

Discrete Applied Mathematics 55 (1994) 273-279

DISCRETE APPLIED MATHEMATICS

The Copeland measure of Condorcet choice functions

G. Laffond^a, J.F. Laslier^a, M. Le Breton^{b, *}

^a Laboratoire d'Econométrie, CNAM, 2 Rue Conté, 75003 Paris, France ^b GREQE, Université d'Aix-Marseille 2, 2 Rue de la Charité, 13002 Marseille, France

Received 2 July 1992; revised 19 April 1993

Abstract

We propose a measure to compare an arbitrary choice function with the Copeland choice function. We compute this measure for the familiar Condorcet choice functions.

1. Introduction

A tournament T = (X, U) is a nonempty finite set X and a binary relation U on X (read xUy as x dominates y) that is complete $(x \neq y \Rightarrow xUy \text{ or } yUx)$ and asymmetric (see Moon [10]). A choice function F on the class \mathcal{T} of all tournaments is a map that assigns a nonempty choice set $F(T) \subseteq X$ to each T = (X, U) in \mathcal{T} .

Several specific choice functions have been proposed to reflect F(T) as the set of most dominant members of X with respect to U. A Condorcet choice function is a choice function F such that for all T = (X, U) with $xUy \ \forall y \neq x$ for some $x \in X, F(T) = \{x\}^1$. All the choice functions considered in this paper fall in this class. One of the most popular is Copeland's function C which defines C(T) as the subset of X whose members maximize s(T, x), the number of $y \in X$ for which xUy (Copeland [4]). Our purpose is to compare C with other choice functions by the Copeland measure C_F for choice function F as defined by

$$C_F = \inf_{T \in \mathscr{F}} \left[\frac{\max_{x \in F(T)} s(T, x)}{\max_{x \in X} s(T, x)} \right]$$

This measure provides an evaluation of the poorest conceivable scores of the outcomes chosen by the choice function F. By definition $C_F \leq 1$ with equality iff $F(T) \cap C(T) \neq \emptyset$ for all T in \mathcal{T} . It represents a first estimation of the magnitude of the disagreement between the Copeland function and an arbitrary choice function.

^{*} Corresponding author.

¹Such an outcome is called a Condorcet winner.

The familiar choice functions we consider are organized in three groups according to C_F values, namely $C_F = 1$, $C_F = \frac{1}{2}$ and $C_F \leq \frac{1}{3}$. Proofs of our results appear in Section 3.

2. Copeland measure of the familiar choice functions

274

Let T = (X, U) be an arbitrary tournament. We denote by V(T, x) the set $\{y \in X : yUx\}$. Given $A \subseteq X$, T | A denotes the tournament (A, U | A) where U | A is the restriction of U to A. L(T) denotes the family of subsets $A \subseteq X$ such that T | A is a maximal (with respect to inclusion) transitive tournament, and l(T) denotes the largest cardinality of the elements of L(T).

Let T' = (X, U') be another tournament on X. We denote by $\Delta(T, T')$ the cardinality of the set $\{(x, y) \in X^2 : x \neq y, xUy \text{ and } yU'x\}$. It is easy to verify that Δ is a distance on the set of tournaments defined over X.

We define the composition $\Pi(T; T_1, ..., T_n)$ of a tournament T on $\{y_1, ..., y_n\}$ and n tournaments T_i on $\{x_{i1}, ..., x_{in_i}\}$, i = 1, ..., n as the tournament on $\bigcup_{i=1}^n \{x_{i1}, ..., x_{in_i}\}$ by: x_{ij} dominates x_{kl} iff i = k and x_{ij} dominates x_{il} in T_i , or $i \neq k$ and y_i dominates y_k in T.

Given two choice functions F and F' we define a new choice function F(F') by F(F')(T) = F(T|F'(T)). In particular, given a choice function F, we define inductively F^k by $F^1 = F$ and $F^{k+1} = F(F^k)$; $F^{\infty}(T)$ is defined by $\bigcap_k F^k(T)$.

