The Copeland measure of Condorcet choice functions

G. Laffond ${ }^{\mathrm{a}}$, J.F. Laslier ${ }^{\mathrm{a}}$, M. Le Breton ${ }^{\text {b, } *}$
${ }^{a}$ Laboratoire d'Econométrie, CNAM, 2 Rue Conté, 75003 Paris, France
${ }^{b}$ GREQE, Université d'Aix-Marseille 2, 2 Rue de la Charité, 13002 Marseille, France

Received 2 July 1992; revised 19 April 1993

Abstract

We propose a measure to compare an arbitrary choice function with the Copeland choice function. We compute this measure for the familiar Condorcet choice functions.

1. Introduction

A tournament $T=(X, U)$ is a nonempty finite set X and a binary relation U on X (read $x U y$ as x dominates y) that is complete $(x \neq y \Rightarrow x U y$ or $y U x)$ and asymmetric (see Moon [10]). A choice function F on the class \mathscr{T} of all tournaments is a map that assigns a nonempty choice set $F(T) \subseteq X$ to each $T=(X, U)$ in \mathscr{T}.

Several specific choice functions have been proposed to reflect $F(T)$ as the set of most dominant members of X with respect to U. A Condorcet choice function is a choice function F such that for all $T=(X, U)$ with $x U y \forall y \neq x$ for some $x \in X, F(T)=\{x\}^{1}$. All the choice functions considered in this paper fall in this class. One of the most popular is Copeland's function C which defines $C(T)$ as the subset of X whose members maximize $s(T, x)$, the number of $y \in X$ for which $x U y$ (Copeland [4]). Our purpose is to compare C with other choice functions by the Copeland measure C_{F} for choice function F as defined by

$$
C_{F}=\inf _{T \in \mathscr{F}}\left[\frac{\max _{x \in F(T)} s(T, x)}{\max _{x \in X} s(T, x)}\right]
$$

This measure provides an evaluation of the poorest conceivable scores of the outcomes chosen by the choice function F. By definition $C_{F} \leqslant 1$ with equality iff $F(T) \cap C(T) \neq \emptyset$ for all T in \mathscr{T}. It represents a first estimation of the magnitude of the disagreement between the Copeland function and an arbitrary choice function.

[^0]The familiar choice functions we consider are organized in three groups according to C_{F} values, namely $C_{F}=1, C_{F}=\frac{1}{2}$ and $C_{F} \leqslant \frac{1}{3}$. Proofs of our results appear in Section 3.

2. Copeland measure of the familiar choice functions

Let $T=(X, U)$ be an arbitrary tournament. We denote by $V(T, x)$ the set $\{y \in X: y U x\}$. Given $A \subseteq X, T \mid A$ denotes the tournament $(A, U \mid A)$ where $U \mid A$ is the restriction of U to A. $L(T)$ denotes the family of subsets $A \subseteq X$ such that $T \mid A$ is a maximal (with respect to inclusion) transitive tournament, and $l(T)$ denotes the largest cardinality of the elements of $L(T)$.

Let $T^{\prime}=\left(X, U^{\prime}\right)$ be another tournament on X. We denote by $\Delta\left(T, T^{\prime}\right)$ the cardinality of the set $\left\{(x, y) \in X^{2}: x \neq y, x U y\right.$ and $\left.y U^{\prime} x\right\}$. It is easy to verify that Δ is a distance on the set of tournaments defined over X.

We define the composition $\Pi\left(T ; T_{1}, \ldots, T_{n}\right)$ of a tournament T on $\left\{y_{1}, \ldots, y_{n}\right\}$ and n tournaments T_{i} on $\left\{x_{i 1}, \ldots, x_{i n_{i}}\right\}, i=1, \ldots, n$ as the tournament on $\bigcup_{i=1}^{n}\left\{x_{i 1}, \ldots, x_{i n_{n}}\right\}$ by: $x_{i j}$ dominates $x_{k i}$ iff $i=k$ and $x_{i j}$ dominates $x_{i t}$ in T_{i}, or $i \neq k$ and y_{i} dominates y_{k} in T.

