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Abstract

In this paper, we study a 2D transient two-phase transport model for water species in the cathode gas diffusion layer of hy-

drogen polymer electrolyte fuel cell (PEFC), the reformulation of water concentration equation is described by using Kirchhoff

transformation, and its numerical efficiency is demonstrated by successfully dealing with the discontinuous and degenerate water

diffusivity. The semi-discrete and fully discrete finite element approximations with Crank-Nicolson scheme are developed for the

present model and the optimal error estimate in H1 norm and the sub-optimal error estimate in L2 norm are established for both

finite element schemes.

Keywords: Transient two-phase transport model, polymer electrolyte fuel cell (PEFC), Kirchhoff transformation, finite element

method, the optimal error estimate, Crank-Nicolson scheme.

1. Introduction

Fuel cells have been used in a large number of industries worldwide because of their advantages such as low

environmental impact, rapid start-up and high power density. Polymer electrolyte fuel cells (PEFCs) is presently

considered as a potential type of fuel cells for such application. Since PEFCs simultaneously involve electrochemical

reactions, current distribution, two-phase flow transport and heat transfer, an extensive mathematical modeling of

multi-physics system combined with the advanced numerical techniques shall make a significant impact in gaining

a fundamental understanding of the interacting electrochemical and transport phenomena and providing a computer-

aided tool for the design and optimization of future fuel cell engines.

Figure 1 schematically shows a single PEFC. A typical PEFC consists of several distinct components [1]: the

membrane electrode assembly (MEA) comprised of a proton conducting electrolyte membrane sandwiched between

two catalyst layers (CL), the porous gas diffusion layers (GDL), and the bipolar plates with embedded gas channels.

In the anode CL, the hydrogen oxidation reaction (HOR) splits the hydrogen into electrons, which are transmitted

via the external circuit, and protons, which migrate through the membrane and participate in the oxygen reduction

reaction (ORR) in the cathode CL to recombine with oxygen and produce water and waste heat. Inside the PEFCs,

water management is a key issue, and is a significant technical challenge. Sufficient amount of water is needed in the
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membrane to maintain high proton conductivity, however, excess liquid water in the electrode can cause water flood-

ing, and hinder the transport of the reactant from the gas channels to the catalyst layers. It is referred to as balancing

membrane hydration with flooding avoidance. Due to such complicated electrochemical reaction and multicomponent

and multiphase transport process, mathematical modeling and numerical simulation have become an important tool

for the design and optimization of PEFCs [2, 3, 4, 5, 6, 7, 8]. Since there are two important and also conflicting needs

in PEFCs: to hydrate the polymer electrolyte and to avoid flooding in porous electrodes and GDL for reactant/product

transport, in order to focus on the most important issue in PEFCs - water management, we only consider water trans-

port phenomenon in this paper, model its two-phase transport equation and analyze its finite element approximation.

Other species transport phenomena in PEFCs will be studied in a future paper.

Figure 1: Schematic diagram of a polymer exchange membrane fuel cell

Comparing to the plentiful literature on modeling and experimental study of fuel cells, less works are contributed

to the efficient numerical methodology of two-phase transport PEFC model. P. Sun et al [9, 10, 11, 12, 13] lead the

field in numerical studies for PEFC due to the cutting edge work on the efficient numerical techniques for the multi-

phase mixture (M2) model of PEFC, where, finite element method is adopted to discretize the governing equations of

PEFC model, and Kirchhoff transformation [14, 15, 16, 11, 12] is employed to specifically handle the derived discon-

tinuous and degenerate water diffusivity arising in the two-phase water transport model of PEFC with the intention

to accelerate the nonlinear iteration and obtain an accurate solution. However, the error estimates of finite element

method with Kirchhoff transformation have not been discussed yet for either steady state or transient PEFC model in

these papers. The goal of this paper is to accurately analyze the error estimates of the semi-discrete finite element

scheme and fully discrete finite element method with Crank-Nicolson scheme for a simplified transient two-phase

transport model in the cathode gas diffusion layer (GDL) of PEFC. We finally obtain the optimal error estimate in

H1 norm and the sub-optimal error estimate in L2 norm for both finite element schemes in spatial discretization, and

second order approximation in temporal discretization for the fully discrete scheme.

The rest of this paper is organized as follows. In Section 2, a simplified 2D two-phase transport model in the

cathode GDL of PEFC is studied. Then Kirchhoff transformation is introduced to describe the reformulated water

concentration equation, and its efficiency is demonstrated on dealing with the discontinuous and degenerate diffusivity.

The semi-discrete finite element scheme is presented and its error estimate is given in Section 3. A fully discrete finite

element method with Crank-Nicolson scheme is designed and analyzed correspondingly in Section 4.

2. A Simplified 2D Transient Two-phase Transport Model in the Cathode GDL of PEFC

2.1. Model Descriptions

In this section, the governing equations for a simplified 2D transient two-phase transport problem in the cathode

GDL of PEFC are described, together with the computational domain and the corresponding boundary conditions.

