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a b s t r a c t

An unlabeled poset is said to be (2+2)-free if it does not contain an induced subposet that
is isomorphic to 2+2, the union of two disjoint 2-element chains. Let pn denote the number
of (2+2)-free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the
so called ascent sequences, the generating function for the number of (2+2)-free posets of
size n: P(t) =

∑
n≥0 pnt

n
=
∑

n≥0
∏n

i=1


1 − (1 − t)i


. We extend this result in two ways.

First, we find the generating function for (2+ 2)-free posets when four statistics are taken
into account, one of which is the number of minimal elements in a poset. Second, we show
that if pn,k equals the number of (2+2)-free posets of size nwith kminimal elements, then
P(t, z) =

∑
n,k≥0 pn,kt

nzk = 1+
∑

n≥0
zt

(1−zt)n+1

∏n
i=1(1−(1−t)i). The second result cannot

be derived from the first one by a substitution. Our enumeration results are extended to
certain restrictedpermutations and to regular linearized chorddiagrams throughbijections
in [1,2]. Finally,we define a subset of ascent sequences counted by the Catalan numbers and
we discuss its relations with (2 + 2)- and (3 + 1)-free posets.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

An unlabeled poset is said to be (2 + 2)-free if it does not contain an induced subposet that is isomorphic to 2 + 2, the
union of two disjoint 2-element chains. We let P (resp. Pn) denote the set of (2 + 2)-free posets (resp. on n elements).
Fishburn [5] showed that a poset is (2 + 2)-free precisely when it is isomorphic to an interval order. Another important
characterization of (2+2)-free posets (see [6,4,9]) is that a poset is (2+2)-free if and only if the collection of strict principal
down-sets can be linearly ordered by inclusion. Here for any poset P = (P, <p) and x ∈ P , the strict principal down set of
x,D(x), in P is the set of all y ∈ P such that y<p x. The trivial down-set is the empty set. Thus if P is a (2 + 2)-free poset, we
can write D(P) = {D(x) : x ∈ P} as

D(P) = {D0,D1, . . . ,Dk}

where ∅ = D0 ⊂ D1 ⊂ · · · ⊂ Dk. In such a situation, we say that x ∈ P has level i if D(x) = Di.
Let pn be the number of (2+2)-free posets on n elements. Bousquet-Mélou et al. [1] showed that the generating function

for the numbers pn is

P(t) =

−
n≥0

pntn =

−
n≥0

n∏
i=1


1 − (1 − t)i


. (1)

Note that the term corresponding to n = 0 in the last sum is 1.
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Zagier [13] proved that (1) is also the generating functionwhich counts certain involutions introducedby Stoimenow [11].
Bousquet-Mélou et al. [1] gave bijections between (2+2)-free posets and such involutions, between (2+2)-free posets and
a certain restricted class of permutations, and between (2+2)-free posets and ascent sequences. A sequence x1x2 · · · xn ∈ Nn

is an ascent sequence of length n if and only if it satisfies x1 = 0 and xi ∈ [0, 1+ asc(x1x2 · · · xi−1)] for all 2 ≤ i ≤ n. Here, for
any integer sequence x1x2 · · · xi, the number of ascents of this sequence is

asc(x1x2 · · · xi) = |{1 ≤ j < i : xj < xj+1}|.

For instance, 010231002 is an ascent sequence. We let A denote the set of all ascent sequences where we assume that the
empty word is also an ascent sequence.

To define the bijection between (2 + 2)-free posets and ascent sequences, Bousquet-Mélou et al. [1] used a step by step
decomposition of a (2 + 2)-free poset P where at each step one removes a maximal element located on the lowest level
togetherwith certain relations. If one records the levels fromwhich one removed suchmaximal elements and then reads the
resulting sequence backwards, one obtains an ascent sequence associated to the poset. We shall briefly review this bijection
in Section 2. In the process of decomposing the (2 + 2)-free poset P , one will reach a point where the remaining poset
consists of an antichain, possibly having one element. We define lds(P) to be the maximum size of such an antichain, which
is also equal to the size of the down-set of the last removed element that has a non-trivial down-set (‘‘lds’’ stands for ‘‘last
down-set’’). By definition, the value of lds on an antichain is 0 as there are no non-trivial down-sets for such a poset.

