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The Euclidean dynamical symmetry hidden in the critical region of nuclear shape phase transitions
is revealed by a novel algebraic F(5) description. With a nonlinear projection, it is shown that the
dynamics in the critical region of the spherical–axial deformed and the spherical–γ -soft shape phase
transitions can indeed be manifested by this description, which thus provides a unified symmetry-based
interpretation of the critical phenomena in the region.
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Dynamical symmetries (DSs) play an important role in eluci-
dating the quintessential nature of quantum many-body dynamical
structures, especially their evolution under changing conditions.
Typical examples of DS are those associated with the interacting
boson model (IBM) [1] for nuclear structure and the vibron model
(VM) [2] for molecules and atomic clusters [3], where various DSs
provide considerable insight into the nature of shape phases and
shape phase transitions (SPTs) [4].

The IBM possesses an overall U(6) symmetry with three DSs
corresponding to three special nuclear shapes or collective modes;
namely, a spherical vibrator [U(5)], an axially deformed rotor
[SU(3)], and a γ -soft rotor [O(6)] [5,6]. In nuclei, the typical shape
phase diagram can be characterized by the so-called Casten trian-
gle [7] in the IBM parameter space with the three DSs placed at
the vertices of the triangle as shown in Fig. 1. Experimental obser-
vations show not only that these three DSs indeed exist in nuclei,
but also the SPTs occur with two good examples [1] being the first-
order SPT from U(5) to SU(3) and the second-order SPT from U(5)
to O(6). Additionally, quasidynamical symmetries have been found
to occur along the legs of the Casten triangle [8] and even inside
the triangle [9]. It has been also shown that partial dynamical sym-
metries may occur at the critical point of a SPT [10]. On the other
hand, within the Bohr–Mottelson Model (BMM) [11], the E(5) [12,
13] and X(5) [14] critical point symmetries (CPSs) were developed
to approximately but analytically describe the states at the criti-
cal point of the spherical to γ -soft SPT and those of the spherical
to axially deformed SPT, respectively. Accordingly, the structural
paradigms in the triangle shown in Fig. 1 can also be labeled
with the BMM language of vibrator, (axial) rotor, γ -soft (rotor),
http://dx.doi.org/10.1016/j.physletb.2014.03.017
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
E(5) and X(5), which are the solutions to the Bohr Hamiltonian.
However, the distinction between the IBM and the BMM should be
borne in mind. Then the algebraic collective model was developed
to provide a computationally tractable version of the BMM [15].
However, the DS structure of the CPSs is still lacking. In this work,
we will make clear the dynamical structure of the CPSs, and estab-
lish the approach to describe the states in the transitional region
connecting the two critical point symmetries as shown in Fig. 1 in
a unified way.

The E(5) CPS was initiated with the solution of the five-
dimensional square well potential in the BMM, and the corre-
sponding Hamiltonian is invariant under both translations and ro-
tations in five-dimensional space if confined in the well. It holds
then the five-dimensional Euclidean symmetry, the Eu(5) symme-
try [13]. By implementing d-boson creation and annihilation oper-
ators for the five-dimensional system with

d̃u = 1√
2
[qu + i p̃u], d†

u = 1√
2
[qu − i p̃u], (1)

where qu and p̃u are the coordinates and the associated momenta
in spherical tensor form [16,17] with Ãu = (−)u A−u , and using
the definition of Casimir operator of the Eu(5) group, C2,Eu(5) = p̃2

(see, for example, Ref. [13]), one can give the algebraic Hamiltonian
with the Eu(5) DS,

ĤF(5) = α

[
n̂d + 5

2
− 1

2

(
P̂ †

d + P̂d
)]

, (2)

where α is a scale factor, n̂d = ∑
u d†

udu and P̂d = ∑
u(−)udud−u .

The Hamiltonian (2) can be diagonalized [18] under the
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Table 1
Typical energy and B(E2) ratios in the F(5) scheme with different χ at N = 1000 together with those in the related models.

