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The 2-dimensional BF theory is both a gauge theory and a topological Poisson σ -model corresponding
to a linear Poisson bracket. In [3], Torossian discovered a connection which governs correlation functions
of the BF theory with sources for the B-field. This connection is flat, and it is a close relative of the KZ
connection in the WZW model. In this Letter, we show that flatness of the Torossian connection follows
from (properly regularized) quantum equations of motion of the BF theory.
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1. Introduction

The 2-dimensional BF theory is a an interesting example of a
model which is at the same time a gauge theory and a (topolog-
ical) Poisson σ -model corresponding to a linear Poisson bracket.
Hence, we have an interesting opportunity to compare two differ-
ent approaches to quantization of the model.

As a Poisson σ -model, the BF theory gives rise to a star prod-
uct on the dual space of a Lie algebra G (see [1]). The Kontsevich
approach to quantization is to fix the gauge and to study the Feyn-
man graphs of the model [2]. In this context, Torossian [3] discov-
ered a very interesting flat connection which governs the behavior
of correlation functions of exponentials of the B-field. This connec-
tion is a close relative of the Knizhnik–Zamolodchikov connection
[4] in the WZW model.

Our aim in this Letter is to better understand the origin of the
Torossian connection from the point of view of gauge theory. To
this end, we consider the BF theory with source terms for the
B-field placed at the points z1, . . . , zn , and we study the expecta-
tions of the quantum gauge field A and of the quantum B-field. In
terms of Feynman diagrams, we obtain tree contributions for the
field A and one-loop (wheel) contributions for B. Quantum fields
A and B satisfy quantum equations of motion which actually co-
incide with the classical ones.

In order to control the behavior of correlators, we need to spec-
ify the quantum gauge field A at the points z1, . . . , zn where the
source terms are located. Since A diverges at these points, we
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regularize it by subtracting the pole. At the level of Feynman di-
agrams, this corresponds to excluding one particular length-one
tree from summation (the choice of this short tree depends on the
point zi ). The set of regularized values Areg(z1), . . . , Areg(zn) form
a connection A on the space of configurations of points z1, . . . , zn .
This connection governs the behavior of correlation functions, and
it takes values in the Lie algebra of vector fields on n copies of G .

It turns out that the connection A is flat [5]. We explain the
flatness of A as a consequence of the quantum equations of motion
for the fields A and B.

The Letter is organized as follows. In Section 2, we briefly recall
the basics of the BF theory, the Feynman diagrams and classical
and quantum equations of motion. In Section 3, we study the de-
pendence of the correlation functions on the sources, introduce the
regularized gauge field and consider the flatness property of the
connection A.

2. Classical and quantum BF theory

2.1. Classical action and equations of motion

Topological field theories [6] (see [7] for a review) were intro-
duced about 20 years ago as a novel class of field theories whose
partition functions are independent of the metric. In particular, the
BF theory is a topological gauge theory which can be defined in
any dimension. Let G be a connected Lie group, G its Lie algebra,
and denote by tr(ab) an invariant scalar product on G (for instance,
the Killing form if G is semisimple). For M an oriented manifold
of dimension n (the space–time of the model) and P a principal
G-bundle over M, fields of the BF theory are the gauge field A on
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the bundle P and the G -valued (n − 2)-form B . The action is given
by

S B F = tr
∫

B F , F = dA + 1

2
[A, A]. (1)

Its quadratic part is of the first order in derivatives, so the theory
has no physical degrees of freedom (it is a topological theory of
Schwarz type, [8]). Setting the variation of the action equal to zero,
we obtain the field equations:

dB + [A, B] = D A B = 0, (2)

dA + 1

2
[A, A] = F = 0. (3)

The gauge transformations are of the form

Ag = g−1dg + g−1 Ag, B g = g−1 Bg. (4)

Since F is the curvature form, Eq. (3) states that the connection
A is flat. It is this feature that we shall investigate below in the
context of quantum gauge theory.