Bousquet-Mélou et al. [1] studied a more general generating function F(t, u, v) of (2 + 2)-free posets according to
size=‘‘number of elements’’ (variable t), levels=‘‘number of levels’’ (variable u), and minmax=‘‘level of minimum maximal
element’’ (variable v). Via their bijection between (2+2)-free posets and ascent sequences, Bousquet-Mélou et al. [1] showed
that F(t, u, v) is also the generating function of the ascent sequence according to length (variable t), the number of ascents
(variable u), and the last entry (variable v). Using the interpretation of F(t, u, v) in terms of ascent sequences, they showed
that F(t, u, v) satisfies the functional equation

(v − 1 − tv(1 − u))F(t, u, v) = (v − 1)(1 − tuv)− tF(t, u, 1)+ tuv2F(t, uv, 1). (2)

This functional equation then allowed them to show that

F(t, u, 1) =

−
k≥1

(1 − u)uk−1(1 − t)k

(u − (u − 1)(1 − t)k)
k∏

i=1
(u − (u − 1)(1 − t)i)

. (3)

One cannot substitute u = 1 directly into this series to obtain the generating function for P(t) given in (1). Instead, Bousquet-
Mélou et al. [1] showed how one can rewrite this series as

F(t, u, 1) =

−
n≥0

Fn(t, u) (4)

where (Fn(t, u))n≥0 is a certain sequence of polynomials. Then one can set u = 1 to obtain the fact that P(t) = F(t, 1, 1) is
given by (1).

Themain result of this paper, Theorem 4, is an explicit form of the generating function G(t, u, v, z, x) for a generalization
of F(t, u, v), when twomore statistics are taken into account, i.e., min= ‘‘number of minimal elements’’ in a poset (variable
z) and lds = ‘‘size of non-trivial last down-set’’ (variable x). That is, we shall find an explicit formula for

G(t, u, v, z, x) =

−
P∈P

tsize(P)ulevels(P)vminmax(P)zmin(P)xlds(P)

where, as above, P is the set of all (2+ 2)-free posets. As in [1], to find G(t, u, v, z, x), we translate our problem on (2+ 2)-
free posets to an equivalent problem on ascent sequences. That is, we define the following statistics on an ascent sequence:
length = ‘‘the number of elements in the sequence’’, last = ‘‘the rightmost element of the sequence’’, zeros = ‘‘the number
of 0’s in the sequence’’, run = ‘‘the number of elements in the leftmost run of 0’s’’ = ‘‘the number of 0’s to the left of the
leftmost non-zero element’’. By definition, if there are no non-zero elements in an ascent sequence, the value of run is 0.
Then we shall prove the following.

Lemma 1. The function G(t, u, v, z, x) defined above can alternatively be defined on ascent sequences as

G(t, u, v, z, x) =

−
w∈A

t length(w)uasc(w)vlast(w)zzeros(w)xrun(w) =

−
n,a,ℓ,m,r≥0

Gn,a,ℓ,m,r tnuavℓzmxr . (5)

We can then follow the basic strategy of Bousquet-Mélou et al. [1] to find an explicit formula for a specialization
of G(t, u, v, z, x), namely G(t, 1, 1, z, 1). That is, one can find a functional equation for G(t, u, v, z, x) by using the
interpretation of G(t, u, v, z, x) in terms of ascent sequences. This functional equation then allows us to give an explicit
expression of G(t, u, v, z, x) which has a similar flavor of (3) but is necessarily much more complicated. One can set
v = x = 1 in our formula for G(t, u, v, z, x) to obtain a series for G(t, u, 1, z, 1) which has a similar flavor to the



2100 S. Kitaev, J. Remmel / Discrete Applied Mathematics 159 (2011) 2098–2108

series expression for F(t, u, 1) given in (3). As was the case for (3), one cannot substitute u = 1 directly in the series for
G(t, u, 1, z, 1) so that one has to rewrite the series in a form where one can make such a substitution. However, in our case,
the required rewriting is not just a sum of a sequence of polynomials. Thus while the outline of our derivation of an explicit
formula G(t, 1, 1, z, 1) follows similar steps as the derivation of (1) in [1], the details of each of the steps are considerably
different. Nevertheless, we are able to derive an explicit formula for G(t, 1, 1, z, 1) = P(t, z) =

∑
n,k≥0 pn,kt

nzk where
pn,k denotes the number of (2 + 2)-free posets of size n with k minimal elements or, equivalently, the number of ascent
sequences of length nwith k zeros. That is, we shall show that

P(t, z) =

−
n,k≥0

pn,ktnzk = 1 +

−
n≥0

zt
(1 − zt)n+1

n∏
i=1

(1 − (1 − t)i). (6)

In fact, we conjectured another form of writing P(t, z):

P(t, z) =

−
n,k≥0

pn,ktnzk =

−
n≥0

n∏
i=1

(1 − (1 − t)i−1(1 − zt)).

