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Abstract 

We propose a measure to compare an arbitrary choice function with the Copeland choice 
function. We compute this measure for the familiar Condorcet choice functions. 

1. Introduction 

A tournament T = (X, U) is a nonempty finite set X and a binary relation U on 

X (read xUy as x dominates y) that is complete (x # y * xUy or yUx) and asymmet- 

ric (see Moon [lo]). A choice function F on the class Y of all tournaments is a map 

that assigns a nonempty choice set F(T) G X to each T = (X, U) in Y. 

Several specific choice functions have been proposed to reflect F(T) as the set of 

most dominant members of X with respect to U. A Condorcet choice function is 

a choice function F such that for all T = (X, U) with xUy Vy # x for some 

x E X, F(T) = {x}‘. All the choice functions considered in this paper fall in this class. 

One of the most popular is Copeland’s function C which defines C(T) as the subset of 

X whose members maximize s(T, x), the number of VEX for which xUy (Copeland 

[43). Our purpose is to compare C with other choice functions by the Copeland 

measure CF for choice function F as defined by 

CF = inf 
[ 

max,,F(T)s(T, x) 

maxxEx4T, 4 1 TE.F 

This measure provides an evaluation of the poorest conceivable scores of the 

outcomes chosen by the choice function F. By definition CF < 1 with equality iff 

F(T) n C(T) # 0 for all Tin Y. It represents a first estimation of the magnitude of the 

disagreement between the Copeland function and an arbitrary choice function. 

*Corresponding author. 

‘Such an outcome is called a Condorcet winner. 
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The familiar choice functions we consider are organized in three groups according to 

CF values, namely CF = 1, CF = f and CF 6 f. Proofs of our results appear in Section 3. 

2. Copeland measure of the familiar choice functions 

Let T = (X, U) be an arbitrary tournament. We denote by V(T, x) the set 

{y E X: yUx}. G’ iven A G X, TI A denotes the tournament (A, U 1 A) where U ) A is the 

restriction of U to A. L(T) denotes the family of subsets A E X such that TI A is 

a maximal (with respect to inclusion) transitive tournament, and 1(T) denotes the 

largest cardinality of the elements of L(T). 

Let T’ = (X, U’) be another tournament on X. We denote by d (T, T’) the cardinal- 

ity of the set {(x, y) E X2: x # y, xUy and yU’x}. It is easy to verify that A is a distance 

on the set of tournaments defined over X. 

We define the composition ZI(c Tl, . , T,) of a tournament T on {yr , . . . , y,,} and 

n tournaments Ti on {.ql, , xin,}, i = 1, . . . , n as the tournament on ur= 1 {xii, . . , xini} 

by: xii dominates xkl iff i = k and Xij dominates xii in Tit or i # k and yi dominates y, in T. 

Given two choice functions F and F’ we define a new choice function F(F’) by 

F(F’)( T) = F( Tj F’(T)). In particular, given a choice function F, we define inductively 

Fk by F’ = F and Fk+’ = F(Fk); F”(T) is defined by Ok Fk(T). 

2.1. Choice functions F with CF = 1 

The top cycle of T, discussed by Schwartz [12], is the subset TC(T) of X whose 

members x satisfy: for all y E X there exists an integer n and a sequence 

x=xg,xi,..., ~,=ysuchthatxiUXi+i,i=O ,..., n-1. 

The uncovered set of T proposed by Fishburn [6] and Miller [9] is the subset 

UC(T) of X whose members x are the maximal elements of the covering relation 

defined by: z covers y iff zUy and wUz implies wUy. It is easy to see that the covering 

relation is transitive and so UC(T) is nonempty. 

It is well known that C(T) G UC(T) E TC(T). We deduce that CTc = CVc = 1. 

2.2. Choice,functions F with CF = f 

Moulin [l l] presents a tournament T such that: TC(UC)( T) n C(T) = 4? implying 

Crc(n,-) < 1. The same observation applies to the iterates UCk of UC. Dutta [S] 

proposed a choice function in the continuation of UC. Define a covering set of T as 

a subset A of X satisfying: UC(TI A) = A and x$UC(TI A u {x}) for all x$A. Dutta 

[S] proved that UC”(T) is a covering set of T and that the family of covering sets of 

T has a minimal element with respect to inclusion, called the minimal covering set of 

T and denoted by MC(T). Since MC(T) c_ UCm(T) we deduce that CMc < 1. 

Slater [ 141 proposed the following choice function. Define a slater order of T as an 

order 0 over X which is a solution of the problem Min A (0, T) over the set of orders 
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on X. The Slater set of T is the subset SL( T) of X whose members are top elements of 

at least one Slater order of T. Bermond [3] gives a tournament T such that 

SL(T) n C(T) = 8, implying CsL < 1. 