2.1.1. Governing Equations
To define a simplified 2D transient isothermal two-phase transport model in the cathode GDL, we only need to

address a pressure equation using Darcy’s law, and water concentration equation in which Darcy’s velocity is used. As

mentioned in the introduction, water management is the most important and challenging problem in PEFC model. The
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physical feature of water determines that the two-phase zone and the single-phase zone are co-existing. Nevertheless,

GDL is the major component in PEFC that contains both liquid water and gaseous water vapor, while gas channel

only contains water vapor. Therefore, in this paper the attention is put on the water species only in GDL instead of

all species spreading everywhere. Based on the M2 model, the two-phase transport model is defined as follows with

respect to water’s molar concentration C and pressure p [11, 17]:⎧⎪⎨⎪⎩ ε ∂C∂t − ∇ · (D(C)∇C) + ∇ · (γc�uC) = 0,

∇ ·
(

K
εν
∇p
)
= 0,

(1)

where ε is the porosity of GDL, the Darcy’s velocity �u is defined as �u = − K
ερν
∇p. We assume ∇ · �u = 0, thus the

pressure equation in (1) is introduced. The diffusivity D(C) in GDL is defined as

D(C) =

⎧⎪⎪⎨⎪⎪⎩
Dg f (ε), if C < Csat,(

Csat
ρg
− 1

M

)
Γcapdi f f , if C ≥ Csat,

(2)

where Dg is the effective water vapor diffusivity given as a constant for isothermal model, and f (ε) = ε1.5. The

capillary diffusion coefficient Γcapdi f f =
M

ρl−Csat M
λlλg

ν
σ cos θc(εK)

1
2

dJ(s)
ds . γc is the advection correction factor, given as

γc =

⎧⎪⎪⎨⎪⎪⎩
1, if C < Csat,
ρ
C

(
λl
M +

λg

ρg
Csat

)
, if C ≥ Csat,

(3)

where λg and λl are the relative mobilities of liquid and gaseous phases defined in Table 1. Csat is the saturated water

concentration which is a constant in isothermal case. J(s) is the Leverett function defined as

J(s) =

{
1.417(1 − s) − 2.120(1 − s)2 + 1.263(1 − s)3, if θc < 90◦,
1.417s − 2.120s2 + 1.263s3, if θc > 90◦, (4)

here s ∈ [0, 1] denotes the liquid saturation, which has coequality with water concentration, shown as s = C−Csat
ρl
M −Csat

. It

is not difficult to see Γcapdi f f = 0 when C = Csat. Therefore D(C) degenerates at Csat. We define a new advection

correction factor γ̄c = −Kγc
ερν

, then the water concentration equation in (1) can be written as

ε
∂C
∂t
− ∇ · (D(C)∇C) + ∇ · (γ̄c∇pC) = 0, (5)

Table 1: Parameters and their physical relations [1]

Density ρ = ρl s + ρg(1 − s)

Molar concentration C = Cls +Cg(1 − s)

Kinematic viscosity ν =
(

krl
νl
+

krg

νg

)−1

Relative mobilities λl(s) = krl/νl
krl/νl+krg/νg

, λg(s) = 1 − λl(s)

Relative permeabilities krl = s3, krg = (1 − s)3

2.1.2. Computational Domain and Boundary Conditions
The governing equations (1) take place in the cathode GDL of PEFC, as shown in Fig. 2. The x-axis represents

the flow direction and the y-axis points in the through-plane direction. The dimension sizes of this computational

domain are marked in Fig. 2 as well. ∂C
∂n = 0 and

∂p
∂n = 0 on the left and right walls (∂Ω2 and ∂Ω3). On the bottom

wall connecting with gas channel (∂Ω1), C is given as constant Cb and p(x) = p1 − (p1 − p2) x
lPEFC

. On the top wall

connecting with catalyst layer (∂Ω4),
∂p
∂n = 0 and D(C)∇C · �n − (γ̄c∇pC) · �n = I(x)

2F , where F is the Faraday constant

and I(x) the volumetric transfer current density of reaction, given as [11] I(x) =
(
I1 − (I1 − I2) x

lPEFC

)
. Here p1, p2, I1

and I2 are predetermined constants. In fact, I(x) is the linear reduction of Butler-Volmer equation, indicating that the

transfer current density linearly decreases from the inlet to the outlet.
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Figure 2: Computational Domain

2.2. Reformulation of Water Equation by Kirchhoff Transformation
2.2.1. Kirchhoff Transformation

As discussed in section 2.1.1, D(C) is degenerate and also discontinuous at Csat, which causes the numerical

simulation to be inefficient and unstable. In order to resolve such computational difficulties, we introduce the Kirchhoff

transformation [11] as W(C) =
∫ C

0
D(w)dw. Then

W(C) =

⎧⎪⎪⎨⎪⎪⎩
Dg f (ε)C, if C < Csat,

Dg f (ε)Csat +
∫ C

Csat

(
Csat
ρg
− 1

M

)
Γcapdi f f dw, if C ≥ Csat.

(6)

Furthermore,

ΔW(C) = ∇ · (D(C)∇C) =

⎧⎪⎪⎨⎪⎪⎩
∇ · (Dg f (ε)∇C), if C < Csat,

∇ ·
((

Csat
ρg
− 1

M

)
Γcapdi f f∇C

)
, if C ≥ Csat.