2.1. Choice functions F with $C_F = 1$

The top cycle of T, discussed by Schwartz [12], is the subset TC(T) of X whose members x satisfy: for all $y \in X$ there exists an integer n and a sequence $x = x_0, x_1, \dots, x_n = y$ such that $x_i U x_{i+1}, i = 0, \dots, n-1$.

The uncovered set of T proposed by Fishburn [6] and Miller [9] is the subset UC(T) of X whose members x are the maximal elements of the covering relation defined by: z covers y iff zUy and wUz implies wUy. It is easy to see that the covering relation is transitive and so UC(T) is nonempty.

It is well known that $C(T) \subseteq UC(T) \subseteq TC(T)$. We deduce that $C_{TC} = C_{UC} = 1$.

2.2. Choice functions F with $C_F = \frac{1}{2}$

Moulin [11] presents a tournament T such that: $TC(UC)(T) \cap C(T) = \emptyset$, implying $C_{TC(UC)} < 1$. The same observation applies to the iterates UC^k of UC. Dutta [5] proposed a choice function in the continuation of UC. Define a covering set of T as a subset A of X satisfying: UC(T|A) = A and $x \notin UC(T|A \cup \{x\})$ for all $x \notin A$. Dutta [5] proved that $UC^{\infty}(T)$ is a covering set of T and that the family of covering sets of T has a minimal element with respect to inclusion, called the *minimal covering set* of T and denoted by MC(T). Since $MC(T) \subseteq UC^{\infty}(T)$ we deduce that $C_{MC} < 1$.

Slater [14] proposed the following choice function. Define a slater order of T as an order O over X which is a solution of the problem Min $\Delta(O, T)$ over the set of orders

on X. The Slater set of T is the subset SL(T) of X whose members are top elements of at least one Slater order of T. Bermond [3] gives a tournament T such that $SL(T) \cap C(T) = \emptyset$, implying $C_{SL} < 1$.

All the choice function defined in this subsection have a Copeland measure strictly smaller than 1. Our first proposition states that they all have a Copeland measure equal to $\frac{1}{2}$. Precisely:

Proposition 1. If F is a choice function such that

(i) $F(T) \subseteq TC(UC)(T) \ \forall T \in \mathscr{T} \text{ then } C_F \leq \frac{1}{2},$

(ii) $F(T) \supseteq MC(T) \ \forall T \in \mathscr{T} \ then \ C_F \ge \frac{1}{2}$,

(iii) $F(T) \supseteq SL(T) \ \forall T \in \mathscr{T} \ then \ C_F \ge \frac{1}{2}$.

Indeed from (i) and (ii) if follows that $C_{TC(UC)} = C_{UC^k} = C_{MC} = \frac{1}{2}$. From (i), (iii) and the inclusion $SL(T) \subseteq TC(UC(T))$ proved in Banks et al. [2], it follows that $C_{SL} = \frac{1}{2}$.

2.3. Choice functions F with $C_F \leq \frac{1}{3}$

The two choice functions of this subsection arise in descriptive models of the majority voting process.

The Banks set (Banks [1]) of T is the subset B(T) of X whose members are top elements of at least one maximal transitive subtournament of T. Banks proved that B(T) is a subset of TC(UC)(T), implying CB < 1.

The Tournament Equilibrium set of T denoted by TEQ(T) has been proposed by Schwartz [13]. It is defined inductively on the order of the tournament. Suppose it is defined for all tournaments of order smaller or equal to n and consider T of order n + 1. Define the binary relation D(T) on X by: xD(T)y iff $x \in TEQ(T | V(T, y))$. The tournament equilibrium set of T is the subset of X whose members belong to a maximal component of the transitive closure of D(T). Schwartz proved that TEQ(T)is a subset of B(T) implying $C_{TEQ} < 1$.

These two choice functions have a Copeland measure smaller than $\frac{1}{3}$. This is equivalent to the following proposition.

Proposition 2. If F is a choice function such that $F(T) \subseteq B(T) \forall T \in \mathcal{T}$ then $C_F \leq \frac{1}{3}$.