E(5) F(5) at N = 1000 X(5) U(5) O(6) SU(3)

χ = 0.0 χ = −0.4 χ = −0.8 χ = −1.0 χ = −1.1 χ = −1.32

E41 /E21 2.20 2.19 2.33 2.51 2.63 2.71 2.89 2.91 2.00 2.50 3.33

E61 /E02 1.18 1.19 1.12 1.05 1.01 1.00 0.96 0.96 1.50 1.00 21
8N−4

E02 /E21 3.03 3.02 3.53 4.22 4.67 4.93 5.61 5.67 2.00 4.50 4(2N−1)
3

B(E2;41→21)
B(E2;21→01)

1.68 1.67 1.65 1.63 1.62 1.61 1.60 1.58 2(N−1)
N

10(N2+4N−5)

7(N2+4N)

10(4N2+6N−10)

7(4N2+6N)

B(E2;02→21)
B(E2;21→01)

0.86 0.86 0.79 0.72 0.68 0.66 0.62 0.63 2(N−1)
N 0.00 0.00
Fig. 1. (Color online.) Nuclear shape phase diagram characterized by the symmetry
triangle. Note that there are two systems for labeling this paradigm; the geometric
language and the IBM (see the text).

U(5) ⊃ O(5) ⊃ O(3) basis {|nd τ � L〉} with 0 � nd < ∞. It should
be noted that this scheme does not lie in the framework of the
IBM due to the non-compactness of the Eu(5) group, but can
be translated directly from the geometric description of the E(5)
CPS [12] because the Hamiltonian of the latter may be written as
ĤBMM = 1

2B p̃2 = 1
2B C2,Eu(5) , which, however, should be confined

within an infinite square well [13]. Besides, it is not easy to in-
clude the boundary condition of the square well directly in the
algebraic realization when diagonalizing the Hamiltonian (2). Ow-
ing to the fact that the boson number N is fixed in the IBM, if the
d-bosons constructed in (1) are regarded to be equivalent to those
in the IBM, practical calculation with the algebraic Eu(5) Hamilto-
nian (2) can be realized by diagonalizing the corresponding IBM
analogue within the U(6) subspace for fixed boson number N . We
refer it then to the F(5) scheme. One can verify numerically that
ratios of the eigen-energies and the eigenstates of an infinite well
problem can indeed be produced approximately by diagonalizing
the Hamiltonian (2) within a finite boson subspace. The larger the
boson number N , the better the approximation. Thus, the link be-
tween the geometric and the dynamical F(5) algebraic description
of the CPS in the critical region of the SPT is established.

The E(5) and X(5) models are both restricted to an infinite
square well potential in β , the only difference between the two
models is how the γ degree of freedom is handled [12,14]. If only
nγ = 0 states in the X(5) model [14] are considered, which corre-
sponds to the yrast and yrare states, the β dependence in the E(5)
and X(5) models can be expressed uniformly by the Bessel equa-
tion:

ψ ′′(z) + ψ ′(z)

z
+

(
1 − v2

z2

)
ψ(z) = 0, (3)

where ψ(z) ∼ z−3/2 J v(z) with J v(z) being a Bessel function of or-
der v , in which z is proportional to the β variable. For the E(5)
model, v = τ + 3/2 with τ being the seniority number of the O(5)
group, while for the X(5) model, v = [ L(L+1)

3 + 9
4 ]1/2 with L being

the angular momentum quantum number. Accordingly, we can es-
tablish a mapping v = f (L,χ) with f (L,0) = τ since L = 2τ for

the yrast states in this case and f (L,−
√

7
2 ) = [ L(L+1)

3 + 9
4 ]1/2. Ob-

viously, there are many different choices for f , but since they are
homotopic to one and another, each one should then correspond to
a way to get those from the E(5) critical point to the X(5) critical
point. For simplicity, we take the linear mapping

v =
(

1 + 2√
7
χ

)
L

2
− 2χ√

7

[−3 + √
9 + 4L(L + 1)/3

2

]
+ 3

2
(4)

with χ ∈ [0,−
√

7
2 ]. For a given χ , we define a projection P̂χ

τ ′,τ
that projects the quantum number τ to be equivalent to τ ′ = ν −
3/2 according to (4). Obviously, the projection is nonlinear because
of the nonlinear dependence of ν on the quantum number L(τ )

shown in (4). We found that, after the projection, the Hamiltonian
given in (5) can be rewritten in terms of functionals of the U(5)
operators with