(7)

Thus we are able to reformulate the water concentration equation (5) with Kirchhoff transformation as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ε
D(C)+δ

∂W
∂t − ΔW = −∇ · (γ̄c∇pC) in GDL,

W =
∫ Cb

0
D(w)dw on ∂Ω1,
∂W
∂n = 0 on ∂Ω2, ∂Ω3,

∇W · �n − γ̄c∇pC(W) · �n = I(x)
2F on ∂Ω4.

(8)

Here δ is a sufficiently small positive number for the sake of avoidance of possible zero denominator at C = Csat.

It may be improper if one insists on applying Kirchhoff transformation to ∇ · (γ̄c∇pC), a new convection term that

explicitly depends on W will be obtained as

∇ · (γ̄c∇pC) = γ̄c∇p · ∇C + ∇ · (γ̄c∇p)C = γ̄c∇p · ∇W
D(C)

+ ∇ · (γ̄c∇p)C(W), (9)

then the corresponding reformulated water concentration equation becomes

ε

D(C) + δ

∂W
∂t
− ΔW +

γ̄c∇p
D(C) + δ

· ∇W = −∇ · (γ̄c∇p)C(W), (10)

where, a huge convection term may be produced when the water concentration C is close to the degenerate point

Csat. Therefore, for the interest of numerical stability, it is better to avoid applying Kirchhoff transformation to the

convection term in (8), and leave it to the right hand side as an equivalent force term in order to achieve a stable

numerical simulation.

2.2.2. Model Generalization
In order to extend the numerical analysis on error estimates of finite element method, which will be given in

Section 3, to a more general case, the reformulated water concentration equation can be generalized to the following

form of convection-diffusion-reaction equation

r(C)
∂W
∂t
− ΔW + �b(C,∇p) · ∇W = f (C,∇p,Δp), (11)

4
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where r(C) = ε
D(C)+δ

, �b(C,∇p) =
γ̄c∇p

D(C)+δ
, f (C,∇p,Δp) = −∇ · (γ̄c∇p) C(W). Obviously, (8) and (10) are just special

cases of (11). Without loss of generality, in what follows, we will carry out the error estimates of finite element

method for (11) instead of (8) or (10).

All the necessary coefficient functions and their proper derivatives are Lipschitz continuous, and their upper and

lower bounds satisfy the following conditions for C ≥ 0,

d ≤ D(C) ≤ D, 0 < r ≤ r(C) ≤ R, b < �b(C,∇p) < B, |γ(C)| < Γ, bp <
∣∣∣∣�bp(C,∇p)

∣∣∣∣ < Bp, bpp <
∣∣∣∣�bpp(C,∇p)

∣∣∣∣ < Bpp. (12)

However, since D(C) is discontinuous at Csat, r(C) and �b(C,∇p) are also discontinuous at Csat for (8). Therefore the

following conditions are to be satisfied when C is on either side of Csat,∣∣∣r′(C)
∣∣∣ ≤ R′,

∣∣∣r′′(C)
∣∣∣ ≤ R′′, bc <

∣∣∣∣�bc(C,∇p)
∣∣∣∣ < Bc, bcc <

∣∣∣∣�bcc(C,∇p)
∣∣∣∣ < Bcc, bcp <

∣∣∣∣�bcp(C,∇p)
∣∣∣∣ < Bcp. (13)

2.2.3. Kirchhoff Inverse Transformation
According to the definition of Kirchhoff transformation in (6), the expression for C is not explicit. For the case

C < Csat, since the Kirchhoff transformation is linear, it is not hard to calculate C directly from W using

C =
(
Dg f (ε)

)−1
W. (14)

However, if C ≥ Csat, it is necessary to adopt Newton’s method to find a proper C, given by the following iterative

solution [11](k = 0, 1, 2, . . .):

Ck+1 = Ck +
W − Dg f (ε)Csat −

∫ Ck

Csat
D(w)dw

D(Ck) + δ
. (15)

3. Semi-discrete Scheme and Its Error Estimate

3.1. Semi-discrete FEM

After applying Kirchhoff transformation, the governing equations (5) now become:⎧⎪⎪⎨⎪⎪⎩
ε

D(C)+δ
∂W
∂t − ΔW = −∇ · (γ̄c∇pC),

∇ ·
(

K
εν
∇p
)
= 0.

(16)

Define Hw =
{
W ∈ H1

(
0,T ; Hk+1(Ω) ∩W1,∞(Ω)

)
; W |∂Ω1

= Cb

}
, H̄w = {W ∈ Hw; W |∂Ω = 0},

Hp =
{
p ∈ Hk+1(Ω) ∩W1,∞(Ω); p|∂Ω1

= p1 − (p1 − p2) x
lPEFC

}
and H̄p =

{
p ∈ Hp; p|∂Ω = 0

}
and apply standard finite

element method to (16).

The weak form of (16) is given as: find (W, p) ∈ Hw × Hp, such that for any (v, q) ∈ Hw × Hp:⎧⎪⎪⎨⎪⎪⎩
(

ε
D(C)+δ

∂W
∂t , v
)
+ (∇W,∇v) = (γ̄c∇pC,∇v) +

∫
Ω4

I(x)
2F vds,(

K
εν
∇p,∇q

)
= 0.