3. Proofs

Proof of Proposition 1. (i) Let T = (X, U) be a cyclical tournament² of order 2n + 1 and consider the tournament T'_n defined as

$$T'_n = \Pi(T; T^1, \dots, T^{2n+1})$$

² A tournament (X, U) is cyclical if there is labelling of $X, X = \{x_1, \dots, x_{2n+1}\}$ such that $x_i U x_j$ iff $j - i \{1, \dots, n\}$ (addition mode 2n + 1).

where $T^{i} = (\{x_{1}^{i}\} \cup X_{2}^{i}, U^{i})$ with $|X_{2}^{i}| = n, x_{1}^{i}U^{i}x_{2}^{i}$ for all x_{2}^{i} in X_{2}^{i} and $T^{i}|X_{2}^{i}$ arbitrary.

Denote by X^1 and X^2 the sets $\bigcup_{i=1}^{2n+1} \{x_1^i\}$ and $\bigcup_{i=1}^{2n+1} X_2^i$.

To define T_n , we consider an additional point a and we define U_n over $X_1 \cup X_2 \cup \{a\}$ by:

$$X_1 U_n a, \\ a U_n X^2$$

and

$$T_n | X_1 \cup X_2 = T'_n.$$

It is easy to check that $UC(T_n) = X_1 \cup \{a\}$ and thus $TC(UC(T_n)) = X_1$; further:

$$s(T_n, a) = 2n^2 + n$$

and

 $s(T_n, x_1) = n^2 + 2n + 1$ for all $x_1 \in X^1$.

Consequently, $C(T) = \{a\}$ implying $CTC(UC) \leq (n^2 + 2n + 1)/(2n^2 + n)$. Since the right-hand side of the above inequality tends to 1/2 as $n \to \infty$, the proof of (i) is complete.

(ii) The proof proceeds in a sequence of claims.

Claim 1. Let T = (X, U) and consider $x \in MC(T)$, $y \in X - MC(T)$ such that xUy. Let $T_{xy} = (X, U')$ be defined as:

- yU'x,
- uU'v iff uUv if $\{u, v\} \neq \{x, y\}$.

Then if $MC(T_{xy}) = MC(T)$,

$$\frac{\max_{z \in MC(T_{xy})} s(T_{xy}, z)}{\max_{z \in X} s(T_{xy}, z)} \leqslant \frac{\max_{z \in MC(T)} s(T, z)}{\max_{z \in X} s(T, z)}.$$

The proof of this claim is obvious. We denote by T' the family of tournaments T = (X, U) such that $\forall x \in MC(T), \forall y \in MC(T), xUy$ implies $MC(Txy) \neq MC(T)$.

Claim 2. Let $T = (X, U) \in T'$. Then for all $x \notin MC(T)$, there exists a unique $y \in MC(T)$ such that yUx and for all $z \in MC(T)$, xUz iff yUz.

Let $x \notin MC(T)$. From the definition of MC(T), x is covered by y in $T | MC(T) \cup \{x\}$. We assert that this y verifies the conditions of the claim. Assume on the contrary that $\exists z \in MC(T)$ with yUz and zUx. Consider Tx, z.

It is easy to see that $v \notin MC(T)$, we have $v \notin UC(Tx, z \mid MC(T) \cup \{v\})$. This implies that $MC(Tx, z) \subset MC(T)$. Since MC satisfies the strong superset property³, we

276

³ A solution S satisfies the strong superset property if for all $T \in T'$ and $S(T) \subseteq A \subseteq X$, then S(T|A) = S(T). Dutta [5] proves that MC satisfies the strong superset property.

deduce that MC(Tx, z | MC(T)) = MC(Tx, z). But, from the construction, Tx, z | MC(T) = T | MC(T). Since MC(T | MC(T)) = MC(T) from the strong superset property, we deduce that MC(Txz) = MC(T), contradicting $T \in T'$.

Given $T \in T'$, let us introduce the following notations. For all $x \notin MC(T)$, we denote by f(x) the unique vertex whose existence is asserted in Claim 2. For all $y \in MC(T)$, denote respectively by $\zeta(y)$ and $\Psi(y)$ the sets $\{x \in X - MC(T): f(x) = y\}$ and $\{y' \in MC(T): yUy'\}$.