Three different proofs were presented of the last formula [8,12].
A poset P is (3 + 1)-free if it does not contain, as an induced subposet, a 3-element chain and an element which

incomparable to the elements in the 3-element chain. It is known that the number of posets avoiding (2+ 2) and (3+ 1) is
given by the Catalan numbers (see [10,9]). Define a restricted ascent sequence as follows. A sequence x1x2 · · · xn ∈ Nn is a
restricted ascent sequence of length n if it satisfies x1 = 0 and xi ∈ [m − 1, 1 + asc(x1x2 · · · xi−1)] for all 2 ≤ i ≤ n, where
m is the maximum element in x1x2 · · · xi−1. For instance, 010232232 is a restricted ascent sequence, whereas 010201 is not.
We shall show that restricted ascent sequences are counted by the Catalan numbers. For n ≤ 6, the bijection in [1] sends
(2 + 2)- and (3 + 1)-free posets to restricted ascent sequences which lead us to initially conjecture that it always the case
that the bijection in [1] sends (2 + 2)- and (3 + 1)-free posets to restricted ascent sequences. However, this is not true as
we shall produce counterexamples when n = 7.

This paper is organized as follows. In Section 2, we briefly describe the bijection between (2 + 2)-free posets and
ascent sequences given in [1, Section 3] so that we can establish the claims about the properties of the bijection used in
Lemma 1. This bijection then allows us to reduce the enumerative problem on posets to an equivalent enumerative problem
on ascent sequences. In Section 3 we find explicitly the function G(t, u, v, z, x) using the ascent sequences (see Theorem 4).
In Section 4, we shall derive our formula for P(t, z) and show how to get P(t) from P(t, z). Finally, in Section 5 we define a
subset of ascent sequences counted by the Catalan numbers and discuss its relations to (2 + 2)- and (3 + 1)-free posets.

2. (2 + 2)-free posets and ascent sequences

In this section, we shall review the bijection between (2 + 2)-free posets and ascent sequences given in [1, Section 3].
In order to do this, Bousquet-Mélou et al. [1] introduced an operation on posets called the subtraction operation which
removes a maximal elementmP from P ∈ Pn and results in Q ∈ Pn−1. Before giving this operation, we need to define some
terminology.

Let D(x) be the set of predecessors of x (the strict down-set of x): D(x) = {y : y < x}. Clearly, any poset is uniquely
specified by listing the sets of predecessors. It is well-known (see for example [7]) that a poset is (2 + 2)-free if and only if
its sets of predecessors, {D(x) : x ∈ P}, can be linearly ordered by inclusion. Let

D(P) = (D0,D1, . . . ,Dk−1)

with ∅ = D0 ⊂ D1 ⊂ · · · ⊂ Dk−1 be the chain for P . In this context we define Di(P) = Di and ℓ(P) = k. We say
that an element x is at level i in P if D(x) = Di and we write ℓ(x) = i. The set of all elements at level i is denoted by
Li(P) = {x ∈ P : ℓ(x) = i} and we let

L(P) =

L0(P), L1(P), . . . , Lk−1(P)


.

For instance, L0(P) is the set of minimal elements and Lk−1(P) is the set of maximal elements whose set of predecessors is
also maximal. LetmP be a maximal element of P whose set of predecessors is smallest. This element may not be unique but
the level on which it resides is. Let us write ℓ⋆(P) = ℓ(mP).

Clearly, any (2 + 2)-free poset P is determined by the pair

D(P), L(P)


. Thus when defining the subtraction operation

below it suffices to specify how D(P) and L(P) change.
For non-empty P ∈ Pn, let Ψ (P) = (Q , i)where i = ℓ⋆(P) and Q is the poset that results from applying:

(Sub1) If mP is not alone on level i, then removemP . In terms of predecessors and levels, D(Q ) = D(P) and

Lj(Q ) =


Lj(P) if j ≠ i,
Li(P)− {mP} if j = i.

(Sub2) If mP is alone on level i = ℓ(P), then remove the unique element of level i.
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(Sub3) If mP is alone on level i ≤ ℓ(P) − 1, then set N = Di+1(P) − Di(P). Make each element in N a maximal element of
the poset by removing any covers. Finally, remove the elementmP . In terms of predecessors and levels,

Dj(Q ) =


Dj(P) if 0 ≤ j < i,
Dj+1(P)− N if i ≤ j < ℓ(P)− 1,

and

Lj(Q ) =


Lj(P) if 0 ≤ j < i,
Lj+1(P) if i ≤ j < ℓ(P)− 1.

Thus if we start with a (2 + 2)-free poset P of size n, we can produce a sequence of posets P = P1, P2, . . . , Pn such that
Pi+1 is obtained from Pi by applying the subtraction operation. The bijection of [1, Section 3] maps P to the ascent sequence
(ℓ⋆(Pn), ℓ⋆(Pn−1), . . . , ℓ

⋆(P1)). The details of the fact that (ℓ⋆(Pn), ℓ⋆(Pn−1), . . . , ℓ
⋆(P1)) is always an ascent sequence and

how to define the inverse of this map via an operation called addition can be found in [1, Section 3].