(17)

Define piecewise linear polynomial finite element spaces, S h ⊆ Hw, Th ⊆ Hp, S̄ h ⊆ H̄w and T̄h ⊆ H̄p. Given

Cn
h ∈ S h, find (Wn+1

h , p
n+1
h ) ∈ S h × Th such that for any (vh, qh) ∈ S̄ h × T̄h,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

ε
D(Cn

h)+δ

∂Wn+1
h
∂t , vh

)
+
(
∇Wn+1

h ,∇vh

)
=
(
γ̄c∇pCn

h,∇vh

)
+
∫
Ω4

I(x)
2F vhds,(

K
εν
∇pn+1

h ,∇qh

)
= 0.

(18)
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3.2. FEM Approximation Analysis

Lemma 3.1. [18] Suppose p ∈ Hk+1(Ω), then

‖p − ph‖L∞(L2) + h ‖p − ph‖L∞(H1) ≤ Khk+1 ‖p‖L∞(Hk+1) . (19)

Lemma 3.2. Suppose C ∈ H1
(
0,T ; Hk+1(Ω) ∩W1,∞(Ω)

)
and W =

∫ C
0

D(w)dw. The norms of C and W have the
relation

d ‖C‖Hk+1∩W1,∞ ≤ ‖W‖Hk+1∩W1,∞ ≤ D ‖C‖Hk+1∩W1,∞ . (20)

Proof. Since W =
∫ C

0
D(w)dw, by taking derivatives with respect to time and space respectively, one has Wt = D(C)Ct

and ∇W = D(C)∇C. Because d ≤ D(C) ≤ D, (20) can be obtained easily.

Apply the standard finite element method to (11) for the purpose of error estimate, its weak form is given as: find

C,W ∈ Hw, such that(
r(C)
∂W
∂t
, v
)
+ (∇W,∇v) + (�b(C,∇p) · ∇W, v) = ( f (C,∇p,Δp), v), ∀v ∈ H̄w. (21)

The semi-discretization form of (11) is given as follows: Find Ch,Wh ∈ S h, such that(
r(Ch)

∂Wh

∂t
, vh

)
+ (∇Wh,∇vh) + (�b(Ch,∇ph) · ∇Wh, vh) = ( f (Ch,∇ph,Δph), vh), ∀vh ∈ S̄ h. (22)

Define a projection W̃ ∈ S h to satisfy

(∇(W − W̃),∇vh) + (�b(C,∇p) · ∇(W − W̃), vh) = 0, ∀vh ∈ S̄ h, (23)

then (21) becomes: Find C,W ∈ Hw, such that(
r(C)
∂W
∂t
, v
)
+ (∇W̃,∇v) + (�b(C,∇p) · ∇W̃, v) = ( f (C,∇p,Δp), v), ∀v ∈ H̄w. (24)

Lemma 3.3. Suppose C ∈ H1
(
0,T ; Hk+1(Ω) ∩W1,∞(Ω)

)
and W =

∫ C
0

D(w)dw. Let W̃ be the projection defined in
(23), then the error estimates for projections are given as∥∥∥W − W̃

∥∥∥
0
+ h
∥∥∥W − W̃

∥∥∥
1
≤ Khk+1 ‖C‖k+1 , (25)∥∥∥(W − W̃)t

∥∥∥
0
+ h
∥∥∥(W − W̃)t

∥∥∥
1
≤ Khk+1(‖C‖k+1 + ‖Ct‖k+1). (26)

Proof. Let ΠhW ∈ S̄ h be the interpolation of W and W − W̃ = W −ΠhW + ΠhW − W̃. Since ΠhW − W̃ ∈ S̄ h, by (23),(
∇
(
W − W̃

)
,∇
(
W − W̃

))
+
(
�b(C,∇p) · ∇

(
W − W̃

)
,W − W̃

)
=
(
∇
(
W − W̃

)
,∇ (W − ΠhW)

)
+
(
�b(C,∇p) · ∇

(
W − W̃

)
,W − ΠhW

)
. (27)

By (12),
∥∥∥∥∇ (W − W̃

)∥∥∥∥
0
+
∥∥∥W − W̃

∥∥∥
0
≤ K (‖∇ (W − ΠhW)‖0 + ‖W − ΠhW‖0), where K is a proper constant. This

implies ∥∥∥W − W̃
∥∥∥

1
≤ K inf

ΠhW∈S̄ h

‖W − ΠhW‖1 ≤ Khk ‖W‖k+1 ≤ Khk ‖C‖k+1 . (28)

Let e = W − W̃, e ∈ S̄ h, define w ∈ H2(Ω) ∩ H1
0(Ω) to satisfy the adjoint problem of (23):

{ −Δw − ∇(�b(C,∇p) · w) = e,
w = 0.

(29)
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Then

‖e‖20 = − (e,Δw) −
(
e,∇(�b(C,∇p) · w)

)
= (∇e,∇ (w − Πhw + Πhw)) +

(
∇e, �b(C,∇p) · (w − Πhw + Πhw)

)
= (∇e,∇ (w − Πhw)) −

(
∇e, �b(C,∇p) · (w − Πhw)

)
≤ K ‖e‖1 ‖w − Πhw‖1 , (30)

whereΠhw is the interpolation of w withΠhw ∈ S̄ h, and K is a constant. Since ‖w − Πhw‖1 ≤ Kh ‖w‖2 and ‖w‖2 ≤ ‖e‖0,

it is easy to see that ‖e‖20 ≤ Kh ‖e‖1 ‖e‖0. Therefore by (28) and Lemma 3.2,∥∥∥W − W̃
∥∥∥

0
≤ Kh

∥∥∥W − W̃
∥∥∥

1
≤ Khk+1 ‖W‖k+1 ≤ Khk+1 ‖C‖k+1 . (31)

Take the derivative with respect to t in (23),(
∇(W − W̃)t,∇vh

)
+
(
�bt(C,∇p) · ∇(W − W̃), vh

)
+
(
�b(C,∇p) · ∇(W − W̃)t, vh

)
= 0, (32)

(26) can be obtained similarly.