Claim 3. $\forall y \in MC(T), \{z \in X : yUz\} = \Psi(y) \cup \zeta(y) \cup \bigcup_{y' \in \Psi(y)} \zeta(y').$

Of course, $\Psi(y) \cup \zeta(y)$ is included in $\{z \in X : yUz\}$.

If $y' \notin \Psi(y)$ then y'Uy. Since every x in $\zeta(y')$ dominates every z in MC(T) such that y'Uz, we deduce that xUy.

If $y' \in \Psi(y)$ and $z \in \zeta(y')$ then as above, since yUy', we deduce yUz.

Let us now conclude the proof. From Claim 1 it is enough to prove that $C_{MC}(T) \ge \frac{1}{2}$ for T in T'.

Let T = (X, U) in T' and define T' = (X, U') as:

$$T | MC(T) = T' | MC(T)$$
 for all $y \in MC(T), T' | \zeta \{y\}(y) = T | \{y\} \cup \zeta(y)$

and

for all $x, x' \notin MC(T)$ such that $f(x) \neq f(x')$: xU'x' iff f(x)Uf(x').

From Claim 3 it comes that T and T' only differ on the complement of MC(T). Since MC is monotonic⁴ and satisfies the strong superset property, we deduce that MC(T) = MC(T'). Further, from Claim 3 it comes also that s(T, y) = s(T', y) for all $y \in MC(T)$. Finally, from the construction of T' it is easy to check that UC(T') = MC(T'). Combining these informations, we get $C(T') \subseteq MC(T)$.

This concludes the proof since for all y in C(T'), $s(T, y) \ge n/2$.

(iii) This follows from the property $x \in SL(T)$ implies $s(T, x) \ge \lfloor n/2 \rfloor$ proved by Bermond [3] and thus $C_{SL} \ge \frac{1}{2}$. \Box

Proof of Proposition 2. We prove that $C_B \leq \frac{1}{3}$. The following simple claim will be needed.

Claim 4. For all $\varepsilon > 0$ there exists a regular⁵ tournament T = (X, U) such that:

$$\frac{l(T)}{o(T)} \leqslant \varepsilon.$$

Proof. Let T^1 be a cyclical tournament over a set X^1 of 5 vertices. We have $l(T^1) = 3$. We define inductively a sequence (T^k) $k \ge 1$ as follows:

 $T^{k+1} = \Pi(T^k; T^k, \ldots, T^k).$

⁴ A solution S is monotonic if for all T = (X, U), T' = (X, U') in T such that $(x, y) \in U$, $(y, x) \in U'$ and T = T' otherwise, $x \in S(T')$. It is easy to see that if S is monotonic and satisfies the strong superset property then S(T) is independent from the arcs within the complement of S(T) in X. Dutta [5] proves that MC is monotonic. ⁵ A tournament is regular if C(T) = X.

It is easy to check that for all k, T^k is regular, with:

$$o(T^k) = 5^{2k-1}$$

and

$$l(T^k) = 3^{2k-1}.$$

Since the sequence $(\frac{3}{5})^{2k-1}$ tends to 0 as k goes to ∞ , T^k will satisfy the conditions of the lemma for k large enough.

Let $\varepsilon > 0$ and consider (according to Claim 4) a regular tournament T = (X, U)with $l(T)/o(T) \le \varepsilon$. Denote by γ the set of subsets of X belonging to L(T). Given two integers n and m, we define three tournaments T_n^1 , T^2 and T_m^3 as follows.

 $T_n^1 = (X_n^1, U_n^1)$ is the tournament $\Pi(T; R_n, \dots, R_n)$ where R_n is cyclical tournament of order 2n + 1.

 $T^2 = (X^2, U^2)$ is an arbitrary tournament over $X^2 = \gamma$, $T_m^3 = (X_m^3, U_m^3)$ is an arbitrary transitive tournament of order m + 1.