Given two choice functions F and F^{\prime} we define a new choice function $F\left(F^{\prime}\right)$ by $F\left(F^{\prime}\right)(T)=F\left(T \mid F^{\prime}(T)\right)$. In particular, given a choice function F, we define inductively F^{k} by $F^{1}=F$ and $F^{k+1}=F\left(F^{k}\right) ; F^{\infty}(T)$ is defined by $\bigcap_{k} F^{k}(T)$.

2.1. Choice functions F with $C_{F}=1$

The top cycle of T, discussed by Schwartz [12], is the subset $T C(T)$ of X whose members x satisfy: for all $y \in X$ there exists an integer n and a sequence $x=x_{0}, x_{1}, \ldots, x_{n}=y$ such that $x_{i} U x_{i+1}, i=0, \ldots, n-1$.

The uncovered set of T proposed by Fishburn [6] and Miller [9] is the subset $U C(T)$ of X whose members x are the maximal elements of the covering relation defined by: z covers y iff $z U y$ and $w U z$ implies $w U y$. It is easy to see that the covering relation is transitive and so $U C(T)$ is nonempty.

It is well known that $C(T) \subseteq U C(T) \subseteq T C(T)$. We deduce that $C_{T C}=C_{U C}=1$.

2.2. Choice functions F with $C_{F}=\frac{1}{2}$

Moulin [11] presents a tournament T such that: $T C(U C)(T) \cap C(T)=\emptyset$, implying $C_{\text {rC(UC) }}<1$. The same observation applies to the iterates $U C^{k}$ of $U C$. Dutta [5] proposed a choice function in the continuation of $U C$. Define a covering set of T as a subset A of X satisfying: $U C(T \mid A)=A$ and $x \notin U C(T \mid A \cup\{x\})$ for all $x \notin A$. Dutta [5] proved that $U C^{\infty}(T)$ is a covering set of T and that the family of covering sets of T has a minimal element with respect to inclusion, called the minimal covering set of T and denoted by $M C(T)$. Since $M C(T) \subseteq U C^{\infty}(T)$ we deduce that $C_{M C}<1$.

Slater [14] proposed the following choice function. Define a slater order of T as an order O over X which is a solution of the problem Min $A(O, T)$ over the set of orders
on X. The Slater set of T is the subset $S L(T)$ of X whose members are top elements of at least one Slater order of T. Bermond [3] gives a tournament T such that $S L(T) \cap C(T)=\emptyset$, implying $C_{S L}<1$.

All the choice function defined in this subsection have a Copeland measure strictly smaller than 1 . Our first proposition states that they all have a Copeland measure equal to $\frac{1}{2}$. Precisely:

Proposition 1. If F is a choice function such that
(i) $F(T) \subseteq T C(U C)(T) \forall T \in \mathscr{T}$ then $C_{F} \leqslant \frac{1}{2}$,
(ii) $F(T) \supseteq M C(T) \forall T \in \mathscr{T}$ then $C_{F} \geqslant \frac{1}{2}$,
(iii) $F(T) \supseteq S L(T) \forall T \in \mathscr{T}$ then $C_{F} \geqslant \frac{1}{2}$.

Indeed from (i) and (ii) if follows that $C_{T C(U C)}=C_{U C^{k}}=C_{M C}=\frac{1}{2}$. From (i), (iii) and the inclusion $S L(T) \subseteq T C(U C(T))$ proved in Banks et al. [2], it follows that $C_{S L}=\frac{1}{2}$.

2.3. Choice functions F with $C_{F} \leqslant \frac{1}{3}$

The two choice functions of this subsection arise in descriptive models of the majority voting process.

The Banks set (Banks [1]) of T is the subset $B(T)$ of X whose members are top elements of at least one maximal transitive subtournament of T. Banks proved that $B(T)$ is a subset of $T C(U C)(T)$, implying $C B<1$.