All the choice function defined in this subsection have a Copeland measure strictly 

smaller than 1. Our first proposition states that they all have a Copeland measure 

equal to 3. Precisely: 

Proposition 1. If F is a choice function such that 

(i) F(T) G TC(UC)(T) VTE Y then CF d :, 

(ii) F(T) 2 MC(T) VTE Y then CF 3 f, 

(iii) F(T) 2 SL(T) VTE Y then CF 2 t. 

Indeed from (i) and (ii) if follows that CTC(UC) = CUCk = CMc = f . From (i), (iii) and 

the inclusion SL( T) G TC(UC( T)) proved in Banks et al. [2], it follows that CsL = f 

2.3. Choice,functions F with C, < f 

The two choice functions of this subsection arise in descriptive models of the 

majority voting process. 

The Banks set (Banks [l]) of T is the subset B(T) of X whose members are top 

elements of at least one maximal transitive subtournament of T. Banks proved that 

B(T) is a subset of TC(UC)(T), implying CB < 1. 

The Tournament Equilibrium set of T denoted by TEQ(T) has been proposed by 

Schwartz [13]. It is defined inductively on the order of the tournament. Suppose it is 

defined for all tournaments of order smaller or equal to n and consider T of order 

n + 1. Define the binary relation D(T) on X by: xD(T)y iff x E TEQ(TI V(T, y)). The 

tournament equilibrium set of T is the subset of X whose members belong to 

a maximal component of the transitive closure of D(T). Schwartz proved that TEQ( T) 

is a subset of B(T) implying CTEQ < 1. 

These two choice functions have a Copeland measure smaller than f. This is 

equivalent to the following proposition. 

Proposition 2. !f F is a choice function such that F(T) c B( T) VT E Y then CII d 3. 

3. Proofs 

Proof of Proposition 1. (i) Let T = (X, U) be a cyclical tournament’ of order 2n + 1 

and consider the tournament T:, defined as 

Y:, = ZI(T; T’,..., T’“+‘) 

‘A tournament (X, U) is cyclical if there IS labelling of X, X = (.x1, ,,. , xZn+, ) such that x,Ux, iff j - i 
[I,..., n) (addition mode 2n + I). 
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where T’ = ({xi} u Xi, Ui) with IX’,1 = n, xi U’x\ for all xi in Xi and T’l Xi 

arbitrary. 

Denote by X’ and X2 the sets u:E:’ {xi} and uf”:’ Xi. 

To define T,,, we consider an additional point a and we define U, over 

X1 u X2 u {u} by: 

Xi U,a, 

aU,X2 

and 

T,IX, u X2 = Tn. 

It is easy to check that UC(T,) = X1 u {u} and thus TC(UC(T,,)) = X1; further: 

s(T,,, a) = 2n2 + n 

and 

s(T,,, x1) = n2 + 2n + 1 for all x1 E X’. 

Consequently, C(T) = {a} implying CTC(UC) d (n2 + 2n + 1)/(2n2 + n). 

Since the right-hand side of the above inequality tends to l/2 as n + co, the proof of 

(i) is complete. 

(ii) The proof proceeds in a sequence of claims. 

Claim 1. Let T = (X, U) and consider x E MC(T), y E X - MC(T) suck that xUy. Let 

TxY = (X, U’) be dejined as: 

0 yU’x, 

0 uU’v ifluUv if{u, u} # {x, y}. 

Then if MC(T,,) = MC(T), 

max,,,c(T,,) s(T,,, 4 ~ max,,Mc(T) s(T, 4 

maxzEx s(T,,, 4 maxzax s(T, z) 

The proof of this claim is obvious. We denote by T’ the family of tournaments 

T = (X, U) such that Vx E MC(T), Vy E MC(T), xUy implies MC(Txy) # MC(T). 

Claim 2. Let T = (X, U) E T’. Then for all x$MC(T), there exists a unique y E MC(T) 

suck that yUx and for all z E MC(T), xUz iff yUz. 

Let x$MC(T). From the definition of MC(T), x is covered by y in TI MC(T) u {x}. 

We assert that this y verifies the conditions of the claim. Assume on the contrary that 

3z E MC(T) with yUz and zUx. Consider TX, z. 

It is easy to see that v&MC(T), we have v$UC(Tx, z ( MC(T) u {v}). This implies 

that MC(Tx, z) c MC(T). Since MC satisfies the strong superset property3, we 

’ A solution S satisfies the strong superset property if for all T E T’ and S(T) G A s X, then S( TI A) = S(T). 

Dutta [5] proves that MC satisfies the strong superset property. 
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deduce that MC(Tx, z I MC(T)) = MC(Tx, z). But, from the construction, 

TX, z 1 MC(T) = T 1 MC(T). Since MC( T 1 MC(T)) = MC(T) from the strong superset 

property, we deduce that MC(Txz) = MC(T), contradicting TE T’. 

Given T E T’, let us introduce the following notations. For all x$MC(T), we denote 

byf(x) the unique vertex whose existence is asserted in Claim 2. For all y E MC(T), 

denote respectively by i(y) and Y(y) the sets {x E X - MC(T): ,f(x) = y} and 

(y’ E MC(T): yUy’). 