2.2. Feynman diagrams

It is convenient to rewrite the classical action in the form

S B F = tr
∫ (

B dA + 1

2
B[A, A]

)
, (5)

where the first term can be viewed as a free part of the action
(in fact, it corresponds to an Abelian BF theory) while the second
term represents the interaction. Feynman diagrams in this theory
are built of oriented edges pointing from A to B and of trivalent
vertices with one incoming B-field and two outgoing A-fields, see
Fig. 1.

Depending on the choice of M, the propagator corresponding
to an oriented edge can be chosen in various ways. For the BF
theory on a plane, one can choose

〈
Aa(u)Bb(v)

〉 = δab

2π
d arg(u − v),

where u and v are complex coordinates on the plane, and the
right-hand side is viewed as a 1-form with respect to u. Note that
the choice of propagator corresponds to a particular gauge fixing
in the theory. The triple vertex corresponds to structure constants
fabc of the Lie algebra G .

Fig. 1. Diagram building blocks: (a) single edge; (b) vertex.
Connected Feynman graphs of the BF theory are tree diagrams
with one external A-field and an arbitrary number of B-fields
(see Fig. 2(a)), and one-loop (or wheel-type) diagrams with only
B-fields on the external lines (see Fig. 2(b)).

2.3. BF theory with sources

We shall be interested in the BF theory with source terms for
B-field added. For the classical action, we have

Sη = tr

(∫
M

B F +
n∑

i=1

ηi B(zi)

)
, (6)

where we added classical sources ηi at n fixed points, (z1, . . . , zn).
The partition function is then given by

Kη(z1, . . . , zn) =
∫

eSη =
∫

eS B F +∑n
i=1 tr(ηi B(zi)), (7)

and it can be viewed as a correlation function of the operators
exp tr(ηi B(zi)) in the theory without sources [9],

Kη(z1, . . . , zn) = 〈
etr(ηi B(zi)) · · · etr(ηi B(zi))

〉
. (8)

For an operator O, the expectation value is defined by formula

〈O〉η =
(∫

OeSη

)/(∫
eSη

)
. (9)

Thus,

〈O〉η = 〈Oe
∑n

i=1 tr(ηi B(zi))〉
〈e∑n

i=1 tr(ηi B(zi))〉 . (10)

In particular, we shall study two cases: when O is the gauge
field A(u) and when O is the B-field B(u). Note that these are not
gauge invariant observables, and that the source terms explicitly
break the gauge invariance of the action.

First, we observe that the expectation value of the A-field ob-
tains contributions only from tree-type diagrams. This defines the
quantum gauge field A,

A(u) = 〈
A(u)

〉
η

=
∑

all trees

(
Fig. 2(a)

)
. (11)

For a B-field, it is slightly more complicated: we obtain all possible
wheel-type diagrams hanging on a branch of a tree-type diagram,
see Fig. 3.

B(u) = 〈
B(u)

〉
η

=
∑

all [TW] compositions

(Fig. 3). (12)

Note that both trees and wheels may have arbitrary lengths,
and this is taken into account in the infinite sums of (11) and (12).
In particular, among tree diagrams there are short trees (containing
only one edge, [T (l = 1)]), see Fig. 1. It is convenient to rewrite
Eq. (11) as a sum of two terms
Fig. 2. Basic diagrams: (a) Tree-type diagram, [T]; (b) Wheel-type diagram, [W].
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A(u) =
n∑

i=1

ηid arg(u − zi) + a(u; z1, . . . , zn), (13)

where a(u; z1, . . . , zn) is the sum over all trees with length l > 1,
[T (l > 1)].

2.4. Quantum equations of motion

We aim at obtaining quantum equations of motion for the BF
theory with sources. The canonical way of doing it is by apply-
ing the BRST technique, or rather its generalization – the Batalin–
Vilkovisky method, as the BRST operator does not provide a well
defined cohomology needed to define physical observables of the
theory. This method implies introducting ghosts and anti-fields
with complimentary ghost numbers and degrees (see, e.g. [10,11]).
We shall instead make use of the graphical representation of the
quantum fields – Eqs. (11), (12), resp. Fig. 2, Fig. 3, where all terms
in the field expansions are present, thus the equations obtained
should account for all quantum corrections, including those com-
ing from the gauge-fixing terms.