The Tournament Equilibrium set of T denoted by $T E Q(T)$ has been proposed by Schwartz [13]. It is defined inductively on the order of the tournament. Suppose it is defined for all tournaments of order smaller or equal to n and consider T of order $n+1$. Define the binary relation $D(T)$ on X by: $x D(T) y$ iff $x \in T E Q(T \mid V(T, y))$. The tournament equilibrium set of T is the subset of X whose members belong to a maximal component of the transitive closure of $D(T)$. Schwartz proved that $T E Q(T)$ is a subset of $B(T)$ implying $C_{T E Q}<1$.

These two choice functions have a Copeland measure smaller than $\frac{1}{3}$. This is equivalent to the following proposition.

Proposition 2. If F is a choice function such that $F(T) \subseteq B(T) \forall T \in \mathscr{T}$ then $C_{F} \leqslant \frac{1}{3}$.

3. Proofs

Proof of Proposition 1. (i) Let $T=(X, U)$ be a cyclical tournament ${ }^{2}$ of order $2 n+1$ and consider the tournament T_{n}^{\prime} defined as

$$
T_{n}^{\prime}=\Pi\left(T ; T^{1}, \ldots, T^{2 n+1}\right)
$$

[^1]where $T^{i}=\left(\left\{x_{1}^{i}\right\} \cup X_{2}^{i}, U^{i}\right)$ with $\left|X_{2}^{i}\right|=n, x_{1}^{i} U^{i} x_{2}^{i}$ for all x_{2}^{i} in X_{2}^{i} and $T^{i} \mid X_{2}^{i}$ arbitrary.
Denote by X^{1} and X^{2} the sets $\bigcup_{i=1}^{2 n+1}\left\{x_{1}^{i}\right\}$ and $\bigcup_{i=1}^{2 n+1} X_{2}^{i}$.
To define T_{n}, we consider an additional point a and we define U_{n} over $X_{1} \cup X_{2} \cup\{a\}$ by:
\[

$$
\begin{aligned}
& X_{1} U_{n} a, \\
& a U_{n} X^{2}
\end{aligned}
$$
\]

and

$$
T_{n} \mid X_{1} \cup X_{2}=T_{n}^{\prime} .
$$

It is easy to check that $U C\left(T_{n}\right)=X_{1} \cup\{a\}$ and thus $\operatorname{TC}\left(U C\left(T_{n}\right)\right)=X_{1}$; further:

$$
s\left(T_{n}, a\right)=2 n^{2}+n
$$

and

$$
s\left(T_{n}, x_{1}\right)=n^{2}+2 n+1 \text { for all } x_{1} \in X^{1}
$$

Consequently, $C(T)=\{a\}$ implying $C T C(U C) \leqslant\left(n^{2}+2 n+1\right) /\left(2 n^{2}+n\right)$.
Since the right-hand side of the above inequality tends to $1 / 2$ as $n \rightarrow \infty$, the proof of (i) is complete.
(ii) The proof proceeds in a sequence of claims.

Claim 1. Let $T=(X, U)$ and consider $x \in M C(T), y \in X-M C(T)$ such that $x U y$. Let $T_{x y}=\left(X, U^{\prime}\right)$ be defined as:

- $y U^{\prime} x$,
- $u U^{\prime} v$ iff $u U v$ if $\{u, v\} \neq\{x, y\}$.

Then if $M C\left(T_{x y}\right)=M C(T)$,

$$
\frac{\max _{z \in M C\left(T_{x y)} s\left(T_{x y}, z\right)\right.}}{\max _{z \in X} s\left(T_{x y}, z\right)} \leqslant \frac{\max _{z \in M C(T)} s(T, z)}{\max _{z \in X} s(T, z)} .
$$

The proof of this claim is obvious. We denote by T^{\prime} the family of tournaments $T=(X, U)$ such that $\forall x \in M C(T), \forall y \in M C(T), x U y$ implies $M C(T x y) \neq M C(T)$.