Claim 3. Vy E MC(T), {z E X: yUz) = Y(y) u i(y) u U,,,Yc,,,[(y’). 

Of course, Y(y) u c(y) is included in {z E X: yUz}. 

If y’+‘?(y) then y’Uy. Since every x in [(y’) dominates every z in MC(T) such that 

,(T) 3 

y’Uz, we deduce that xUy. 

If y’ E Y(y) and z E [(y’) then as above, since yziy’, we deduce yUz. 

Let us now conclude the proof. From Claim 1 it is enough to prove that CMlc 

for T in T’. 

Let T = (X, U) in T’ and define T’ = (X, U’) as: 

TI MC(T) = T’I MC(T) for all y E MC(T), T’ I [{y)(y) = TJ (y) u l(y) 

and 

for all x, x’#MC(T) such thatf(x) #f(x’): xU’x’ iff f(x)Uf(x’). 

From Claim 3 it comes that T and T’ only differ on the complement of MC(T). 

Since MC is monotonic4 and satisfies the strong superset property, we deduce that 

MC(T) = MC(T’). Further, from Claim 3 it comes also that s( T, y) = s(T: y) for all 

y E MC(T). Finally, from the construction of T’ it is easy to check that 

UC(T’) = MC(T’). Combining these informations, we get C(T’) 5 MC(T). 

This concludes the proof since for all y in C(T’), s(T, y) 3 n/2. 

(iii) This follows from the property x E SL( T) implies s(T, x) 2 [n/2] proved by 

Bermond [3] and thus CsL 3 f. 0 

Proof of Proposition 2. We prove that Cs < 3. The following simple claim will be needed. 

Claim 4. For all E > 0 there exists a regular5 tournament T = (X, U) such that: 

Proof. Let T1 be a cyclical tournament over a set X1 of 5 vertices. We have I( T1 ) = 3. 

We define inductively a sequence (Tk) k 2 1 as follows: 

Tkf’ 
= I7( Tk; Tk, . . . , Tk). 

4A solution S is monotonic if for all T = (X, U), T’ = (X, U’) in Tsuch that (x, y) E U, (y, w) E U’ and T = T 
otherwise, x E S( T’). It is easy to see that if S is monotonic and satisfies the strong superset property then S(T) 
is independent from the arcs within the complement of S(T) m X. Dutta [S] proves that MC is monotonic. 

“A tournament is regular if C(T) = X. 
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It is easy to check that for all k, Tk is regular, with: 

and 

Since the sequence (j)““- ’ tends to 0 as k goes to cc, Tk will satisfy the conditions 

of the lemma for k large enough. 

Let E > 0 and consider (according to Claim 4) a regular tournament T = (X, U) 
with I(T)/o(T) < E. Denote by y the set of subsets of X belonging to L(T). Given two 

integers n and m, we define three tournaments T,‘, T2 and Ti as follows. 

T,’ = (X,‘, U,!) is the tournament Z7(T; R,, . . . , R,) where R, is cyclical tournament 

of order 2n + 1. 

T2 = (X2, U2) is an arbitrary tournament over X2 = y, Ti = (XA, Ui) is an arbit- 

rary transitive tournament of order m + 1. 

We construct a tournament T,,, over X,, m = X:X2X2 as follows: T,,, = 

(X,,,, U’j, 

Tn,,lXf = T;, T,,,,lX2 = T2, T,,,,IXi = Tit 

x3U’x1 vx3 E xi, vx’ E x1 nt 

x2U’x3 vx3 E xi, kfx2 E x2, 

and x2U’x’ iff the component of T,’ containing x1 belongs to x2. 

It is easy to check that B(T,,,) is a subset of Xi u X2. Furthermore, we obtain, 

s(T,,,,, x1) = (2nf l)+n+K’ VXiEX,1, 

s(Tns,, x2) < m + I(T)(2n + 1) + K2, x2 E X2 

and 

s(T,,,, x3) = m + o(T)(2n + 1) 

where x3 is the top element in Ti and K1 and K2 are constants (not depending on n or 

m). 
It follows that, if m and n are large enough, C(T,,,) = {x3}. 

Further, if m = (o(T) - 21(T) - p)n where p is a small positive number, then we 

have: 

#“,z,,, x’) > s(T,,,, x2) Vx’ E X’, Vx2 E X2 for n large enough. 

We deduce 

CB < 
((o(T) - 1)/2)(2n + 1) + n + K’ 

o(T)(2n + 1) + (o(T) + 1 - 21(T) - p)n 



219 

for n large enough. 

If we take the limit of the right hand side of the inequality we obtain: 

Cl3 d 
1 1 

3 + 2/o(T) - 2(I(T)/o(T)) - p/o(T) d 3 - 2E - p/o(T). 

Since E and p can be chosen arbitrary small the proof is complete. 0 
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