Lemma 3.4. Suppose C ∈ H1
(
0,T ; Hk+1(Ω) ∩W1,∞(Ω)

)
and W =

∫ C
0

D(w)dw. Let W̃ be the projection defined in
(23). Then W has the following error estimate result:∥∥∥W − W̃

∥∥∥
1,∞ ≤ K

(
1 + |ln h| 32

)
hk− n

2 ‖C‖k+1 . (33)

Proof. Define a projection operator Ph to satisfy W̃ = PhW ∈ S̄ h, then by (23), W − W̃ = W − PhW = (I − Ph)W =
(I − Ph) (W − ΠhW), where I is the identity operator and PhΠhW = ΠhW. Since |ln h|− 1

2 ‖PhW‖0,∞ + h |PhW |1,∞ ≤
K
(
‖W‖0,∞ + h |ln h| |W |1,∞

)
(see [18]), one can obtain

∥∥∥W − W̃
∥∥∥

0,∞ ≤
(
K |ln h| 12 + 1

)
‖W − ΠhW‖0,∞ + Kh |ln h| 32 |W − ΠhW |1,∞ ≤

(
K |ln h| 32 + 1

)
hk+1− n

2 ‖W‖k+1 , (34)

h
∣∣∣W − W̃

∣∣∣
1,∞ ≤ K ‖W − ΠhW‖0,∞ + h (1 + K |ln h|) |W − ΠhW |1,∞ ≤ (K |ln h| + 1) hk+1− n

2 ‖W‖k+1 , (35)

therefore ∥∥∥W − W̃
∥∥∥

1,∞ ≤
(
K |ln h| 32 + 1

)
hk− n

2 ‖W‖k+1 ≤
(
K |ln h| 32 + 1

)
hk− n

2 ‖C‖k+1 . (36)

In order to carry out the optimal approximation order, k is required to be greater than n − 1 for n ≥ 2. Especially

for the model in this paper, because n = 2, it is required for k to be greater than 1, which implies that a second order

interpolation should be used.

Corollary 3.1. Suppose C ∈ H1
(
0,T ; Hk+1(Ω) ∩W1,∞(Ω)

)
and k > 1. Let W̃ be the projection defined in (23) and

W =
∫ C

0
D(w)dw. Then one has the following error estimate:

∥∥∥W̃∥∥∥∞ + ∥∥∥∇W̃
∥∥∥∞ + ‖Wt‖1,∞ ≤ K

(
1 + |ln h| 32

)
hk− n

2 . (37)

Proof. For C ∈ H1
(
0,T ; Hk+1(Ω) ∩W1,∞(Ω)

)
and k > 1, since n = dim(GDL) = 2,

∥∥∥W̃∥∥∥∞ + ∥∥∥∇W̃
∥∥∥∞ + ‖Wt‖1,∞ ≤∥∥∥W − W̃

∥∥∥
1,∞ + ‖W‖1,∞ + ‖Wt‖1,∞ ≤ K

(
1 + |ln h| 32

)
hk− n

2 .

Let W −Wh = (W − W̃) + (W̃ −Wh) = η + ξ and vh = ξ, the error equation of (11) can be achieved by (24)−(22),(
r(Ch)

∂ξ

∂t
, ξ

)
+

(
r(Ch)

∂η

∂t
, ξ

)
+

(
r(C) − r(Ch))

∂W
∂t
, ξ

)
+ (∇ξ,∇ξ)

+
((
�b(C,∇p) − �b(Ch,∇ph)

)
· ∇W̃, ξ

)
+
(
�b(Ch,∇ph) · ∇ξ, ξ

)
= ( f (C,∇p,Δp) − f (Ch,∇ph,Δph), ξ). (38)
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Use (12), (13), when C and Ch are both greater than or both less than Csat,
∣∣∣∣�b(C,∇p) − �b(Ch,∇ph)

∣∣∣∣ ≤ ∣∣∣∣�bc

∣∣∣∣ ||C −Ch||0 +∣∣∣∣�bp

∣∣∣∣ ‖∇ (p − ph)‖0 ≤ K1 ‖C −Ch‖0 + K2hk ||p||k+1, where K1 and K2 are constants. When Csat is between C and Ch,∣∣∣∣�b(C,∇p) − �b(Ch,∇ph)
∣∣∣∣ ≤ ∣∣∣∣�b(C,∇p) − �b(Csat,∇ph)

