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Rationale: The endocannabinoid system has been implicated in the neurobiological mechanism underlying drug
addiction, especially the primary rewarding dopamine-dependent processes. Therefore, endocannabinoid recep-
tor antagonists, such as the CB1 cannabinoid antagonist rimonabant, have been proposed as candidates for pre-
ventive addiction therapies.
Objectives: Investigate the possible involvement of CB1 receptors in the development of behavioral sensitization
to ethanol, morphine and cocaine in mice.
Methods: We compared the effects of different doses of rimonabant (0.3, 1, 3 and 10 mg/kg) on spontaneous
locomotor activity in the open-field, hyperlocomotion induced by acute administration of ethanol (1.8 g/kg),
morphine (20 mg/kg) or cocaine (10 mg/kg) and on subsequent drug-induced locomotor sensitization using a
two-injection protocol in mice. We also investigated a possible depressive-like effect of an acute rimonabant
challenge at the highest dose and its potential anxiogenic property.

Results: At the highest dose, rimonabant abolished ethanol- and cocaine-induced hyperlocomotion and behavioral
sensitization without modifying spontaneous and central locomotor activity or inducing depressive-like behavior
on the forced swim test inmice. The other doses of rimonabant also selectively blockedacute ethanol-induced cen-
tral hyperlocomotion. Although rimonabant at 0.3 and 1 mg/kg potentiated the central hyperlocomotion induced
by acutemorphine injection, it was effective in attenuatingmorphine-induced behavioral sensitization at all doses.
Conclusions: Because the neural basis of behavioral sensitization has been proposed to correspond to some compo-
nents of addiction, our findings indicate that the endocannabinoid system might be involved in ethanol, cocaine
and morphine abuse.
© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Psychostimulants and other drugs of abuse, such as opiates and eth-
anol, induce behavioral sensitization in rodents (De Vries et al., 1998;
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Didone et al., 2008; Masur et al., 1986; Piazza et al., 1990; Robinson
and Becker, 1986), an increased behavioral response to the drug after
its repeated presentation (Kalivas and Stewart, 1991; Robinson and
Becker, 1986). Studies in rats andmice show that even a single exposure
to drugs of abuse can induce behavioral sensitization, a model that is
less influenced by variables that complicate the interpretation of behav-
ioral responses in multiple drug exposure protocols. Indeed, a single in-
jection of cocaine (Valjent et al., 2010), amphetamine (Chinen et al.,
2006; Frussa-Filho et al., 2004), morphine (Valjent et al., 2010;
Vanderschuren et al., 2001) or ethanol (Fukushiro et al., 2010) enhances
the locomotor stimulation produced by subsequent injection of the re-
spective drug given hours, days or weeks later, which is potentiated
when the locomotor-stimulating effect of the priming injection is paired
with the test environment (Chinen et al., 2006).

As shown by Valjent et al. (2010), the two-injection protocol of be-
havioral sensitization provides an excellent model for investigating
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the long-lasting effects of drugs of abuse. Although evidence indicates a
dissociation between locomotor sensitization and drug consumption
(Ahmed and Cador, 2006; Boyson et al., 2014), the neurocircuitry that
underlies behavioral sensitization and relapse to drug seeking behavior
is similar in both neurochemistry and neuropharmacology (for a review
see Steketee and Kalivas, 2011). Regardless of its exact correlate with
human behavior, behavioral sensitization is a reliable physiopathologic
model for the study of the mechanisms underlying addiction because
the neural changes responsible for this phenomenon may be an impor-
tant component of drug abuse (Wise and Bozarth, 1987). Of note, in
the two-injection protocol, the changes in responsiveness induced by
the first psychostimulant administration are revealed by the second
administration. As a primary effect, most drugs that are abused
by humans increase dopamine release in the nucleus accumbens
(Di Chiara and Imperato, 1988), which is innervated by neurons
from the mesolimbic dopaminergic system, thereby leading to
hyperlocomotion in rodents (Einhorn et al., 1988; Ellinwood et al.,
2000). A large body of evidence suggests that this system mediates
most neuroadaptations related to the behavioral sensitization induced
by distinct drugs of abuse (Costa et al., 2007; de Araujo et al., 2009;
Henry andWhite, 1991; Wolf et al., 1994), even in a two-injection pro-
tocol (Valjent et al., 2010). Furthermore, the repeated use of addictive
drugs produces incremental neuroadaptations in the mesolimbic
dopamine system, characterizing drug craving in addicted individuals,
which have led to the hypothesis that drug-induced neuroadaptations
underlying the phenomenon of behavioral sensitization may play an
important role in the induction andmaintenance of the compulsive pat-
terns of drug-seeking behaviors that characterize addiction (Robinson
and Berridge, 1993).

Several lines of evidence have implicated the endocannabinoid
system in behavioral responses to drugs of abuse, especially conditioned
drug seeking and relapse (De Vries and Schoffelmeer, 2005; Maldonado
et al., 2006). Among the two types of cannabinoid receptors, CB1 and
CB2 (Mackie, 2006), CB1 has been suggested as the most important
one regarding the events related to drug abuse and dependence. CB1 re-
ceptors are densely expressed within the mesolimbic dopamine path-
way (Tsou et al., 1998), and they are linked to the rewarding aspects
of drugs of abuse (De Vries et al., 2001). In addition, CB1 receptors
seem to mediate the expression of cocaine-induced locomotor sensiti-
zation (Kupferschmidt et al., 2012). The pharmacological blockade of
cannabinoid CB1 receptors by rimonabant, a CB1 receptor antagonist,
decreases psychostimulant-induced neurobiological effects, which is
paralleled by the inhibition of their behavioral responses (Corbille
et al., 2007; Filip et al., 2006; Mereu et al., 2013). However, little is
known about the role of the endocannabinoid system and CB1 receptors
on acute drug effects and on the development of addiction to other
drugs of abuse, such as ethanol and opiates.