Proof of Lemma 1. To prove the statement we need to show equidistribution of the statistics involved. All but one case
follows from Theorem 11 of [1] where Bousquet-Mélou et al. proved that the bijection from (2 + 2)-free posets to ascent
sequences sends size → length, levels → asc, minmax → last, and min → zeros. The fact that lds goes to run also follows
from the bijection. That is, in the process of decomposing the poset, there will be a point where we remove the element, say
e, whose down-set gives lds. At that point, we will be left with incomparable elements located on level 0, which gives the
initial run of 0’s followed by the 1 (corresponding to element e on level 1) in the corresponding ascent sequence. �

3. Main results

For r ≥ 1, let Gr(t, u, v, z) denote the coefficient of xr in G(t, u, v, z, x). Thus Gr(t, u, v, z) is the generating function of
those ascent sequences that begin with r ≥ 1 0’s followed by 1. We let Gr

n,a,ℓ,m denote the number of ascent sequences of
length nwhich begin with r 0’s followed by 1, have a ascents, last letter ℓ, and a total ofm zeros. We then let

Gr := Gr(t, u, v, z) =

−
a,ℓ,m≥0,n≥r+1

Gr
n,a,ℓ,mt

nuavℓzm. (7)

Clearly, since the sequence 0 · · · 0 has no ascents and no initial run of 0’s (by definition), we have that the generating
function for such sequences is

1 + tz + (tz)2 + · · · =
1

1 − tz
where 1 corresponds to the empty word. Thus, we have the following relation between G and Gr :

G =
1

1 − tz
+

−
r≥1

Grxr . (8)

Lemma 2. For r ≥ 1, the generating function Gr(t, u, v, z) satisfies

(v − 1 − tv(1 − u))Gr = (v − 1)t r+1uvzr + t((v − 1)z − v)Gr(t, u, 1, z)+ tuv2Gr(t, uv, 1, z). (9)

Proof. Our proof follows the same steps as in Lemma 13 in [1]. Fix r ≥ 1. Let x′
= x1x2 · · · xn−1 be an ascent sequence

beginningwith r 0’s followed by 1, with a ascents andm zeros where xn−1 = ℓ. Then x = x1x2 · · · xn−1i is an ascent sequence
if and only if i ∈ [0, a + 1]. Clearly x also begins with r 0’s followed by 1. Now, if i = 0, the sequence x has a ascents and
m + 1 zeros. If 1 ≤ i ≤ ℓ, x has a ascents and m zeros. Finally if i ∈ [ℓ + 1, a + 1], then x has a + 1 ascents and m zeros.
Counting the sequence 00 · · · 01 with r 0’s separately, we have

Gr = t r+1u1v1zr +

−
a,ℓ,m≥0
n≥r+1

Gr
n,a,ℓ,mt

n+1


uav0zm+1

+

ℓ−
i=1

uavizm +

a+1−
i=ℓ+1

ua+1vizm


= t r+1uvzr + t
−

a,ℓ,m≥0
n≥r+1

Gn,a,ℓ,mtnuazm

z +

vℓ+1
− v

v − 1
+ u

va+2
− vℓ+1

v − 1



= t r+1uvzr + tzGr(t, u, 1, z)+ tv
Gr − Gr(t, u, 1, z)

v − 1
+ tuv

vGr(t, uv, 1, z)− Gr

v − 1
.

The result follows. �
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Next just like in Section 6.2 of [1], we use the kernel method to proceed. Setting (v− 1− tv(1− u)) = 0 and solving for
v, we obtain that the substitution v = 1/(1+ t(u− 1))will kill the left-hand side of (9). We can then solve for Gr(t, u, 1, z)
to obtain that

Gr(t, u, 1, z) =

(1 − u)t r+1uzr + uGr


t, u

1+t(u−1) , 1, z


(1 + zt(u − 1))(1 + t(u − 1))
. (10)

Next we define

δk = u − (1 − t)k(u − 1) and (11)

γk = u − (1 − zt)(1 − t)k−1(u − 1) (12)
for k ≥ 1. We also set δ0 = γ0 = 1. Observe that δ1 = u − (1 − t)(u − 1) = 1 + t(u − 1) and γ1 = u − (1 − zt)(u − 1) =

1 + zt(u − 1). Thus we can rewrite (10) as

Gr(t, u, 1, z) =
t r+1zru(1 − u)

δ1γ1
+

u
δ1γ1

Gr


t,

u
δ1
, 1, z


. (13)

For any function of f (u), we shall write f (u)|u= u
δk

for f (u/δk). It is then easy to check that

1. (u − 1)|u= u
δk

=
(1−t)k(u−1)

δk
,

2. δs|u= u
δk

=
δs+k
δk

,

3. γs|u= u
δk

=
γs+k
δk

, and
4. u

δs
|u= u

δk
=

u
δs+k

.