We construct a tournament $T_{n,m}$ over $X_{n,m} = X_n^1 X^2 X_m^3$ as follows: $T_{n,m} = (X_{n,m}, U')$,

$$T_{n,m} | X_n^1 = T_1^n, \qquad T_{n,m} | X^2 = T^2, \qquad T_{n,m} | X_m^3 = T_m^3,$$

$$x^3 U' x^1 \quad \forall x^3 \in X_m^3, \quad \forall x^1 \in X_n^1,$$

$$x^2 U' x^3 \quad \forall x^3 \in X_m^3, \quad \forall x^2 \in X^2,$$

and $x^2 U' x^1$ iff the component of T_n^1 containing x^1 belongs to x^2 .

It is easy to check that $B(T_{n,m})$ is a subset of $X_n^1 \cup X^2$. Furthermore, we obtain,

$$s(T_{n,m}, x^{1}) = \left(\frac{o(T) - 1}{2}\right)(2n + 1) + n + K^{1} \quad \forall x^{1} \in X_{n}^{1},$$

$$s(T_{n,m}, x^{2}) \leq m + l(T)(2n + 1) + K^{2}, \quad x^{2} \in X^{2}$$

and

$$s(T_{n,m}, x^3) = m + o(T)(2n + 1)$$

where x^3 is the top element in T_m^3 and K^1 and K^2 are constants (not depending on *n* or *m*).

It follows that, if m and n are large enough, $C(T_{n,m}) = \{x^3\}$.

Further, if $m = (o(T) - 2l(T) - \rho)n$ where ρ is a small positive number, then we have:

$$s(T_{n,m}, x^1) > s(T_{n,m}, x^2) \quad \forall x^1 \in X^1, \ \forall x^2 \in X^2 \text{ for } n \text{ large enough.}$$

We deduce

$$C_B \leq \frac{((o(T) - 1)/2)(2n + 1) + n + K^1}{o(T)(2n + 1) + (o(T) + 1 - 2l(T) - \rho)n}$$

for *n* large enough.

If we take the limit of the right hand side of the inequality we obtain:

$$C_B \leq \frac{1}{3 + 2/o(T) - 2(l(T)/o(T)) - \rho/o(T)} \leq \frac{1}{3 - 2\varepsilon - \rho/o(T)}$$

Since ε and ρ can be chosen arbitrary small the proof is complete. \Box

Acknowledgements

We thank two anonymous referees for their constructive comments on an earlier version of this paper.

References

- [1] J.S. Banks, Sophisticated voting outcomes and agenda control, Soc. Choice Welf. 1 (1985) 295-306.
- [2] J.S. Banks, G. Bordes and M. Le Breton, Covering relations, closest orderings and Hamiltonian bypaths in tournaments, Soc. Choice Welf. 8 (1991) 355–363.
- [3] J.C. Bermond, Ordres à distance minimum d'un tournoi et graphs partiels sans circuits maximaux, Math. Sci. Humaines 37 (1972) 5-25.
- [4] A.H. Copeland, A reasonable social welfare function, Mimeo, University of Michigan (1951).
- [5] B. Dutta, Covering sets and a new condorcet choice correspondence, J. Econom. Theory 44 (1988) 63-80.
- [6] P.C. Fishburn, Condorced social choice functions, SIAM J. Appl. Math. 33 (1977) 469-489.
- [7] G. Laffond and J.F. Laslier, Slater's winners of a tournament may not be in the Banks Set, Soc. Choice Welf. 8 (1991) 365–369.
- [8] G. Laffond, J.F. Laslier and M. Le Breton, Condorcet choice correspondences: a set-theoretical comparison, Mimeo, Laboratoire d'Econométrie, CNAM (1992).
- [9] N. Miller, A new solution set for tournaments and majority voting: further graph-theoretical approches to the theory of voting, Amer. J. Political Sci. 24 (1980) 68-96.
- [10] J. Moon, Topics on Tournaments (Holt, Rinehart and Winston, New York, 1968).
- [11] H. Moulin, Choosing form a tournament, Soc. Choice Welf. 3 (1986) 271-291.
- [12] T. Schwartz, Rationality and the myth of the maximum, Noûs 6 (1972) 97-117.
- [13] T. Schwartz, Cyclic tournaments and cooperative majority voting: a solution, Soc. Choice Welf. 7 (1990) 19–29.
- [14] P. Slater, Inconsciencies in a schedule of paired comparisons, Biometrica 48 (1961) 303-312.