The present study aimed to investigate the dose-dependent effects
of rimonabant on spontaneous locomotor activity of mice, on
hyperlocomotion induced by acute drug administration and on the
development of single injection-induced behavioral sensitization pro-
duced by three different drugs of abuse: ethanol, cocaine andmorphine.
Because clinical trials have revealed that rimonabantmay induce symp-
toms of anxiety and depression (Moreira and Crippa, 2009), we also
evaluated the possible depressive-like effect of an acute challenge
with rimonabant at the highest dose aswell as the central and peripher-
al locomotion frequencies of mice in the open-field under rimonabant
effect as a measure of anxiety-like behavior in mice.

2. Materials and methods

2.1. Animals

Three-month-old Swiss EPM-M1 male mice (outbred, raised and
maintained in the Center for Development of Experimental Models in
Medicine and Biology of UNIFESP) were used. Animals weighing 30–
35 g were housed under controlled temperature (22–23 °C) and light
(12 h light, 12 h dark; lights on at 6 h 45 a.m.) conditions. Food and
water were available ad libitum throughout the experiments. Animals
were maintained according to the National Institutes of Health Guide
for the Care and Use of Laboratory Animals (NIH Publications
No. 8023), revised in 2011, the EU Directive 2010/63/EU for animal ex-
periments, and the Brazilian Law for Procedures for Animal Scientific
Use (#11794/2008). The Institutional Ethical Committee of UNIFESP ap-
proved the experimental procedures under protocol #470/07. The four
different experiments were done with separate cohorts of naive
animals.

2.2. Drugs

Absolute ethanol (Merck®), cocaine-HCl (Sigma®) and mor-
phine (Sigma®) were diluted in 0.9% saline solution. Rimonabant
(Sanofi-Aventis®) was dissolved in Tween 80 and propylene glycol
and diluted to the correct concentrations with saline. A solution of
saline + 1% Tween 80 + 3% propylene glycol was used as vehicle solu-
tion (Veh) for rimonabant. Drugs and vehicle solutions were adminis-
tered intraperitoneally at 10 ml/kg of body weight. The selected dose
range of rimonabant was based on previous literature (Gerdeman
et al., 2008; Singh et al., 2004), and the doses of ethanol, cocaine and
morphine used in the present study were based on previous studies
conducted by our group (Fukushiro et al., 2008; Fukushiro et al.,
2012a, 2012b; Procopio-Souza et al., 2011).

2.3. Open-field evaluation

Locomotor activity was measured in an open-field apparatus as de-
scribed previously (Chinen and Frussa-Filho, 1999). The apparatus
consisted of a circular wooden arena (40 cm in diameter and 50 cm
high) with an open top and a floor divided into 19 squares. Hand-
operated counterswere used by an observerwhowas blind to the treat-
ment to score total (total number of any squares entered), peripheral
(number of entries into any floor unit contiguous to the apparatus
walls) and central (number of entries into any floor unit not contiguous
to the apparatus walls) locomotion frequencies during the 10-min
sessions. To ensure inter- and intra-observer reliability, all researchers
observed animals from all groups and the same observers were present
during all behavioral evaluations of each experiment, observing the
same animals on each day. Because cocaine- and amphetamine-
induced behavioral sensitization shows a diurnal pattern (Akhisaroglu
et al., 2004; Gaytan et al., 2000) and following the protocols previously
established in our laboratory (Marinho et al., 2014; Procopio-Souza
et al., 2011), all behavioral tests were conducted in the same period of
the day, during the light phase of the cycle (2 h 00 p.m. to 5 h 00 p.m.).

2.4. Forced swim test

For the evaluation of a possible depressive-like effect of rimonabant
at a high dose, mice were placed individually in a cylindrical glass con-
tainer (30 cm height, 16 cm diameter, 11 cm of water depth, 23 °C) for
6 min. The duration of immobility was manually scored during the last
4 min by observers who were blind to the manipulation applied. A
mouse was considered immobile when it floated in an upright position
and made only small movements to keep its head above water.

2.5. Experimental procedure

2.5.1. Experiments I to III: effects of acute rimonabant administration
on spontaneous locomotor activity, hyperlocomotion and behavioral
sensitization induced by ethanol, morphine and cocaine

The experimental design was performed according to the model de-
veloped by our group (Marinho et al., 2014). For thefirst experiment, 70
mice were exposed to the open-field apparatus for 2 consecutive days
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for habituation. All animals received saline (Sal) during the habituation
sessions, and they were placed individually in the apparatus 30 min
after injection. The total locomotion frequency was quantified during
the 2nd exposure. On the 3rd day (24 h after the 2nd habituation
session), mice were allocated to 5 experimental groups based on loco-
motion frequencies (i.e., groups of mice with similar total locomotion
frequencies). Before the session, mice received an i.p. injection of
vehicle (Veh1, n = 10; Veh2, n = 10; Veh3, n = 10) or rimonabant
(Rim, n = 10 per group/for each dose) at doses of 0.3, 1.0, 3.0 or
10 mg/kg. Animals were exposed to a 10-min open-field session
30 min after the injection, and their total, peripheral and central loco-
motion frequencies were evaluated. Immediately after behavioral eval-
uation, or 40 min after the rimonabant injection, 20 vehicle-treated
animals received a Sal injection (Veh1–Sal, n = 10; Veh2–Sal, n =
10), and the other 10 vehicle-treated animals and all animals pretreated
with Rim received 1.8 g/kg of ethanol (Veh3–Eth, Rim0.3–Eth, Rim1–
Eth, Rim3–Eth and Rim10–Eth). Five minutes after Eth administration,
mice were re-exposed to the open-field for locomotion quantification.