∣∣∣∣+ ∣∣∣∣�b(Csat,∇p) − �b(Ch,∇ph)
∣∣∣∣ ≤ ∣∣∣∣�bc

∣∣∣∣ ||C −Csat ||0 +
∣∣∣∣�bc

∣∣∣∣ ||Csat −Ch||0 +∣∣∣∣�bp

∣∣∣∣∇ ||p − ph||0 ≤ K1 ||C −Ch||0 + K2hk ||p||k+1. Without loss of generality, this technique can be applied to r and f as

well. Use Hölder’s inequality and ε-inequality,

|( f (C,∇p,Δp) − f (Ch,∇ph,Δph), ξ)| = |− (∇ · (γ(C)∇p) C − ∇ · (γ(Ch)∇ph) Ch, ξ)|
≤ |(γ(C)∇p,∇(Cξ)) − (γ(Ch)∇(p − ph),∇((C −Ch)ξ))| + |(γ(Ch)∇(p − ph),∇(Cξ))|
+ |(γ(Ch)∇p,∇((C −Ch)ξ)) − (γ(Ch)∇p,∇(Cξ))|
≤ K
(
h2k + ‖ξ‖20 + ε ‖∇ξ‖20 + ‖η‖20 + ‖∇η‖20

)
, (39)

where C ∈ H1
(
0,T ; Hk+1(Ω) ∩W1,∞(Ω)

)
and p ∈ Hk+1(Ω) ∩ W1,∞(Ω). Since the first term on the left hand side in

(38) can be written as
∫
Ω

r(Ch)
∂ξ
∂t ξdx =

∫
Ω

r(Ch) ∂
∂t

(
1
2
ξ2
)

dx =
∫
Ω

∂
∂t

(
1
2
r(Ch)ξ2

)
dx − ∫

Ω
r′(Ch) ∂Ch

∂t

(
1
2
ξ2
)

dx, integrate

both sides of (38) with respect to t,

‖ξ‖20 +
∫ t

0

‖∇ξ‖20 ≤ K
(∫ t

0

‖η‖20 +
∫ t

0

‖ηt‖20 +
∫ t

0

‖∇η‖20 + ε
∫ t

0

‖∇ξ‖20 +
∫ t

0

‖ξ‖20 + h2k
)
. (40)

The choice of constant K is made possible by Corollary 3.1. Apply Gronwall’s inequality to (40), thus,

‖ξ‖L∞(0,T ;L2) + ‖∇ξ‖L2(0,T ;L2) ≤ K
(
‖η‖L2(0,T ;L2) + ‖ηt‖L2(0,T ;L2) + ‖∇η‖L2(0,T ;L2) + hk

)
, (41)

and therefore,

‖C −Ch‖L∞(L2) + ‖C −Ch‖L2(H1) ≤ ‖W −Wh‖L∞(L2) + ‖W −Wh‖L2(H1) ≤ Khk
(
‖C‖L2(Hk+1) + ‖Ct‖L2(Hk+1)

)
. (42)

Let vh = ξt in (38), similarly,

‖(C −Ch)t‖L∞(L2) + ‖(C −Ch)t‖L2(H1) ≤ ‖(W −Wh)t‖L∞(L2) + ‖(W −Wh)t‖L2(H1) ≤ Khk
(
‖C‖L2(Hk+1) + ‖Ct‖L2(Hk+1)

)
. (43)

Theorem 3.1. Suppose C ∈ H1
(
0,T ; Hk+1(Ω) ∩W1,∞(Ω)

)
, p ∈ Hk+1(Ω) ∩ W1,∞(Ω), W =

∫ C
0

D(ω)dω and k > 1.
With (12) and (13), the numerical solution of (11) has error estimates as follows:

‖p − ph‖L∞(L2) + h ‖p − ph‖L∞(H1) ≤ Khk+1 ‖p‖L∞(Hk+1) , (44)

and

‖C −Ch‖L∞(L2) + ‖C −Ch‖L2(H1) + ‖(C −Ch)t‖L∞(L2) + ‖(C −Ch)t‖L2(H1) ≤ Khk
(
‖C‖L2(Hk+1) + ‖Ct‖L2(Hk+1)

)
. (45)

4. Fully Discrete Scheme and Its Error Estimate

4.1. Fully Discretization
In this section, a fully discrete scheme is designed for the model using Crank-Nicolson Scheme and also its error

estimate is given.

Define ϕi = ϕ(ti), ϕi+ 1
2
= ϕ(ti+ 1

2
), ∂tϕ

n+ 1
2 =

ϕn+1−ϕn
Δt and ϕn+ 1

2 =
ϕn+1+ϕn

2
, where 0 = t0 < t1 < · · · < tN = T , Δt = T

N ,

ti = iΔt and ti+ 1
2
=
(
i + 1

2

)
Δt. (i = 0, 1, · · · ,N.) Let (21) take value at tn+ 1

2
, and the projection defined as (23),⎛⎜⎜⎜⎜⎜⎝r (Cn+ 1

2

) (∂W
∂t

)
n+ 1

2

, v

⎞⎟⎟⎟⎟⎟⎠ + (∇W̃n+ 1
2
,∇v
)
+
(
�b
(
Cn+ 1

2
,∇pn+ 1

2

)
· ∇W̃n+ 1

2
, v
)
=
(

f
(
Cn+ 1

2
,∇pn+ 1

2
,Δpn+ 1

2

)
, v
)
. (46)