Claim 2. Let $T=(X, U) \in T^{\prime}$. Then for all $x \notin M C(T)$, there exists a unique $y \in M C(T)$ such that $y U x$ and for all $z \in M C(T), x U z$ iff $y U z$.
Let $x \notin M C(T)$. From the definition of $M C(T), x$ is covered by y in $T \mid M C(T) \cup\{x\}$. We assert that this y verifies the conditions of the claim. Assume on the contrary that $\exists z \in M C(T)$ with $y U z$ and $z U x$. Consider $T x, z$.

It is easy to see that $v \notin M C(T)$, we have $v \notin U C(T x, z \mid M C(T) \cup\{v\})$. This implies that $M C(T x, z) \subset M C(T)$. Since $M C$ satisfies the strong superset property ${ }^{3}$, we

[^2]deduce that $M C(T x, z \mid M C(T))=M C(T x, z)$. But, from the construction, $T x, z|M C(T)=T| M C(T)$. Since $M C(T \mid M C(T))=M C(T)$ from the strong superset property, we deduce that $M C(T x z)=M C(T)$, contradicting $T \in T^{\prime}$.

Given $T \in T^{\prime}$, let us introduce the following notations. For all $x \notin M C(T)$, we denote by $f(x)$ the unique vertex whose existence is asserted in Claim 2. For all $y \in M C(T)$, denote respectively by $\zeta(y)$ and $\Psi(y)$ the sets $\{x \in X-M C(T): f(x)=y\}$ and $\left\{y^{\prime} \in M C(T): y U y^{\prime}\right\}$.

Claim 3. $\forall y \in M C(T),\{z \in X: y U z\}=\Psi(y) \cup \zeta(y) \cup \cup_{y^{\prime} \in \Psi(y)} \zeta\left(y^{\prime}\right)$.
Of course, $\Psi(y) \cup \zeta(y)$ is included in $\{z \in X: y U z\}$.
If $y^{\prime} \notin \Psi(y)$ then $y^{\prime} U y$. Since every x in $\zeta\left(y^{\prime}\right)$ dominates every z in $M C(T)$ such that $y^{\prime} U z$, we deduce that $x U y$.

If $y^{\prime} \in \Psi(y)$ and $z \in \zeta\left(y^{\prime}\right)$ then as above, since $y U y^{\prime}$, we deduce $y U z$.
Let us now conclude the proof. From Claim 1 it is enough to prove that $C_{M C}(T) \geqslant \frac{1}{2}$ for T in T^{\prime}.

Let $T=(X, U)$ in T^{\prime} and define $T^{\prime}=\left(X, U^{\prime}\right)$ as:

$$
T\left|M C(T)=T^{\prime}\right| M C(T) \text { for all } y \in M C(T), T^{\prime}|\zeta\{y\}(y)=T|\{y\} \cup \zeta(y)
$$

and
for all $x, x^{\prime} \notin M C(T)$ such that $f(x) \neq f\left(x^{\prime}\right): x U^{\prime} x^{\prime}$ iff $f(x) U f\left(x^{\prime}\right)$.
From Claim 3 it comes that T and T^{\prime} only differ on the complement of $M C(T)$. Since $M C$ is monotonic ${ }^{4}$ and satisfies the strong superset property, we deduce that $M C(T)=M C\left(T^{\prime}\right)$. Further, from Claim 3 it comes also that $s(T, y)=s\left(T^{\prime}, y\right)$ for all $y \in M C(T)$. Finally, from the construction of T^{\prime} it is easy to check that $U C\left(T^{\prime}\right)=M C\left(T^{\prime}\right)$. Combining these informations, we get $C\left(T^{\prime}\right) \subseteq M C(T)$.

This concludes the proof since for all y in $C\left(T^{\prime}\right), s(T, y) \geqslant n / 2$.
(iii) This follows from the property $x \in S L(T)$ implies $s(T, x) \geqslant[n / 2]$ proved by Bermond [3] and thus $C_{S L} \geqslant \frac{1}{2}$.