Ĥ ′
F(5) = (

P̂χ
τ ′,τ

)†
ĤF(5) P̂χ

τ ′,τ

= A + 2χ√
7

√
B − χ√

7

√
16

3
B − 40

3

√
B + 17 + 5

2

−
A + (1 + 4χ√

7
)
√

B − 2χ√
7

√
16
3 B − 40

3

√
B + 17 + 7

2

2(A + √
B + 7

2 )
C †

−C
A + (1 + 4χ√

7
)
√

B − 2χ√
7

√
16
3 B − 40

3

√
B + 17 + 7

2

2(A + √
B + 7

2 )
, (5)

where A = n̂d , B = n̂d(n̂d + 3) − 2P †
d Pd + 9

4 , C = Pd , and the scale
factor in (2) has been set as α = 1. The expression (5) is the

Hamiltonian for χ ∈ [0,−
√

7
2 ], which is well defined when be-

ing diagonalized under the U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) basis, and
regains the Hamiltonian (2) as taking χ = 0. The quadrupole op-
erator in this case may be taken simply as Tu = e(d† + d̃)

(2)
u with

e being an effective charge. As a result, a symmetry-based realiza-
tion of the dynamical structural evolution between the E(5) and
the X(5) CPSs is provided in the F(5) scheme.

Several typical energy and B(E2) ratios in the related models
are listed in Table 1. The results show clearly that the F(5) scheme
with χ = 0 and χ = −1.32 in the large N limit reproduces nicely
the results of the E(5) and X(5) models. Furthermore, the calcu-
lated quantities increase or decrease monotonously as χ changes
from the X(5) limit with χ ≈ −1.32 to the E(5) limit with χ = 0,
which all fall between those of the spherical vibrator [U(5)] and
the deformed rotor [O(6), SU(3), or O(6) and SU(3) mixed for some
cases]. The results indicate that the Eu(5) DS can definitely be con-
sidered as the critical DS of the spherical to deformed SPT region
as shown in Fig. 1.
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Table 2
Some typical energy and B(E2) ratios for 102Pd [21,22], 128Xe [23,24], 146,148Ce [25,26], and 150Nd [27], together with those calculated from Eq. (5) with different χ at
N = 1000, where “–” denotes the quantities undetermined in experiment. (N.B., the 0ξ state represents the band head state of the ξ = 2 family as that in the E(5) CPS
description.)

Ratio (χ , nucleus)

(−0.2,102Pd) (−0.4,128Xe) (−0.9,146Ce) (−1.2,148Ce) (−1.3,150Nd)

E41 /E21 (2.26, 2.29) (2.33, 2.33) (2.57, 2.58) (2.78, 2.86) (2.89, 2.93)
E61 /E21 (3.75, 3.79) (3.94, 3.92) (4.58, 4.53) (5.13, 5.30) (5.40, 5.53)
E81 /E21 (5.46, 5.42) (5.80, 5.67) (6.95, 6.72) (7.94, 8.14) (8.44, 8.68)
E61 /E0ξ

(1.15, 1.27) (1.12, 0.97) (1.03, 1.12) (0.98, 1.09) (0.96, 1.07)
E141 /E0ξ

(3.64, 3.70) (3.64, 2.57) (3.64, –) (3.64, 3.75) (3.64, 3.97)
B(E2;41→21)
B(E2;21→01)

(1.66, 1.56) (1.65, 1.47) (1.62, –) (1.61, –) (1.60, 1.56)

B(E2;0ξ →21)

B(E2;21→01)
(0.83, 0.39) (0.79, 0.33) (0.70, –) (0.64, –) (0.62, 0.37)
It is remarkable that the bandhead energies of excited 0+ states
for any given N in the F(5) scheme are universally independent
of χ when normalized to E02 . For example, E03/E02 = 2.57 for
N = 10 and E03/E02 = 2.50 for N = 1000, which in the large N
limit coincides with the rule of E0n = A(n − 1)(n + 2) [19], where
A is a χ -dependent parameter. The analysis in Ref. [19] shows that
the same law also occurs to the excited 0+ states around the crit-
ical point of the U(5)–SU(3) SPT in the large N limit. Similarly,
energies of the excited 14+ states in the F(5) scheme are also inde-
pendent of χ for any given N . This can be easily explained based
on (4), in which the values of v for L = 0 and L = 14 are inde-
pendent of χ and given by v = 3