Seven days after the priming injection, mice were reallocated as
follows: half of the saline-treated animals received another Sal injection
(Veh1–Sal–Sal, n = 10), and the other half was treated acutely with
1.8 g/kg Eth (Veh2–Sal–Eth, n = 10). All other animals received a sec-
ond 1.8 g/kg Eth injection. Rimonabant was not administered during
the test for sensitization. Five minutes after Eth administration, mice
were exposed to a 10-min open-field session and their total, peripheral
and central locomotion frequencies were evaluated.

Experiments II and III were performed following the protocol for ex-
periment I. Eth was replaced with morphine (Mor) at the dose of
20 mg/kg in the second experiment (in which the interval between
Mor administration and behavioral evaluation was 20 min instead of
5 min) and with cocaine (Coc) at the dose of 10 mg/kg in the third ex-
periment. The time-point between the administration of the drugs
and the open-field exposure as well as the total amount of time of the
locomotor evaluation sessions were established by previous studies
conducted by our group (Berro et al., 2014; Fukushiro et al., 2012a,
2012b; Hollais et al., 2014; Marinho et al., 2014).

The three experiments were done with different animals using the
same number mentioned above for each experiment. The experimental
design of the three experiments is summarized in Fig. 1.

2.5.2. Experiment IV: effects of 10 mg/kg of rimonabant on depressive-like
behavior evaluated by forced swim test in mice

Twenty mice were either treated with vehicle (n = 10) or Rim at a
dose of 10 mg/kg (n = 10). Thirty minutes later, all of the animals
were subjected to the forced swim test.

2.6. Statistical analysis

Before conducting the parametric tests, all variables were checked
for normality (Shapiro–Wilk test) and homogeneity (Levene's test),
which validated the use of the parametric test. For Experiments I, II
and III, data obtained in each behavioral quantification (in response to
the factors Rim treatment or drug treatment) were analyzed using
one-way ANOVA. In Experiment IV, unpaired Student t-test was con-
ducted for the analysis of the data obtained in response to the factor
Rim treatment. Multiple comparisons were performed using Tukey's
Fig. 1. Experimental design of the study. OFE: open-field exposure; OFQ: open-field quantificat
post hoc test when necessary. A p value less than 0.05 was considered
a statistically significant difference.
3. Results

3.1. Experiment I: effects of acute rimonabant administration on spontaneous
locomotor activity, acute ethanol-induced hyperlocomotion and
ethanol-induced behavioral sensitization

Analysis of habituation using one-way ANOVA revealed no signifi-
cant difference between groups (data not shown).

Rimonabant at all doses did not modify total (Fig. 2a), peripheral
(Fig. 2b) or central (Fig. 2c) spontaneous locomotor activity compared
with the vehicle group. ANOVA and Tukey's post hoc test revealed
that acute Eth administration during the priming session increased
total locomotion frequency (Fig. 2d, Veh3–Eth N Veh1–Sal), and this
effect was abolished by the pre-administration of 10 mg/kg Rim
[F(6,63) = 9.54; p b 0.001]. The peripheral locomotor activity showed
a similar pattern of response to Eth and Rim, with Eth potentiating
this parameter and pre-injected Rim at the dose of 10 mg/kg inhibiting
acute Eth-induced peripheral hyperlocomotion [F(6,63) = 8.72;
p b 0.001] (Fig. 2e). Acute Eth administration also potentiated the cen-
tral locomotion frequency of mice, an effect that was abolished by Rim
at all doses [F(6,63) = 6.62; p b 0.001] (Fig. 2f).

Mice were previously exposed/habituated to the open-field during
the spontaneous locomotion evaluation for the subsequent within-day
session on the first ethanol challenge and were re-exposed to the
open-field on the test session only 7 days after the first ethanol injec-
tion. These different conditions could affect the locomotor activity of
mice per se. Thus, to avoid an effect of this habituation factor between-
sessions, the locomotor frequencies of mice were evaluated within-
session, compared to the respective control groups.Mice acutely treated
with Eth during the test session displayed increased total locomotion
frequency (Fig. 2g, Veh2–Sal–Eth N Veh1–Sal–Sal), and this effect was
potentiated in mice previously treated with this drug (Veh3–Eth–Eth N

Veh2–Sal–Eth). These results demonstrate the development of behavioral
sensitization to the stimulant effect of Eth. Pre-treatment with Rim at the
doses of 3 and 10 mg/kg abolished Eth-induced behavioral sensitization
[F(6,63) = 8.54; p b 0.001]. Previous treatment with Rim at the doses of
0.3 and 1mg/kg also attenuated the development of behavioral sensitiza-
tion to Eth, because both groups differed neither from the other Rim-
treated groups nor from the Veh2–Sal–Eth group in the same experimen-
tal day (Fig. 2g). A second injection of Eth one week later also led to the
development of peripheral locomotor sensitization (Veh1–Sal–Sal b
Veh2–Sal–Eth b Veh3–Eth–Eth), which was abolished by Rim pre-
treatment at all doses [F(6,63) = 7.11; p b 0.001] (Fig. 2h). The central
locomotion of mice after a second Eth administration was attenuated
by Rim pre-treatment at the doses of 3 and 10 mg/kg, in a pattern
similar to that observed in the total locomotion frequency [F(6,63) =
5.78; p b 0.001] (Fig. 2i).

The results of the total, peripheral and central locomotion frequen-
cies of Experiments I to III are summarized in Table 1 (Rimonabant
effects on acute drug-induced hyperlocomotion) and in Table 2
(Rimonabant effects on drug-induced behavioral sensitization in a
two-injection protocol).
ion; Rim: rimonabant (0.3, 1, 3 or 10 mg/kg); Eth: ethanol; Coc: cocaine; Mor: morphine.