Proof of Proposition 2. We prove that $C_{B} \leqslant \frac{1}{3}$. The following simple claim will be needed.
Claim 4. For all $\varepsilon>0$ there exists a regular ${ }^{5}$ tournament $T=(X, U)$ such that:

$$
\frac{l(T)}{o(T)} \leqslant \varepsilon
$$

Proof. Let T^{1} be a cyclical tournament over a set X^{1} of 5 vertices. We have $l\left(T^{1}\right)=3$. We define inductively a sequence $\left(T^{k}\right) k \geqslant 1$ as follows:

$$
T^{k+1}=\Pi\left(T^{k} ; T^{k}, \ldots, T^{k}\right)
$$

[^3]It is easy to check that for all k, T^{k} is regular, with:

$$
o\left(T^{k}\right)=5^{2 k-1}
$$

and

$$
l\left(T^{k}\right)=3^{2 k-1}
$$

Since the sequence $\left(\frac{3}{5}\right)^{2 k-1}$ tends to 0 as k goes to ∞, T^{k} will satisfy the conditions of the lemma for k large enough.

Let $\varepsilon>0$ and consider (according to Claim 4) a regular tournament $T=(X, U)$ with $l(T) / o(T) \leqslant \varepsilon$. Denote by γ the set of subsets of X belonging to $L(T)$. Given two integers n and m, we define three tournaments T_{n}^{1}, T^{2} and T_{m}^{3} as follows.
$T_{n}^{1}=\left(X_{n}^{1}, U_{n}^{1}\right)$ is the tournament $\Pi\left(T ; R_{n}, \ldots, R_{n}\right)$ where R_{n} is cyclical tournament of order $2 n+1$.
$T^{2}=\left(X^{2}, U^{2}\right)$ is an arbitrary tournament over $\mathrm{X}^{2}=\gamma, T_{m}^{3}=\left(X_{m}^{3}, U_{m}^{3}\right)$ is an arbitrary transitive tournament of order $m+1$.

We construct a tournament $T_{n, m}$ over $X_{n, m}=X_{n}^{1} X^{2} X_{m}^{3}$ as follows: $T_{n, m}=$ $\left(X_{n, m}, U^{\prime}\right)$,

$$
\begin{aligned}
& T_{n, m}\left|X_{n}^{1}=T_{1}^{n}, \quad T_{n, m}\right| X^{2}=T^{2}, \quad T_{n, m} \mid X_{m}^{3}=T_{m}^{3} \\
& x^{3} U^{\prime} x^{1} \forall x^{3} \in X_{m}^{3}, \quad \forall x^{1} \in X_{n}^{1}, \\
& x^{2} U^{\prime} x^{3} \forall x^{3} \in X_{m}^{3}, \quad \forall x^{2} \in X^{2},
\end{aligned}
$$

and $x^{2} U^{\prime} x^{1}$ iff the component of T_{n}^{1} containing x^{1} belongs to x^{2}.
It is easy to check that $B\left(T_{n, m}\right)$ is a subset of $X_{n}^{1} \cup X^{2}$. Furthermore, we obtain,

$$
\begin{aligned}
& s\left(T_{n, m}, x^{1}\right)=\left(\frac{o(T)-1}{2}\right)(2 n+1)+n+K^{1} \quad \forall x^{1} \in X_{n}^{1} \\
& s\left(T_{n, m}, x^{2}\right) \leqslant m+l(T)(2 n+1)+K^{2}, \quad x^{2} \in X^{2}
\end{aligned}
$$

and

$$
s\left(T_{n, m}, x^{3}\right)=m+o(T)(2 n+1)
$$

where x^{3} is the top element in T_{m}^{3} and K^{1} and K^{2} are constants (not depending on n or m).

