 0, there is n ∈ N such that, for any
partition zn of [−1, 1] (into n subintervals), there exists a function f ∈ ∆k

∩ Ck−2 such that

‖ f − s‖Lp
> Aω3( f, n−1, [−1, 1])p, (20)

for any s ∈ Sr (zn) ∩ ∆k .
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Proof. Recall that x+ := max{x, 0} and x0
+ := 1 if x > 0, and x0

+ := 0 if x ≤ 0. Given n ≥ 2, let
zn be an arbitrary partition of [−1, 1]. Then, there exist ξ ∈ [−1/2, 1/2] and ς , 0 ≤ ς ≤ n − 1,
such that J := [ξ − (2n)−1, ξ + (2n)−1

] ⊆ [zς , zς+1]. Now,

‖t+ − P(t)‖L∞
≥ c(r), for any P ∈ Πr ,

and after a linear change of variable (with x = ξ + t (2n)−1 we have (x − ξ)+ = (2n)−1 t+ and
Q(x) = (2n)−1 P(t)),

‖(x − ξ)+ − Q(x)‖L∞(J ) ≥ c(r)n−1, for any Q ∈ Πr .

With f (x) :=
1

(k−1)!
(x − ξ)k−1

+ ∈ ∆k
∩ Ck−2, this means that, for any s ∈ Sr (zn) ∩ ∆k , f (k−2)

− s(k−2)


L∞(J )
≥ c(k, r)n−1.

Since J ⊆ [ξ −
1
4 , ξ +

1
4 ], Lemma 7.2 implies that there exists an interval I ⊆ [ξ −

1
2 , ξ +

1
2 ] ⊂

[−1, 1], |I | ≥
1

64 , such that

| f (k−3)(x) − s(k−3)(x)| ≥ c(k, r)n−2, for all x ∈ I.

Hence, by Lemma 7.3, for some interval I ⊆ I , |I| ≥ c(k), we get

| f (x) − s(x)| ≥ c(k, r)n−2, for all x ∈ I;

therefore

‖ f − s‖Lp
≥ c(k, r)n−2.

Assuming that (20) is not true, for every n ≥ 2, we can find s ∈ Sr (zn) so that

c(k, r)n−2
≤ ‖ f − s‖Lp

≤ Aω3( f, n−1, [−1, 1])p ≤ cAn−3
 f (3)


Lp

≤ c(k)An−3
xk−4

+


Lp[−2,2]

≤ c(k)An−3,

which is a contradiction when n is large enough. �
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