Fig. 2.Effects of i.p. treatmentwith either rimonabant (0.3, 1, 3 or 10mg/kg) or vehicle on total (a) spontaneous locomotor activity ofmice or in the (b) peripheral (floorunits contiguous to
the apparatus walls) and (c) central (floor units not contiguous to the apparatus walls) areas of the open-field and its subsequent effects on acute 1.8 g/kg ethanol-induced total (d),
peripheral (e) and central (f) hyperlocomotion and total (g), peripheral (h) and central (i) locomotor sensitization after a 7-day interval. Data are reported as the means ± SEM.
*p b 0.05 compared to Veh1–saline and Veh2–saline ((d), (e) and (f)) or Veh2–saline–saline ((g), (h) and (i)); #p b 0.05 compared to Veh3–ethanol ((d), (e) and (f)) or Veh3–ethanol–ethanol
((g), (h) and (i)); @p b 0.05 compared to Veh2–saline–ethanol ((g) and (h)). One-way ANOVA and Tukey's test.
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3.2. Experiment II: effects of acute rimonabant administration on
spontaneous locomotor activity, acutemorphine-induced hyperlocomotion
and morphine-induced behavioral sensitization

Analysis of the habituation test using one-way ANOVA revealed no
significant differences between groups (data not shown).

Rim at all doses did not modify total (Fig. 3a), peripheral (Fig. 3b) or
central (Fig. 3c) spontaneous locomotor activity compared with the ve-
hicle group. ANOVA and Tukey's post hoc test revealed that acute Mor
administration increased both total [F(6,63) = 11.85; p b 0.001]
(Fig. 3d) and peripheral [F(6,63) = 12.96; p b 0.0001] (Fig. 3e)
Table 1
Summary of the results: rimonabant effects on acute drug-induced hyperlocomotion.

Drug-induced hyperlocomotion

Drug Rim dose Total LF Peripheral LF Central LF

Eth Rim 0.3 – – X
Rim 1 – – X
Rim 3 – – X
Rim 10 X X X

Mor Rim 0.3 – – ↑
Rim 1 – – ↑
Rim 3 – – –

Rim 10 – – –

Coc Rim 0.3 ↓ ↓ X
Rim 1 ↓ ↓ X
Rim 3 ↓ ↓ X
Rim 10 X ↓ X

LF— locomotion frequency; Rim— rimonabant; Eth— ethanol 1.8 g/kg; Mor—morphine
20 mg/kg; Coc — cocaine 10 mg/kg; X — abolishment; ↑ — potentiation; ↓ — attenuation.
locomotion frequencies in all groups during the priming session,
regardless of the previous treatment (Veh × Rim), compared to the con-
trol group (the Veh1–Sal group). Regarding the central locomotion fre-
quency, pre-treatment with Rim at the lower doses (0.3 and 1 mg/kg)
potentiated acute Mor-induced central hyperlocomotion, while
both higher doses did not modify this parameter [F(6,63) = 18.71;
p b 0.0001] (Fig. 3f).

Mice acutely treated with Mor displayed increased total locomotion
frequency in the test session (Veh2–Sal–Mor N Veh1–Sal–Sal), which
was potentiated in mice pretreated with this drug (Veh3–Mor–Mor N
Veh2–Sal–Mor). These results demonstrate behavioral sensitization to
Table 2
Summary of the results: rimonabant effects on drug-induced behavioral sensitization in a
two-injection protocol.

Test session — drug-induced behavioral sensitization

Drug Rim dose Total LF Peripheral LF Central LF

Eth Rim 0.3 ↓ X –

Rim 1 ↓ X –

Rim 3 X X X
Rim 10 X X X

Mor Rim 0.3 ↓ ↓ –

Rim 1 ↓ ↓ –

Rim 3 ↓ – X
Rim 10 ↓ – X

Coc Rim 0.3 X X X
Rim 1 X X X
Rim 3 X X X
Rim 10 X X X

LF— locomotion frequency; Rim— rimonabant; Eth— ethanol 1.8 g/kg; Mor—morphine
20 mg/kg; Coc — cocaine 10 mg/kg; X — abolishment; ↑ — potentiation; ↓ — attenuation.



Fig. 3.Effects of i.p. treatmentwith either rimonabant (0.3, 1, 3 or 10mg/kg) or vehicle on total (a) spontaneous locomotor activity ofmice or in the (b) peripheral (floorunits contiguous to
the apparatus walls) and (c) central (floor units not contiguous to the apparatus walls) areas of the open-field and its subsequent effects on acute 20 mg/kg morphine-induced total (d),
peripheral (e) and central (f) hyperlocomotion and total (g), peripheral (h) and central (i) locomotor sensitization after a 7-day interval. Data are reported as themeans± SEM. *p b 0.05
compared to Veh1–saline and Veh2–saline ((d), (e) and (f)) or Veh2–saline–saline ((g), (h) and (i)); #p b 0.05 compared to Veh3–morphine (f) or Veh3–morphine–morphine
(i); @p b 0.05 compared to Veh2–saline–morphine ((g) and (h)); $p b 0.05 compared to rimonabant 0.3 mg/kg–morphine–morphine (i); &p b 0.05 compared to rimonabant 1 mg/kg–
morphine–morphine (i). One-way ANOVA and Tukey's test.
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the stimulant effect of Mor. Previous treatment with Rim at all doses
attenuated the development of behavioral sensitization toMor, because
the Rim-treated groups differed neither from theVeh3–Mor–Mor group
nor from the Veh2–Sal–Mor group in the same experimental day
[F(6,63) = 4,98; p= 0.001] (Fig. 3g). The peripheral locomotor activity
showed a similar pattern of response toMor and Rim at the doses of 0.3
and 1mg/kg. A second injection ofMor oneweek later also led to the de-
velopment of peripheral locomotor sensitization (Veh1–Sal–Sal b

Veh2–Sal–Mor b Veh3–Mor–Mor), which was abolished by Rim pre-
treatment at the lower doses (0.3 and 1 mg/kg), while both higher
doses did not modify this parameter [F(6,63) = 5.31; p b 0.0001]
(Fig. 3h). The central locomotion of mice after a secondMor administra-
tion was attenuated by Rim pre-treatment at the doses of 3 and
10 mg/kg. In fact, the central locomotor activity of groups pre-treated
with Rim at the higher doses differed from that of all other groups on
the Mor test day, with the exception of the saline control group
(Veh1–Sal–Sal) [F(6,63) = 15.88; p b 0.0001] (Fig. 3i).