Using these relations, one can iterate the recursion (13) to prove by induction that for all n ≥ 1,

Gr(t, u, 1, z) =
t r+1zru(1 − u)

δ1γ1
+

t r+1zru(1 − u)
2n−1−
s=1

us(1 − t)s

δsδs+1

s+1∏
i=1
γi

+
u2n

δ2n
2n∏
i=1
γi

Gr


t,

u
δ2n
, 1, z


. (14)

Since δ0 = 1, it follows that as a power series in u,

Gr(t, u, 1, z) = t r+1zru(1 − u)
−
s≥0

us(1 − t)s

δsδs+1

s+1∏
i=1
γi

. (15)

Note that we can rewrite (9) as

Gr(t, u, v, z) =
t r+1zruv(1 − v)

vδ1 − 1
+

t(z(v − 1)− v)

vδ1 − 1
Gr(t, u, 1, z)+

uv2t
vδ1 − 1

Gr(t, uv, 1, z). (16)

For s ≥ 1, we let
δ̄s = δs|u=uv = uv − (1 − t)s(uv − 1) and
γ̄s = γs|u=uv = uv − (1 − zt)(1 − t)s−1(uv − 1)

and set δ̄0 = γ̄0 = 1. Then using (16) and (15), we have the following theorem.

Theorem 3. For all r ≥ 1,

Gr(t, u, v, z) =
t r+1zru
vδ1 − 1

v(v − 1)+ t(1 − u)(z(v − 1)− v)
−
s≥0

us(1 − t)s

δsδs+1

s+1∏
i=1
γi

+ uv3t(1 − uv)
−
s≥0

(uv)s(1 − t)s

δ̄sδ̄s+1

s+1∏
i=1
γ̄i

 . (17)

It is easy to see from Theorem 3 that

Gr(t, u, v, z) = t r−1zr−1G1(t, u, v, z). (18)
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This is also easy to see combinatorially since every ascent sequence counted by Gr(t, u, v, z) is of the form 0r−1awhere a is
an ascent sequence a counted by G1(t, u, v, z).

Note that

G(t, u, v, z, x) =
1

(1 − tz)
+

−
r≥1

Gr(t, u, v, z)xr

=
1

(1 − tz)
+

−
r≥1

t r−1zr−1G1(t, u, v, z)xr

=
1

(1 − tz)
+

1
1 − tzx

xG1(t, u, v, z).

Thus we have the following theorem.

Theorem 4.

G(t, u, v, z, x) =

−
P∈P

tsize(P)ulevels(P)vminmax(P)zmin(P)xlds(P)

=

−
w∈A

t length(w)uasc(w)vlast(w)zzeros(w)xrun(w)

=
1

(1 − tz)
+

t2zxu
(1 − tzx)(vδ1 − 1)

+

v(v − 1)+ t(1 − u)(z(v − 1)− v)
−
s≥0

us(1 − t)s

δsδs+1

s+1∏
i=1
γi

+ uv3t(1 − uv)
−
s≥0

(uv)s(1 − t)s

δ̄sδ̄s+1

s+1∏
i=1
γ̄i

 . (19)

4. Counting (2 + 2)-free posets by size and number of minimal elements

In this section, we shall compute the generating function of (2 + 2)-free posets by size and the number of minimal
elements which is equivalent to finding the generating function for ascent sequences by length and the number of zeros.

For n ≥ 1, let Hn,a,ℓ,m denote the number of ascent sequences of length n with a ascents and m zeros which have last
letter ℓ. Then we first wish to compute

H(t, u, v, z) =

−
n≥1,a,ℓ,m≥0

Hn,a,ℓ,mtnuavℓzm. (20)

Using the same reasoning as in the previous section, we see that

H(t, u, v, z) = tz +

−
a,ℓ,m≥0

n≥1

Hn,a,ℓ,mtn+1


uav0zb+1

+

ℓ−
i=1

uavizb +

a+1−
i=ℓ+1

ua+1vizb


= tz + t
−

a,ℓ,m≥0
n≥r+1

Hn,a,ℓ,mtnuazb

z +

vℓ+1
− v

v − 1
+ u

va+2
− vℓ+1

v − 1



= tz +
tv(1 − u)
v − 1

H(t, u, v, z)+
t(z(v − 1)− v)

v − 1
H(t, u, 1, z)+

tuv2

v − 1
H(t, uv, 1, z).

Thus we have the following lemma.

Lemma 5.