On Fig. 4 we show the differential of the quantum B-field. By
taking the derivative with respect to the root-point u, the corre-
sponding diagram splits into two subgraphs. The first subgraph is
a wheel-type diagram, and the second subgraph is a tree. Two
subgraphs are related by a Lie bracket corresponding to the ver-
tex where they meet. Thus, the quantum equation of motion for B
reads

dB = −[A, B]. (14)

In fact, it coincides with the classical equation of motion, Eq. (2).
For the differential of the quantum gauge field A, we use the

splitting (13) to obtain the singular and the regular parts of the
result. The singular part (one-edge graphs) generates a sum-over-
sources term, Fig. 5. As seen from Fig. 6, the derivative of the
regular part, similarly to the case of the B-field, splits into two
tree-type subgraphs rooted at u.

Thus, the quantum equation for A takes the form

Fig. 3. A typical B-field diagram – a [TW] composition.
dA = −1

2
[A, A] +

n∑
i=1

ηiδ(u − zi), (15)

which is again of the same form as the corresponding classical
equation of motion.

3. Equations for correlators and quantum flat connection

In this section, we give a physical interpretation of the equa-
tions for correlation functions constructed in [3]. These equations
fit into a flat connection studied in a more mathematical frame-
work in [5].

For this purpose, we shall investigate the dependence of the
generating functional of the B-field correlators Kη(z1, . . . , zn) on
the positions of the sources z1, . . . , zn . That is, we will be in-
terested in the derivatives of the quantum fields A and B with
respect to coordinates zi .

Note that the quantum field (13) is singular at the points where
the sources are placed. In order to regularize this singularity, it is
convenient to introduce for each i a new splitting of A(u) in the
form

A(i)(u) = ηi

2π
d arg(u − zi) + Areg

(i) (u), (16)

where all the unit-length trees but one (connecting the points u
and zi ) are now kept in the regular part:

Areg
(i) (u) =

∑
j �=i

[
T (l = 1); {u, z j}

] +
∑

all trees, l>1

[T ]

=
∑
j �=i

η j

2π
d arg(u − z j) + a(u; z1, . . . , zn). (17)

Observe, that Areg
(i) (u) has no singularity at u = zi . Let us denote

its value by

ai := Areg
(i) (u; z1, . . . , zi, . . . , zn)

∣∣
u=zi

. (18)

The quantum equation of motion for the B-field leads to the
following relation:

d tr
(
ηB(u)

) = − tr
(
η
[

A(u), B(u)
]) = − tr

([
η, A(u)

]
B(u)

)
= − tr

[
η, A(u)

] ∂

∂η
tr

(
ηB(u)

)
.

Fig. 5. Equation of motion for A: singular terms.
Fig. 4. Equation of motion for B-field.
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Fig. 6. Equation of motion for A: regular terms.
Fig. 7. Vanishing B-field diagram.

Naively, we should expect the following equation for Kη(z1, . . . , zn)

to hold:

dzi Kη(z1, . . . , zn) + tr
[
ηi, A(zi)

] ∂

∂ηi
Kη(z1, . . . , zn) = 0. (19)

Here dzi stands for the de Rham differential with respect to the
coordinate zi (note that it includes both holomorphic and anti-
holomorphic differentials). Since A(zi) is ill-defined, we need to
re-examine the Feynman graphs which contribute in the right-
hand side of Eq. (19).

The only interesting (different from the naive approach) case is
the diagram shown on Fig. 7. Its contribution vanishes because of
the factor (d arg(w − zi))

2 = 0 in the integrand of the correspond-
ing Feynman integral. Hence, the one-edge tree connecting w and
zi does not contribute in the derivative of Kη , and the renormal-
ized quantum formula replacing Eq. (19) is

dzi Kη + tr[ηi,ai] ∂

∂ηi
Kη = 0. (20)

Eq. (20) for different i can be put together in one equation

dKη + tr
n∑

i=1

[ηi,ai] ∂

∂ηi
Kη = 0, (21)

where d is the total de Rham differential for all variables z1, . . . , zn .
For functions αi(η1, . . . , ηn) ∈ G, i = 1, . . . ,n, operators

Dα = tr
n∑

i=1

[ηi,αi] ∂

∂ηi
(22)

form an interesting Lie algebra

[Dα, Dβ ] = D{α,β} (23)

with Lie bracket

{α,β}i = Dαβi − Dβαi + [αi, βi]. (24)

One can view the collection of 1-forms (a1, . . . ,an) as components
of a connection A = (a1, . . . ,an) with values in this Lie algebra.
Then, Eq. (21) for correlation functions simply reads

dKη + DA Kη = 0.