3.3. Experiment III: effects of acute rimonabant administration on
spontaneous locomotor activity, acute cocaine-induced hyperlocomotion
and cocaine-induced behavioral sensitization

Analysis of the habituation data using one-way ANOVA revealed no
significant differences between groups (data not shown).

Rimonabant at all doses did not modify total (Fig. 4a), peripheral
(Fig. 4b) or central (Fig. 4c) spontaneous locomotor activity compared
with the vehicle group. ANOVA and Tukey's post hoc test revealed
that Coc administration increased total locomotion frequency (Veh3–
Coc N Veh1–Sal) during the priming session. This increasewas attenuat-
ed by pre-administration of the lower doses of Rim (0.3, 1 or 3 mg/kg)
and abolished by the highest dose of this drug (10 mg/kg) (Veh3–Coc N
Rim10–Coc = Veh1–Sal) [F(6,63) = 13.32; p b 0.001] (Fig. 4d). The pe-
ripheral locomotor activity showed a similar pattern of response to Coc
and Rim, with Coc potentiating this parameter and pre-injected Rim at
the doses of 0.3, 1 and 3 mg/kg attenuating it. However, the highest
dose of Rim (10 mg/kg) was not effective in abolishing acute Coc-
induced peripheral hyperlocomotion, only attenuating it (Veh3–Coc N
Rim10–Coc N Veh1–Sal) [F(6,63) = 12.18; p b 0.0001] (Fig. 4e). Acute
Coc administration also potentiated the central locomotion frequency of
mice, an effect that was abolished by Rim at all doses [F(6,63) = 19.39;
p b 0.0001] (Fig. 4f).

Mice that received an acute Coc injection presented increased total
locomotion frequency compared to the control group during the
test session (Veh2–Sal–Coc N Veh1–Sal–Sal). Mice previously treated
with Coc exhibited greater hyperlocomotion (Veh3–Coc–Coc N Veh2–
Sal–Coc), which demonstrates the development of behavioral sensitiza-
tion to the stimulant effect of this drug. Pre-treatment with Rim at all
doses blocked Coc-induced behavioral sensitization (0.3–10 Rim–Coc–
Coc groups b Veh3–Coc–Coc) [F(6,63) = 6.06; p b 0.001] (Fig. 4g).
Regarding the peripheral locomotor activity, this parameter showed a
similar pattern of response in the Coc test session, with a pre-
treatment with Rim at all doses blocking Coc-induced peripheral
locomotor sensitization [F(6,63) = 4.72; p b 0.0001] (Fig. 4h). The
central locomotion ofmice after a second Coc administrationwas atten-
uated by Rim pre-treatment at all doses [F(6,63) = 9.38; p b 0.0001]
(Fig. 4i).



Fig. 4.Effects of i.p. treatmentwith either rimonabant (0.3, 1, 3 or 10mg/kg) or vehicle on total (a) spontaneous locomotor activity ofmice or in the (b) peripheral (floorunits contiguous to
the apparatus walls) and (c) central (floor units not contiguous to the apparatus walls) areas of the open-field and its subsequent effects on acute 10 mg/kg cocaine-induced total (d),
peripheral (e) and central (f) hyperlocomotion and total (g), peripheral (h) and central (i) locomotor sensitization after a 7-day interval. Data are reported as the means ± SEM.
*p b 0.05 compared to Veh1–saline and Veh2–saline ((c), (e) and (f)) or Veh1–saline–saline ((g), (h) and (i)); #p b 0.05 compared to Veh3–cocaine ((d), (e) and (f)) or Veh3–
cocaine–cocaine ((g), (h) and (i)); @p b 0.05 compared to Veh2–saline–cocaine ((g) and (h)). One-way ANOVA and Tukey's test.
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3.4. Experiment IV: effects of 10 mg/kg rimonabant on depressive-like
behavior evaluated by forced swim test in mice

Student t-test revealed no significant differences between groups,
demonstrating that Rim at the dose of 10 mg/kg did not exert a
depressive-like behavior in mice (Fig. 5).
4. Discussion

The experimental design for the present study was performed ac-
cording to a model developed by our group (Marinho et al., 2014).
This is a skillful and reliable model that allows a simultaneous evalua-
tion (e.g., in the same group of animals) of the effects of pharmacological
Fig. 5. Effects of i.p. treatment with either 10 mg/kg of rimonabant or vehicle on the
immobilization of mice submitted to the forced swim test. Data are reported as the
means ± SEM. Student t-test.
agents on the spontaneous locomotor activity of rodents and on the
acute effect of drugs of abuse, aswell as on the subsequent development
of behavioral sensitization in a two-injection protocol. The behavioral
sensitization phenomenon has been suggested to be useful for studying
the mechanisms underlying dopaminergic mesoaccumbens plasticity
(Henry and White, 1991; Kalivas and Stewart, 1991; Wolf et al., 1994),
which appears to share neuronal mechanisms with drug craving in
humans (Robinson and Berridge, 1993). In fact, the neurocircuitry that
underlies behavioral sensitization and relapse to drug seeking behavior
is similar in both neurochemistry and neuropharmacology (for a review
see Steketee and Kalivas, 2011). Of note, all drugs of abuse employed in
the present study exert their stimulant effects by increasingmesolimbic
dopaminergic transmission via distinct mechanisms (Cheer et al., 2007;
Gessa et al., 1985; Lupica and Riegel, 2005), which increases locomotor
activity in rodents (Einhorn et al., 1988; Ellinwood et al., 2000).