2 and v = 17
2 , respectively. As a

result, the ratio E141/E02 can be taken as a signal of the Eu(5)
DS occurring in even-even nuclei. Furthermore, as shown in Ta-
ble 1, energies of the 6+

1 and 0+
2 states in the F(5) scheme with

−1.32 � χ � −0.8 are approximately degenerate in the large N
limit. Detailed calculations indicate that the approximate degener-
ate situations also occur among other states, e.g., (10+

1 , 0+
3 ), (14+

1 ,
0+

4 ), and so on, but the degeneracies are gradually removed with
increasing excitation energies. As discussed in Ref. [20], the de-
generacies of (6+

1 , 0+
2 ), etc., are the signature of the underlying

symmetry within the critical region in the large N limit. These
numerical results demonstrate further that the underlying sym-
metry can be attributed to the Eu(5) DS at least for low-lying
states. Moreover, the experimental data of some typical quanti-
ties for the transitional nuclei [4,7] previously identified as the
candidates of either the E(5) [12] or X(5) CPS [14], together with
those calculated from Eq. (5), are shown in Table 2. One can ob-
serve from Table 2 that the experimental data are well fitted by
the F(5) scheme except for the inter-band B(E2) ratio shown in
the last row. A possible improvements in the theoretical prediction
about the inter-band B(E2) ratio may be made by adding addi-
tional terms such as (d†d̃)

(2)
u in the quadrupole operator based on

the analysis in [28]. More specifically, the approximate degener-
acy of the 6+

1 –0+
2 levels emerges clearly both in experiment and

in the F(5) scheme for the cases with large |χ | value, and the con-
stant value of E141/E0ξ predicted by the theory is also confirmed
by experiment, which indicates that these critical nuclei may be
possible candidates for the Eu(5) symmetry.

We also investigated the scaling properties of some typical
quantities in the F(5) scheme for the case with χ = 0 correspond-
ing to the E(5) and with χ = −1.32 corresponding to the X(5)
critical point. The results are shown in Fig. 2. It is also evident from
Fig. 2 that each excited level scales with N−1, and each E2 transi-
tion rate scales with N1. Along the analysis in Ref. [8], if a Hamilto-
nian H = −�2 /(2M)+kβ2n with k ∝ Mt , its spectrum should have
a scale factor M(t−n)/(n+1) . Therefore, the spectrum of an infinite
square well should have a scale factor M(t−n)/(n+1)|n→∞ = M−1.
The N−1 power law of the spectrum in the F(5) scheme is in-
deed consistent with the conclusion with M ∝ N as shown in
Fig. 2. Scaling behaviors of some typical energies and E2 transition rates with re-
spect to N (log2 by log2) for the F(5) scheme with two χ cases.

Ref. [8]. It is apparent that ratio of two quantities must be an
N-independent constant if they obey the same power law. As a
result, the N-scaling law of the F(5) scheme shows that the Eu(5)
DS is well kept in finite N cases, which in turn suggests that the
CPS associated with an infinite well is robust in finite systems.

In summary, we proposed an algebraic F(5) scheme to re-
veal the hidden Eu(5) DS in the critical region of the spherical-
deformed SPTs. It provides thus a new perspective to understand
the nuclear dynamics in the transitional region. We have shown
that the Eu(5) DS can be directly translated from the geometric de-
scription of the CPS of the U(5)–O(6) transition. With the nonlinear
projection, the structural evolution from the CPS of the U(5)–O(6)
to that of the U(5)–SU(3) transition is realized. Our numerical anal-
ysis shows that the experimental data are reproduced well in the
scheme, which indicate that the Eu(5) DS is dominant but hidden
in the whole critical region of the SPT.
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