Similarly, for the differential of gauge field A(u) with respect
to the source positions we obtain
dzi A(u) = − tr[ηi,ai] ∂

∂ηi
A(u) = −Dai A(u). (25)

Note that for j �= i we can replace A(u) by Areg
( j) . Indeed, the one-

edge tree which is subtracted from A(u) to get Areg
( j) (the edge

connecting u to z j ) does not contribute neither to the left-hand
side nor to the right-hand side of Eq. (25). Then, putting u = z j
yields

dzi a j = −Dai a j. (26)

We will now show that the curvature F of A vanishes [5]. The
curvature is defined as

F = dA + 1

2
{A,A}. (27)

We will first compute its components Fi j corresponding to two
different coordinates zi �= z j (note that the curvature has holomor-
phic, anti-holomorphic and mixed components). The curvature Fi j
has n components (Fi j)k for k = 1, . . . ,n. The components with
k �= i, j vanish identically. For the remaining components, we have

(Fi j)i = dz j ai + Da j ai = 0, (Fi j) j = dzi a j + Dai a j = 0. (28)

The curvature Fii has only one nonvanishing component,

(Fii)i = dzi ai + Dai ai + 1

2
[ai,ai]. (29)

In more detail, put ai = αidzi + ᾱidz̄i to obtain

(Fii)i = ∂zi ᾱi − ∂̄zi αi + Dαi ᾱi − Dᾱi αi + [αi, ᾱi]. (30)

In order to compute this expression, we consider the differential
dzi ai . There are several types of diagrams which contribute (see
Fig. 8). Note that graphs of type (a) vanish, as in the derivative
of Kη . Graphs of types (b) and (c) generate source terms and co-
variant derivative terms. Graphs of type (d) accounts for an extra
zi dependence due to the root of the tree. The result is

dzi ai(zi) + Dai ai + 1

2
[ai,ai] =

∑
j �=i

η jδ(zi − z j). (31)

That is, away from the sources positions, the connection is flat,

dA + 1

2
{A,A} = 0. (32)

With sources taken into account, we have F = (F1, . . . ,Fn), where

Fi =
∑
j �=i

η jδ(zi − z j). (33)
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Fig. 8. Graphic zi differentiation of ai .
4. Outlook

The Torossian connection discussed in Section 3 is a close rel-
ative of the Knizhnik–Zamolodchikov (KZ) connection in the WZW
theory. Recall that the KZ connection describes correlators of pri-
mary fields, and that it has the form

dΨ + AKZΨ = 0, AKZ = 1

2π i

∑
i, j

ti, jd ln(zi − z j), (34)

where ti, j = ∑
a ei

a ⊗ e j
a are operators acting on the product of irre-

ducible representation of G carried by primary fields placed at the
points z1, . . . , zn . Note that operators ti, j play the role of one-edge
trees, and the propagator has the form d ln(zi − z j)/2π i.

The KZ connection admits the second interesting interpreta-
tion: one can view it as an equation on the wave function of
the Chern–Simons topological field theory with n time-like Wilson
lines (corresponding to primary fields) [12]. From this perspective,
holonomy matrices of the flat connection AKZ correspond to braid-
ing of Wilson lines in the Chern–Simons theory.

It would be very interesting to find a three-dimensional topo-
logical field theory which has the Torossian connection as an equa-
tion on the wave function. Of course, such a theory must have non-
local observables (similar to Wilson lines) which will correspond to
insertions of operators exp(trηi B(zi)) in the 2-dimensional theory.
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