The ventral tegmental area (VTA), which contains dopaminergic cell
bodies, and its projections to the nucleus accumbens (NAc) are critical
elements of the circuits that mediate drug-related behaviors, including
the development of drug-induced behavioral sensitization (Carr and
Sesack, 2000; Fields et al., 2007; Humphries and Prescott, 2010).
Notably, the endocannabinoid system alsomodulates drug-seekingmo-
tivation via mechanisms dependent on dopamine release in the NAc
(Oleson and Cheer, 2012). The acute administration of ethanol
(Basavarajappa et al., 2008), morphine (Viganò et al., 2004) or cocaine
(Palomino et al., 2014) enhances the levels of endocannabinoids in
rodents. Although the mechanisms underlying these effects are still
unclear, all these drugs of abuse increase the levels of anandamide
(Ceccarini et al., 2013; Centonze et al., 2004; Viganò et al., 2004),
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which preferably binds to CB1 endocannabinoid receptors (Gonsiorek
et al., 2000; Di Marzo, 2008). CB1 cannabinoid receptors are present in
different regions of the brain reward circuitry, including the VTA and
NAc (Gardner, 2005). Acting as retrograde messengers on CB1 recep-
tors, endocannabinoids modulate the glutamatergic excitatory and the
gamma-aminobutyric acid (GABAergic) inhibitory inputs into the VTA
(Maldonado et al., 2006). The activation of CB1 receptors present in
axon terminals of GABAergic neurons in the VTA inhibits GABA
transmission, removing the inhibitory input on dopaminergic neurons
(Lupica and Riegel, 2005; Riegel and Lupica, 2004) and thereby contrib-
uting to the addictive properties induced by different drugs of abuse
that increase dopaminergic neuron firing rates, such as opiates, nicotine
and alcohol (Maldonado et al., 2006).

In fact, synthetic CB1 receptor agonists inhibit both excitatory post-
synaptic currents mediated by glutamate, and inhibitory postsynaptic
current mediated by GABA through the inhibition of synaptic transmis-
sion in the VTA (Melis et al., 2004a; Pan et al., 2008; Riegel and Lupica,
2004; Szabo et al., 2002), which in dopaminergic neurons is blocked
by the antagonism of CB1 receptors (Melis et al., 2004b). Furthermore,
it has been demonstrated that the increased release of dopamine in
the NAc induced by drugs of abuse is partly dependent upon
endocannabinoid activity in vivo (Cheer et al., 2007), which implicates
that endocannabinoids might regulate drug-related behaviors by
modulating dopamine signaling. In fact, disrupting CB1 receptor activa-
tion in the VTA dramatically reduce, whereas augmenting levels of
endocannabinoids increase, cue-evoked dopamine concentrations in
the NAc and reward seeking (Oleson et al., 2012). In this regard, Lupica
and Riegel hypothesized that the activation of CB1 receptors by
endocannabinoids modulates afferents impinging upon these cells to
further sculpt neuronal activity in the VTA (Lupica and Riegel, 2005).
Thus, the modulation of the synaptic activity by endocannabinoids is
thought to influence the firing activity of VTA dopaminergic neurons
and ultimately impact behavioral outcomes (for a review see Wang
and Lupica, 2014).

4.1. Ethanol results

In the above detailed scenario, by exerting an antagonistic property at
CB1 receptors, Rim increases GABAergic activity in the mesoaccumbens
and regulates the firing of these neurons (Cheer et al., 2007). This effect
would be expected to inhibit the primary effects of Eth and Mor. In fact,
the administration of the highest dose (10 mg/kg) of Rim inhibited
acute Eth-induced hyperlocomotion by blocking both peripheral
(Fig. 2e) and central (Fig. 2f) locomotor activities. In addition, Rim at
the doses of 0.3, 1 and 3 mg/kg selectively inhibited the central
hyperlocomotion induced by an acute Eth injection without affecting
total locomotion. These results suggest a selective effect of 10 mg/kg
Rim on the peripheral hyperlocomotion induced by Eth and a broad
effect of Rim on the classic Eth-induced anxiolytic effect (Sanday et al.,
2013). In this respect, a growing body of evidence suggests that the
endocannabinoid system plays an important role in regulating anxiety-
and alcohol-related behaviors, commonly comorbid situations (Kessler
et al., 1997; Kushner et al., 1990).

Powers et al. (2010) demonstrated that the endocannabinoid sys-
tem modulation influences both anxiety-like and conditioned alcohol
reward behaviors. However, an endocannabinoid uptake inhibitor was
not effective in blocking alcohol drinking behavior in their study. Thus,
the selective effect of Rim on the central hyperlocomotion induced by
Eth seems to be related to the inhibition of the Eth-induced anxiolysis.
Of note, Rim also did not affect Eth-induced hyperlocomotion at low
doses, being effective in the abolishment of total and peripheral locomo-
tion only at the dose of 10mg/kg. The low sensitivity of Rim in the inhi-
bition of the acute Eth stimulant effect may be due to the inhibition of
GABAergic interneurons by Eth at low doses (Lupica et al., 2004),
which increases dopaminergic activity in the VTA. Rimonabant
disinhibits these same neurons; therefore, this antagonist would only
abolish Eth-induced hyperlocomotion at concentrations that prevent
GABAergic interneuron inhibition, which may have occurred at the
highest dose.