Apply Crank-Nicolson Scheme to (11),(
r
(
Cn+ 1

2

h

)
∂tW

n+ 1
2

h , vh

)
+

(
∇Wn+ 1

2

h ,∇vh

)
+

(
�b
(
Cn+ 1

2

h ,∇pn+ 1
2

h

)
· ∇Wn+ 1

2

h , vh

)
=

(
f
(
Cn+ 1

2

h ,∇pn+ 1
2

h ,Δpn+ 1
2

h

)
, vh

)
. (47)

8



2175 Yuzhou Sun et al.  /  Procedia Computer Science   18  ( 2013 )  2167 – 2176 

4.2. Error Estimates
The error equation of the discrete scheme described in section 4.1 is achieved by (46)−(47):⎛⎜⎜⎜⎜⎜⎝r (Cn+ 1

2

) (∂W
∂t

)
n+ 1

2

− r
(
Cn+ 1

2

h

)
∂tW

n+ 1
2

h , vh

⎞⎟⎟⎟⎟⎟⎠ + (�b (Cn+ 1
2
,∇pn+ 1

2

)
· ∇W̃n+ 1

2
− �b
(
Cn+ 1

2

h ,∇pn+ 1
2

h

)
· ∇Wn+ 1

2

h , vh

)

+

(
∇W̃n+ 1

2
− ∇Wn+ 1

2

h ,∇vh

)
=

(
f
(
Cn+ 1

2
,∇pn+ 1

2
,Δpn+ 1

2

)
− f
(
Cn+ 1

2

h ,∇pn+ 1
2

h ,Δpn+ 1
2

h

)
, vh

)
. (48)

Use the fact that W −Wh = W − W̃ + W̃ −Wh = η + ξ, (48) becomes:

11∑
1

Gi =

⎛⎜⎜⎜⎜⎜⎝(r (Cn+ 1
2

)
− r
(
Cn+ 1

2

h

)) (
∂W
∂t

)
n+ 1

2

, vh

⎞⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎝r (Cn+ 1

2

h

) ⎛⎜⎜⎜⎜⎜⎝
(
∂W
∂t

)
n+ 1

2

− ∂tWn+ 1
2

⎞⎟⎟⎟⎟⎟⎠ , vh

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝r (Cn+ 1
2

h

) ⎛⎜⎜⎜⎜⎜⎝∂tη
n+ 1

2 −
(
∂η

∂t

)
n+ 1

2

⎞⎟⎟⎟⎟⎟⎠ , vh

⎞⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎝r (Cn+ 1

2

h

) (
∂η

∂t

)
n+ 1

2

, vh

⎞⎟⎟⎟⎟⎟⎠ + (r (Cn+ 1
2

h

)
∂tξ

n+ 1
2 , vh

)

+
(
∇W̃n+ 1

2
− ∇W̃n+ 1

2 ,∇vh

)
+
(
∇ξn+ 1

2 ,∇vh

)
+

((
�b
(
Cn+ 1

2
,∇pn+ 1

2

)
− �b
(
Cn+ 1

2

h ,∇pn+ 1
2

h

))
· ∇W̃n+ 1

2
, vh

)
+

(
�b
(
Cn+ 1

2

h ,∇pn+ 1
2

h

)
· ∇
(
W̃n+ 1

2
− W̃n+ 1

2

)
, vh

)
+

(
�b
(
Cn+ 1

2

h ,∇pn+ 1
2

h

)
· ∇ξn+ 1

2 , vh

)
−
(

f
(
Cn+ 1

2
,∇pn+ 1

2
,Δpn+ 1

2

)
− f
(
Cn+ 1

2

h ,∇pn+ 1
2

h ,Δpn+ 1
2

h

)
, vh

)
= 0, (49)

where Gi is the ith term in (49).

Without loss of generality, let ζc be between Cn+ 1
2 and Cn+ 1

2

h and ζp be between pn+ 1
2 and pn+ 1

2

h . By Taylor’s

expansion
(
∂ϕ
∂t

)
n+ 1

2

− ∂tϕ
n+ 1

2 = O(Δt)2 |ϕttt | and ϕn+ 1
2
− ϕn+ 1

2 = O(Δt)2 |ϕtt |, the following technique is used to G7:

∣∣∣∣∣�b (Cn+ 1
2
,∇pn+ 1

2

)
− �b
(
Cn+ 1

2

h ,∇pn+ 1
2

h

)∣∣∣∣∣ ≤ ∣∣∣∣�b (Cn+ 1
2
,∇pn+ 1

2

)
− �b
(
Cn+ 1

2 ,∇pn+ 1
2

)∣∣∣∣ + ∣∣∣∣∣�b (Cn+ 1
2 ,∇pn+ 1

2

)
− �b
(
Cn+ 1

2

h ,∇pn+ 1
2

h

)∣∣∣∣∣
≤ O (Δt)2

∣∣∣∣�bccC2
t + 2�bcpCt∇pt + �bpp∇p2

t +
�bcCtt + �bp∇ptt

∣∣∣∣ +
∣∣∣∣∣∣�bc
∂ζc
∂C
+ �bp
∂ζp

∂p

∣∣∣∣∣∣
(∣∣∣∣∣∣∣∣ξn+ 1

2 + ηn+ 1
2

∣∣∣∣∣∣∣∣
0
+ ∇
∣∣∣∣∣
∣∣∣∣∣pn+ 1

2 − pn+ 1
2

h

∣∣∣∣∣
∣∣∣∣∣
0

)