(v − 1 − tv(1 − u))H(t, u, v, z) = tz(v − 1)+ t(z(v − 1)− v)H(t, u, 1, z)+ tuv2H(t, uv, 1, z). (21)

Setting (v − 1 − tv(1 − u)) = 0, we see that the substitution v = 1/(1 + t(u − 1)) = 1/δ1 kills the left-hand side of
(21). We can then solve for H(t, u, 1, z) to obtain the recursion

H(t, u, 1, z) =
zt(1 − u)

γ1
+

u
δ1γ1

H(t, uv, 1, z). (22)
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By iterating (22), we can prove by induction that for all n ≥ 1,

H(t, u, 1, z) =
zt(1 − u)

γ1
+

2n−1−
s=1

zt(1 − u)us(1 − t)s

δs
s+1∏
i=1
γi

+
u2n

δ2n
2n∏
i=1
γi

H

t,

u
δ2n
, 1, z


. (23)

Since δ0 = 1, we can rewrite (23) as

H(t, u, 1, z) =

2n−1−
s=0

zt(1 − u)us(1 − t)s

δs
s+1∏
i=1
γi

+
u2n

δ2n
2n∏
i=1
γi

H

t,

u
δ2n
, 1, z


. (24)

Thus as a power series in u, we can conclude the following.

Theorem 6.

H(t, u, 1, z) =

∞−
s=0

zt(1 − u)us(1 − t)s

δs
s+1∏
i=1
γi

. (25)

We would like to set u = 1 in the power series
∑

∞

s=0
zt(1−u)us(1−t)s

δs
∏s+1

i=1 γi
, but the factor (1 − u) in the series does not allow us

to do that in this form. Thus our next step is to rewrite the series in a form where it is obvious that we can set u = 1 in the
series. To that end, observe that for k ≥ 1,

δk = u − (1 − t)k(u − 1) = 1 + u − 1 − (1 − t)k(u − 1) = 1 − ((1 − t)k − 1)(u − 1)

so that

1
δk

=

−
n≥0

((1 − t)k − 1)n(u − 1)n =

−
n≥0

(u − 1)n
n−

m=0

(−1)n−m
 n
m


(1 − t)km. (26)

Substituting (26) into (25), we see that

H(t, u, 1, z) =
zt(1 − u)

γ1
+

−
k≥1

zt(1 − u)uk(1 − t)k

k+1∏
i=1
γi

−
n≥0

(u − 1)n
n−

m=0

(−1)n−m
 n
m


(1 − t)km

=
zt(1 − u)

γ1
+

−
n≥0

n−
m=0

(−1)n−m−1
 n
m


(u − 1)n−mzt

−
k≥1

(u − 1)m+1uk(1 − t)k(m+1)

k+1∏
i=1
γi

=
zt(1 − u)

γ1
+

−
n≥0

n−
m=0

(−1)n−m−1
 n
m


(u − 1)n−m zt

(1 − zt)m+1

×

−
k≥1

(u − 1)m+1(1 − zt)m+1uk(1 − t)k(m+1)

k+1∏
i=1
γi

.

Next we need to study the series−
k≥1

(u − 1)m+1(1 − zt)m+1uk(1 − t)k(m+1)

k+1∏
i=1
γi

wherem ≥ 0. We can rewrite this series in the form

−
(u − 1)m+1(1 − zt)m+1

γ1
+

−
k≥0

(u − 1)m+1(1 − zt)m+1uk(1 − t)k(m+1)

k+1∏
i=1
γi

.
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We let

ψm+1(u) =

−
k≥0

(u − 1)m+1(1 − zt)m+1uk(1 − t)k(m+1)

k+1∏
i=1
γi

. (27)

We shall show that ψm+1(u) is in fact a polynomial for all m ≥ 0. First, we claim that ψm+1(u) satisfies the following
recursion:

ψm+1(u) =
(u − 1)m+1(1 − zt)m+1

γ1
+

uδm1
γ1
ψm+1


u
δ1


. (28)

That is, one can easily iterate (28) to prove by induction that for all n ≥ 1,

ψm+1(u) =

2n−1−
s=0

(u − 1)m+1(1 − zt)m+1us(1 − t)s(m+1)

s+1∏
i=1
γi

+
u2n(δ2n)

m

2n∏
i=1
γi

ψm+1


u
δ2n


. (29)

By taking the limit as n → ∞ it follows that if ψm+1(u) satisfies the recursion (28), then ψm+1(u) is given by the power
series in (27). However, it is routine to check that the polynomial

φm+1(u) = −

m−
j=0

(u − 1)j(1 − zt)jum−j
m∏

i=j+1

(1 − (1 − t)i) (30)

satisfies the recursion that

γ1φm+1(u) = (u − 1)m+1(1 − zt)m+1
+ uδm1 φm+1


u
δ1


. (31)

Thus we have proved the following lemma.

Lemma 7.