Interestingly, while only the highest dose (10 mg/kg) abolished the
acute stimulant effect of Eth, previously administered Rim at the doses
of 3 and 10 mg/kg hindered Eth-induced behavioral sensitization due
to the inhibition of both central and peripheral locomotor frequencies.
Thus, high doses of Rim would still inhibit Eth-induced anxiolysis even
one-week later after its administration (Fig. 2i). In addition, the lower
doses of Rim selectively inhibited the peripheral hyperlocomotion in-
duced by a second Eth injection (Fig. 2h). In this scenario, all doses of
Rim would be equally effective in abolishing Eth-induced long-lasting
behavioral effects. Because the mesolimbic dopamine system is in-
volved in themediation of Eth-induced hyperlocomotion and reinforce-
ment (Cheer et al., 2007; Di Chiara and Imperato, 1988; Gessa et al.,
1985; Lupica and Riegel, 2005) one may suppose that the cannabinoid
CB1 receptor antagonist is capable of removing dopamine-mediated ap-
petitive attributes of Eth, thereby preventing Eth-induced behavioral
sensitization. In fact, studies have been demonstrating that Rim is effec-
tive in inhibiting the development of Eth self-administration behavior
(Dyr et al., 2008; Economidou et al., 2006) in rodents, which seems to
be linked to a reduction of reward-related responding instead of drug-
induced motor deficits (Economidou et al., 2006).

4.2. Morphine results

In contrast, Rim did not reduce Mor-induced acute stimulant effects
at any dose (Fig. 3d, e and f). These results suggest a distinct effect of
Rim, which is likely due to the different mechanisms of action of Eth
and Mor. Both drugs increase dopaminergic neuron firing rates from
the VTA to the NAc, with Eth enhancing dopamine release in the NAc
through its action on GABAA receptors in the VTA (Hyman et al.,
2006). On the other hand, opiates increase dopaminergic activity in
the limbic system via the activation of μ-opiate receptors on the cell
bodies of the GABAergic interneurons in the VTA, and VTA dopaminer-
gic neurons are tonically inhibited by these GABAergic interneurons
(Matsui et al., 2014). Acute treatment with opiates inhibits them, thus
disinhibiting the dopaminergic projection neurons, which then release
dopamine in the NAc and other terminal fields (Hyman et al., 2006).
Thus, despite the effects of Rim on the GABAergic transmission in the
VTA, this drug would not counteract the acute stimulant effects of
Mor, regardless of the dose administered.

At the doses of 0.3 and 1 mg/kg Rim actually potentiated Mor-
induced acute central hyperlocomotion (Fig. 3f). Mor also exerts its ef-
fects by potentiating glutamatergic neurotransmission in the VTA
(Harris et al., 2004). The first explicit demonstration of glutamatergic in-
volvement in the development of Mor-induced addictive behaviors was
the blockade of the development of behavioral sensitization by systemic
administration of antagonists of the NMDA subtype of the ionotropic
glutamate receptors (Karler et al., 1989). As previously mentioned,
endocannabinoids also modulate the glutamatergic excitatory inputs
into the VTA (Maldonado et al., 2006). Thus, the final effect on themod-
ulation of VTA dopaminergic activity by endocannabinoids depends on
the functional balance between the inhibitory GABAergic and excitatory
glutamatergic inputs. In this scenario, while the GABAergic neurons are
inhibited by an acute Mor injection, the glutamatergic neurotransmis-
sion would be potentiated by both Mor and Rim, thereby leading to an
enhanced central locomotion frequency. At higher doses, Rim would
counterbalance this effect by potentiating the GABAergic inhibition.

Although Rim did not modify acute total and peripheral Mor-
induced hyperlocomotion, it was effective in attenuating Mor-induced
behavioral sensitization at all doses. These data are in line with a previ-
ous study by Viganò et al. (2004) demonstrating that Rimmodified the
signs of Mor sensitization when administered in its expression phase,
whereas co-administration of Rim and Mor in the induction phase
only slightly affected the behavioral responses. The lower doses of Rim
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(0.3 and 1mg/kg) exerted this inhibitory effectmainly due to a decrease
in the peripheral locomotion frequency (Fig. 3h), which might be ex-
plained by the absence of Rim in the test session. In the first Mor chal-
lenge, mice experienced Mor effects in the presence of Rim 0.3 or
1 mg/kg potentiating effects, which could lead to the development of
a state dependency. This phenomenon determines that the retrieval of
learned information requires the animal to be in a state similar to that
in which the memory for this information was acquired (Izquierdo
et al., 1981). In the present study, we used a context-dependent
behavioral sensitization protocol, in which the presentation of the
drug is paired to a specific context (open-field apparatus) other
than the mice's home-cage. Thus, the applied protocol involves the
creation of associations between the drug effect and the exteroceptive
(environmental) and interoceptive (drug-related) cues (Bloise et al.,
2007). In the sensitization test, the same test environment cues were
present as those during acquisition. However, mice would not be
under the effect of Rim to retrieve the interoceptive conditioning
information, failing to respondwith a higher peripheral locomotion fre-
quency in the absence of this drug.

On the other hand, the attenuation of behavioral sensitization toMor
induced by pre-treatment with Rim at the doses of 3 and 10mg/kg was
a result of the abolishment of the central locomotion sensitization
(Fig. 3i). Of note, it has been shown that there is an interaction between
the cannabinoid and the opioid systems in the modulation of anxiety
(Zarrindast et al., 2008), which could explain the long-term effects of
high doses of rimonabant in the anxiety-like behavior of mice under
Mor condition. However, further studies are needed in order to better
understand this interaction and the mechanisms underlying these
effects.