≤ K
(
O (Δt)2 +

∣∣∣∣∣∣∣∣ξn+ 1
2 + ηn+ 1

2

∣∣∣∣∣∣∣∣
0
+ hk
)
. (50)

When C ∈ H3
(
0,T ; Hk+1(Ω) ∩W1,∞(Ω)

)
and p ∈ Hk+1(Ω) ∩W1,∞(Ω), by (12), (13) and corollary 3.1, the choice of

constant K in (50) is possible. Let vh = ξ
n+ 1

2 , G11 ≤ K
(∥∥∥∥ξn+ 1

2

∥∥∥∥2
0
+ ε
∥∥∥∥∇ξn+ 1

2

∥∥∥∥2
0
+
∥∥∥∥ηn+ 1

2

∥∥∥∥2
0
+
∥∥∥∥∇ηn+ 1

2

∥∥∥∥2
0
+ h2k + O(Δt)4

)
.

Apply Taylor’s expansion to G2,G3,G6 and G9; and apply (50) similarly to G1 and G8. Keep only G5 and G7 on the

left hand side and neglect all the constants. Now (48) can be written as the following inequality:∥∥∥∥∂tξ
n+ 1

2

∥∥∥∥
0

∥∥∥∥ξn+ 1
2

∥∥∥∥
0
+
∥∥∥∥∇ξn+ 1

2

∥∥∥∥2
0
≤
∥∥∥∥ξn+ 1

2

∥∥∥∥2
0
+ ε
∥∥∥∥∇ξn+ 1

2

∥∥∥∥2
0
+
∥∥∥∥ηn+ 1

2

∥∥∥∥2
0
+
∥∥∥∥∇ηn+ 1

2

∥∥∥∥2
0
+ h2k + O(Δt)4. (51)

Take the sum from 0 to M on both side, 0 ≤ M ≤ N−1. By using the telescoping skill and ε-inequality, (51) becomes:

1

2Δt

(∥∥∥ξM+1
∥∥∥2

0
− ∥∥∥ξ0∥∥∥2

0

)
+

M∑
n=0

∥∥∥∥∇ξn+ 1
2

∥∥∥∥2
0
≤ K

M∑
n=0

(∥∥∥∥ξn+ 1
2

∥∥∥∥2
0
+
∥∥∥∥ηn+ 1

2

∥∥∥∥2
0
+
∥∥∥∥∇ηn+ 1

2

∥∥∥∥2
0
+ (Δt)4 + h2k

)
+ ε

M∑
n=0

∥∥∥∥∇ξn+ 1
2

∥∥∥∥2
0
. (52)

Since
M∑

n=0

∥∥∥∥ξn+ 1
2

∥∥∥∥2
0
=

M+1∑
n=0
‖ξn‖20, use Gronwall’s inequality,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∥∥∥ξM+1

∥∥∥
0
+

√√√M+1∑
n=0

‖∇ξn‖20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

≤ ∥∥∥ξM+1
∥∥∥2

0
+

M+1∑
n=0

‖∇ξn‖20 ≤ K
(
h2k + (Δt)4 +

∥∥∥ξ0∥∥∥2
0

)
. (53)



2176   Yuzhou Sun et al.  /  Procedia Computer Science   18  ( 2013 )  2167 – 2176 

Because u0 is given, one can pick uh,0 to approximate u0 such that
∥∥∥u0 − uh,0

∥∥∥
0
≤ Chk+1, thus

∥∥∥ξ0∥∥∥
0
≤ Chk+1. One

example is to let uh,0 be the interpolation of u0. Furthermore, let J = M+1,
∥∥∥ξJ
∥∥∥

0
+K
√∑J

n=0 ‖∇ξn‖20 ≤ K
(
hk + (Δt)2

)
.

Therefore,

‖(W −Wh)J‖L2 +

⎛⎜⎜⎜⎜⎜⎝ J∑
n=0

‖(W −Wh)n‖2H1

⎞⎟⎟⎟⎟⎟⎠
1
2

≤ K
(
hk + (Δt)2

)
. (54)

Lemma 4.1. [18] Suppose p ∈ Hk+1(Ω), and 1 ≤ J ≤ N, then∥∥∥(p − ph)J

∥∥∥
L2 + h

∥∥∥(p − ph)J

∥∥∥
H1 ≤ Khk+1. (55)

Theorem 4.1. Suppose p ∈ Hk+1(Ω) ∩ W1,∞(Ω), C ∈ H3
(
0,T ; Hk+1(Ω) ∩W1,∞(Ω)

)
, W =

∫ C
0

D(ω)dω, k > 1 and
1 ≤ J ≤ N. With (12) and (13), the numerical solution of (11) generated by (47) has error estimates as follows:∥∥∥(p − ph)J

∥∥∥
L2 + h

∥∥∥(p − ph)J

∥∥∥
H1 ≤ Khk+1, (56)

and

‖(C −Ch)J‖L2 +

⎛⎜⎜⎜⎜⎜⎝ J∑
n=0

‖(C −Ch)n‖2H1

⎞⎟⎟⎟⎟⎟⎠
1
2

≤ K
(
hk + (Δt)2

)
. (57)
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