ψm+1(u) =

−
k≥0

(u − 1)m+1(1 − zt)m+1uk(1 − t)k(m+1)

k+1∏
i=1
γi

= −

m−
j=0

(u − 1)j(1 − zt)jum−j
m∏

i=j+1

(1 − (1 − t)i). (32)

It thus follows that

H(t, u, 1, z) =
zt(1 − u)

γ1
+

−
n≥0

n−
m=0

(−1)n−m−1
 n
m


(u − 1)n−m zt

(1 − zt)m+1

−
(u − 1)m+1(1 − zt)m+1

γ1
−

m−
j=0

(u − 1)j(1 − zt)jum−j
m∏

i=j+1

(1 − (1 − t)i).

There is no problem in setting u = 1 in this expression to obtain that

H(t, 1, 1, z) =

−
n≥0

zt
(1 − zt)n+1

n∏
i=1

(1 − (1 − t)i). (33)

Clearly our definitions ensure that 1+H(t, 1, 1, z) = P(t, z) as defined in the introduction so that we have the following
theorem.

Theorem 8.

P(t, z) =

−
n,k≥0

pn,ktnzk = 1 +

−
n≥0

zt
(1 − zt)n+1

n∏
i=1

(1 − (1 − t)i). (34)
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Next we observe that one can easily derive the ordinary generating function for the number of (2 + 2)-free posets or,
equivalently, for the number of ascent sequences proved by Bousquet-Mélou et al. [1] from Theorem 8. That is, for any
sequence of natural numbers a = a1 · · · an, let a+

= (a1 + 1) · · · (an + 1) be the result of adding one from each element of
the sequence. Moreover, if all the elements of a = a1 · · · an are positive, then we let a−

= (a1 − 1) · · · (an − 1) be the result
of subtracting one to each element of the sequence. It is easy to see that if a = a1 · · · an is an ascent sequence, then 0a+ is
also an ascent sequence. Vice versa, if b = 0a is an ascent sequence with only one zero where a = a1 · · · an, then a− is an
ascent sequence. It follows that the number of ascent sequences of length n is equal to the number of ascent sequences of
length n + 1 which have only one zero. Hence

P(t) =

−
n≥0

pntn =
1
t
∂P(t, z)
∂z


z=0

=

−
n≥0

n∏
i=1

(1 − (1 − t)i).

Results in [1–3] show that (2 + 2)-free posets of size n with k minimal elements are in bijection with the following
objects. (See [1–3] for the precise definitions.)

• ascent sequences of length n with k zeros;
• permutations of length n avoiding whose leftmost-decreasing run is of size k;
• regular linearized chord diagrams on 2n points with initial run of openers of size k;
• upper triangular matrices whose non-negative integer entries sum up to n, each row and column contains a non-zero

element, and the sum of entries in the first row is k.

Thus (34) provides generating functions for -avoiding permutations by the size of the leftmost-decreasing run, for regular
linearized chord diagrams by the size of the initial run of openers, and for the upper triangular matrices by the sum of
entries in the first row. Moreover, Theorem 4, together with bijections in [1–3] can be used to enumerate the permutations,
diagrams, and matrices subject to four statistics.

5. Restricted ascent sequences and the Catalan numbers

Recall that a sequence x1x2 · · · xn ∈ Nn is a restricted ascent sequence of length n if it satisfies x1 = 0 and xi ∈

[m − 1, 1 + asc(x1x2 · · · xi−1)] for all 2 ≤ i ≤ n, where m is the maximum element in x1x2 · · · xi−1.

Theorem 9. The number of restricted ascent sequences of length n is given by the n-th Catalan number.

Proof. Lets Rn denote the number of restricted ascent sequences of length n. The Catalan numbers Cn can be defined by the
recursion

Cn+1 =

n−
k=0

CkCn−k

with the initial condition that C0 = 1. It is easy to see that R0 = 1 since the empty sequence is a restricted ascent sequence.
We must show that

Rn+1 =

n−
k=0

RkRn−k. (35)

Thus we need a procedure to take a restricted ascent sequence D1 of length k and a restricted ascent sequence D2 of length
n−k andproduce a restricted ascent sequenceD of lengthn+1.We shall describe a procedure ‘‘gluing’’ two ascent sequences,
D1 and D2 which is equivalent to gluing two Dyck paths together. To define our gluing procedure we first need the concept
of the ‘‘rightmost maximum’’ in an ascent sequence, defined as a left-to-right maximum x such that x is one more than the
number of ascents to the left of x, and none of the left-to-rightmaxima to the right of x has this property (in other words, this
is the last time we use the maximum option in the interval [m− 1, 1+ asc] among the left-to-right maxima). The sequence
00 · · · 0 is the only one that does not have the rightmost maximum. For example, 0010101003 has the rightmost maximum
(the leftmost) 1, whereas 0010103323234 has the rightmost maximum (the leftmost) 3. Then procedure of ‘‘gluing’’ two
ascent sequences, D1 and D2 together can be described as follows.