4.3. Cocaine results

At the highest dose (10 mg/kg), Rim also inhibited Coc acute stimu-
lant effect, attenuating it at the other doses (0.3, 1 and 3 mg/kg)
(Fig. 4d), which was due to a decrease in both peripheral (Fig. 4e) and
central (Fig. 4f) locomotion frequencies at all doses. As far as we
know, this is among the first studies demonstrating a potential role for
the endocannabinoid system on primary locomotor stimulant effects
of a psychostimulant, in contrast with several other studies demonstrat-
ing that CB1 receptors are not required to obtain the activation of the
mesolimbic circuitry by drugs of abuse (for a review see Maldonado
et al., 2006). Unlike Eth and Mor, psychostimulants enhance dopamine
levels in the NAc by directly acting on dopaminergic axon terminals
(Maldonado et al., 2006). Cocaine blocks the reuptake transporters
on presynaptic dopaminergic terminals from the VTA, increasing
dopamine availability in the NAc, which potentiates the firing of
GABAergic neurons (Bocklisch et al., 2013). Rimonabant by exerting
an antagonistic property at CB1 receptors would further potentiate
this GABAergic activity in the mesoaccumbens, decreasing the VTA
dopaminergic neurotransmission and consequently the acute Coc-
induced hyperlocomotion.

Importantly, all doses of Rim prevented the development of behav-
ioral sensitization induced by Coc also due to the abolishment of both
peripheral (Fig. 4h) and central (Fig. 4i) locomotor activities of mice.
In this scenario, Rim seems to block the development of Coc-induced
behavioral sensitization regardless of the specific locomotor activity in
distinct segments of the open-field. Conflicting results have been re-
ported by several research groups about the involvement of cannabi-
noid receptors in the development of Coc-induced sensitization. Our
data are in line a with previous study by Mereu et al. (2013) showing
that a single Coc injection in mice produced behavioral sensitization
paralleled by a large stimulation of extracellular dopamine levels in
the NAc core, and that both behavioral and neurochemical effects
were reversed by CB1 receptor blockade produced by Rim (Mereu
et al., 2013). Cocaine has been suggested to release endocannabinoids
(Cheer et al., 2007). As showed in our third experiment, blockade of
cannabinoid receptors before the sensitizing injection of Coc signifi-
cantly attenuated the occurrence of behavioral sensitization. Thus, our
results support the hypothesis raised by Mereu et al. (2013) that
neuroadaptations induced by a single injection of Coc require the re-
lease of endocannabinoids. In addition, blockade of the cannabinoid
CB1 receptors during the maintenance (Gerdeman et al., 2008) or ex-
pression (Kupferschmidt et al., 2012; Ramiro-Fuentes and Fernandez-
Espejo, 2011) of a previously established behavioral sensitization to
Coc inhibits the manifestation of this phenomenon.

4.4. Ethanol vs morphine vs cocaine

In summary, the main results of the present study where that
the highest dose of Rim abolished ethanol- and cocaine-induced
hyperlocomotion and behavioral sensitizationwithoutmodifying spon-
taneous and central locomotor activity or inducing depressive-like be-
havior on the forced swim test in mice. Lower doses of Rim also
selectively blocked acute ethanol-induced central hyperlocomotion.
Although rimonabant at 0.3 and 1 mg/kg potentiated the central
hyperlocomotion induced by acute morphine injection, it was effective
in attenuating morphine-induced behavioral sensitization at all doses.
Of note, Rimwas effective in either attenuating or blocking the develop-
ment of behavioral sensitization to all drugs of abuse at all doses,
providing evidence that CB1 receptor antagonism is capable of blocking
neural adaptations resulting from a single drug exposure.

4.5. Final considerations

Regarding the chosen target drug, Rim has been approved in several
countries mainly for the treatment of obesity and associated metabolic
dysregulation. However, some clinical studies showed specific psychiat-
ric side-effects –mainly depression- and anxiety-like states –with high
doses of Rim (Moreira and Crippa, 2009), which appear to be reversible
after cessation of the drug (Moreira et al., 2009). Thus, one could assume
that our data, demonstrating an immediate effect of Rim on acute Coc-,
Mor- and especially Eth-induced hyperlocomotion and its subsequent
sensitization could be due to a depressive effect of Rim. Importantly,
in the present study Rim, at the dose that showed high specificity in
preventing both acute and sensitized drug effects, did not induce
depressive-like behavior in mice (Fig. 5). Furthermore, the chosen
dose range of Rim did not exert anxiety-like states per se, which is dem-
onstrated by the lack of difference between the vehicle- and Rim-
treated groups in the central spontaneous locomotion of mice in all
three experiments (Figs. 2c, 3c and 4c). These results discard a possible
bias and strengthen the relevance of our results and their implications.

Thus, our data indicate that Rim selectively modulates, inhibiting or
at least attenuating, the neural changes responsible for the initiation of
Eth,Mor andCoc locomotor sensitization at doses that donot induce ad-
verse effects in mice (e.g. doses that do not modify spontaneous behav-
ior or induce a depressive-like state). Because locomotor sensitization in
rodents seems to share plastic mechanisms with drug addiction in
humans, corresponding to some aspects of drug abuse, such as compul-
sive drug-seeking behavior (for a review see Steketee and Kalivas,
2011), our findings are in accordance with other studies demonstrating
a strong evidence that the endocannabinoid system is involved in drug-
seeking behavior (Justinova et al., 2009). Although one must always be
wary of extrapolating clinical relevance from animal data, the above-
discussed considerations suggest that cannabinoid CB1 receptor antag-
onists would be a good target for the development of clinical preventive
addiction therapies.

5. Conclusions

In conclusion, our data indicate that Rim selectively modulates,
inhibiting or at least attenuating, behavioral sensitization to Eth, Mor
and Coc. Because the neural basis of this phenomenon has been
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proposed to correspond to some components of addiction, our findings
demonstrate a strong evidence that the endocannabinoid systemmight
be involved in ethanol, cocaine and morphine abuse, including in com-
pulsive drug-seeking behavior.
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