It follows that, if m and n are large enough, $C\left(T_{n, m}\right)=\left\{x^{3}\right\}$.
Further, if $m=(o(T)-2 l(T)-\rho) n$ where ρ is a small positive number, then we have:

$$
s\left(T_{n, m}, x^{1}\right)>s\left(T_{n, m}, x^{2}\right) \forall x^{1} \in X^{1}, \forall x^{2} \in X^{2} \text { for } n \text { large enough. }
$$

We deduce

$$
C_{B} \leqslant \frac{((o(T)-1) / 2)(2 n+1)+n+K^{1}}{o(T)(2 n+1)+(o(T)+1-2 l(T)-\rho) n}
$$

for n large enough.
If we take the limit of the right hand side of the inequality we obtain:

$$
C_{B} \leqslant \frac{1}{3+2 / o(T)-2(l(T) / o(T))-\rho / o(T)} \leqslant \frac{1}{3-2 \varepsilon-\rho / o(T)}
$$

Since ε and ρ can be chosen arbitrary small the proof is complete.

Acknowledgements

We thank two anonymous referees for their constructive comments on an earlier version of this paper.

References

[1] J.S. Banks, Sophisticated voting outcomes and agenda control, Soc. Choice Welf. 1 (1985) 295-306.
[2] J.S. Banks, G. Bordes and M. Le Breton, Covering relations, closest orderings and Hamiltonian bypaths in tournaments, Soc. Choice Welf. 8 (1991) 355-363.
[3] J.C. Bermond, Ordres à distance minimum d'un tournoi et graphs partiels sans circuits maximaux, Math. Sci. Humaines 37 (1972) 5-25.
[4] A.H. Copeland, A reasonable social welfare function, Mimeo, University of Michigan (1951).
[5] B. Dutta, Covering sets and a new condorcet choice correspondence, J. Econom. Theory 44 (1988) 63-80.
[6] P.C. Fishburn, Condorced social choice functions, SIAM J. Appl. Math. 33 (1977) 469-489.
[7] G. Laffond and J.F. Laslier, Slater's winners of a tournament may not be in the Banks Set, Soc. Choice Welf. 8 (1991) 365-369.
[8] G. Laffond, J.F. Laslier and M. Le Breton, Condorcet choice correspondences: a set-theoretical comparison, Mimeo, Laboratoire d'Econométrie, CNAM (1992).
[9] N. Miller, A new solution set for tournaments and majority voling: further graph-theoretical approches to the theory of voting, Amer. J. Political Sci. 24 (1980) 68-96.
[10] J. Moon, Topics on Tournaments (Holt, Rinehart and Winston, New York, 1968).
[11] H. Moulin, Choosing form a tournament, Soc. Choice Welf. 3 (1986) 271-291.
[12] T. Schwartz, Rationality and the myth of the maximum, Noûs 6 (1972) 97-117.
[13] T. Schwartz, Cyclic tournaments and cooperative majority voting: a solution, Soc. Choice Welf. 7 (1990) 19-29.
[14] P. Slater, Inconsciencies in a schedule of paired comparisons, Biometrica 48 (1961) 303-312.

[^0]: * Corresponding author.
 ${ }^{1}$ Such an outcome is called a Condorcet winner.

[^1]: ${ }^{2}$ A tournament (X, U) is cyclical if there is labelling of $X, X=\left\{x_{1}, \ldots, x_{2 n+1}\right\}$ such that $x_{i} U x_{j}$ iff $j-i$
 $\{1, \ldots, n\}$ (addition mode $2 n+1$).

[^2]: ${ }^{3}$ A solution S satisfies the strong superset property if for all $T \in T$ and $S(T) \subseteq A \subseteq X$, then $S(T \mid A)=S(T)$.
 Dutta [5] proves that $M C$ satisfies the strong superset property.

[^3]: ${ }^{4}$ A solution S is monotonic if for all $T=(X, U), T=\left(X, U^{\prime}\right)$ in T such that $(x, y) \in U,(y, x) \in U^{\prime}$ and $T=T$ otherwise, $x \in S\left(T^{\prime}\right)$. It is easy to see that if S is monotonic and satisfies the strong superset property then $S(T)$ is independent from the arcs within the complement of $S(T)$ in X. Dutta [5] proves that $M C$ is monotonic. ${ }^{5}$ A tournament is regular if $C(T)=X$.