1. For D1 ≠ ∅, define D1 + D2 := D1(1 + asc(D1))(D2 + +(asc(D1)))where ‘‘++’’ means increasing each element of D2 by
the number asc(D1). For example, if D1 = 01021 and D2 = 01212, then D1 + D2 = 01021323434.

2. For D1 = ∅ define D1 + D2 := D2 with the rightmost maximum element duplicated (add extra 0 if D2 = 00 · · · 0). For
example, ϵ + 01212 = 012212.
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Fig. 1. Counterexamples to the statement that restricted ascent sequences correspond to (2 + 2)- and (3 + 1)-free posets under the bijection in [1].

It is easy to see that in Case 1, the element (1 + asc(D1)) is the rightmost maximum element of D1(1 + asc(D1))(D2 +

+(asc(D1))) which is either the rightmost element if D2 = ϵ or is followed by asc(D1) if D2 ≠ ϵ since D2 must start with 0
in that case. It follows that the rightmost maximal element is not duplicated in D1 + D2 in Case 1 and, hence, it is easy to
recover D1 and D2 from D1 + D2. Clearly, in Case 2, the rightmost maximal element of D1 + D2 is duplicated so that we can
distinguish Case 1 from Case 2. Moreover, it is easy to see that we can recover D2 from D1 + D2 in Case 2. This proves that
(35) holds and hence Rn = Cn for all n.

Here are examples of decompositions for n = 3 and n = 4 (ϵ stays for the empty word):

000 = ϵ + 00 0000 = ϵ + 000 0100 = 0 + 00 0112 = 011 + ϵ
001 = 00 + ϵ 0001 = 000 + ϵ 0101 = 0 + 01 0121 = 01 + 0
010 = 0 + 0 0010 = 00 + 0 0102 = 010 + ϵ 0122 = ϵ + 012
011 = ϵ + 01 0011 = ϵ + 001 0110 = ϵ + 010 0123 = 012 + ϵ
012 = 01 + ϵ 0012 = 001 + ϵ 0111 = ϵ + 011 . �

Recall that posets avoiding (3+1) are those that do not contain, as an induced subposet, a 3-element chain together with
another element which is incomparable to all elements in the 3-element chain. As we mentioned in the introduction, the
number of posets avoiding (2+2) and (3+1) is given by the Catalan numbers (see [10,9]). Using the bijection in [1] applied
to small restricted ascent sequences, one would be tempted to conjecture that restricted ascent sequences are bijectively
mapped to (2 + 2)- and (3 + 1)-free posets as both of the objects are counted by the Catalan numbers. Indeed, this is true
for posets of size less than or equal to six.

Moreover, we can show that, for the first time one violates the restricted ascent sequence condition, the corresponding
(2 + 2)-free poset contains an induced copy of (3 + 1). That is, suppose that a = a1a2 · · · an is a restricted ascent sequence,
m = max{a1, a2, . . . , an} ≥ 2, and x < m − 1. Then we claim that the poset corresponding to ax, must contain an induced
copy of (3 + 1). That is, let r be the element on level x that corresponds to x under the bijection of Section 2. Now in ax, x is
preceded by a larger element, and thus r has a neighbor, say s, on its level, level x. Because the first timewe encounterm in a,
its corresponding element z in the poset covers all maximal elements, it follows that theremust be at least one non-maximal
element, say u, on levelm− 1. Next, since x < m− 1, there exists an element e in the poset such that e < c and e ≮ b. That
is, c is on a higher level than b and the down-sets are linearly ordered by inclusion according to their levels. Since r copies
relations of s, e ≮ r . Since r is a maximal element, also r ≮ e and r ≮ u. Finally, u is a non-maximal element, thus there
exists v > u. Finally v ≮ r since r is maximal so that the four elements e < u < v and r form a (3 + 1)configuration.

If it was the case that our addition operations preserved the property of containing (3+1) configuration, then it would be
the case that the bijection in Section 2 would send (2+2)- and (3+1)-free posets to restricted ascent sequences. However,
this is not the case. For example, consider the poset on the left in Fig. 1which corresponds to (2+2)-free poset corresponding
to the ascent sequence 0101202. One can check that there is an induced (3 + 1) in the poset corresponding to the non-
restricted ascent sequence 010120, but clearly there is no induced (3 + 1) in the (2 + 2)-free poset corresponding to the
ascent sequence 0101202. This means that there must be a restricted ascent sequence of length seven whose corresponding
(2 + 2)-free poset does contain an induced copy of (3 + 1). Such a sequence and its corresponding (2 + 2)-free poset is
shown on the right of Fig. 1.

We leave it as an open problem to characterize (2 + 2)-free posets corresponding to restricted ascent sequences under
the bijection in [1] and to characterize ascent sequences corresponding to (2 + 2)- and (3 + 1)-free posets under the same
bijection.
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