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SUMMARY

Genome editing via CRISPR/Cas9 has rapidly
become the tool of choice by virtue of its efficacy
and ease of use. However, CRISPR/Cas9-mediated
genome editing in clinically relevant human somatic
cells remains untested. Here, we report CRISPR/
Cas9 targeting of two clinically relevant genes,
B2M and CCR5, in primary human CD4+ T cells and
CD34+ hematopoietic stem and progenitor cells
(HSPCs). Use of single RNA guides led to highly effi-
cient mutagenesis in HSPCs but not in T cells. A dual
guide approach improved gene deletion efficacy in
both cell types. HSPCs that had undergone genome
editing with CRISPR/Cas9 retained multilineage
potential. We examined predicted on- and off-target
mutations via target capture sequencing in HSPCs
and observed low levels of off-target mutagenesis
at only one site. These results demonstrate that
CRISPR/Cas9 can efficiently ablate genes in HSPCs
with minimal off-target mutagenesis, which could
have broad applicability for hematopoietic cell-
based therapy.

INTRODUCTION

The hematopoietic system is at the forefront of cell-based gene

therapies due to the fact that the cells can be readily obtained,

manipulated, and reintroduced into patients. The development

of genome editing methodologies such as zinc finger nucleases

(ZFNs) and transcription activator-like effector nucleases

(TALENs) (Urnov et al., 2010);(Joung and Sander, 2013; Scharen-

berg et al., 2013) have enabled site-specific gene repair or

ablation and raised the possibility of treating a broad range

of diseases at the genetic level (Pan et al., 2013). Despite

much promise, limitations associated with these technologies,

including low targeting efficacy and de novo engineering of pro-

teins for each target, have precluded wide-spread adoption

of these technologies for therapeutic use (Silva et al., 2011).

The recent emergence of the clustered, regularly interspaced,

palindromic repeats (CRISPR) system for gene editing has

the potential to overcome these limitations (Jinek et al., 2012).

The CRISPR technology utilizes a fixed nuclease, often the

CRISPR-associated protein 9 (Cas9) from Streptococcus pyo-

genes, in combination with a short guide RNA (gRNA) to target

the nuclease to a specific DNA sequence (Cong et al., 2013;

Jinek et al., 2012, 2013; Mali et al., 2013). CRISPR/Cas9 relies

on simple base-pairing rules between the target DNA and the en-

gineered gRNA rather than protein-DNA interactions required by

ZFNs and TALENs (Gaj et al., 2013; Wei et al., 2013). As a result,

the CRISPR/Cas9 system has proven extremely simple and flex-

ible. Perhaps most important, this system has achieved highly

efficacious alteration of the genome in a number of cell types

and organisms (Ding et al., 2013; Hwang et al., 2013; Niu et al.,

2014; Wang et al., 2013; Wei et al., 2013).

Given the importance of the hematopoietic system in cell-

based gene therapies, we tested theCRISPR/Cas9 system in pri-

mary human CD4+ T cells and CD34+ hematopoietic stem and

progenitor cells (HSPCs) targeting two clinically relevant genes,
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beta-2 microglobulin (B2M) and chemokine receptor 5 (CCR5).

B2M encodes the accessory chain of major histocompatibility

complex (MHC) class I molecules and is required for their surface

expression (Bjorkman et al., 1987; Zijlstra et al., 1990). Deletion of

B2M is a well-established strategy to ablate MHC class I surface

expression (Riolobos et al., 2013) and could be used to generate

hypoimmunogenic cells for transplantation and adoptive immu-

notherapy. CCR5 is the main coreceptor used by CCR5-tropic

strains of HIV-1 (Trkola et al., 1996) and a validated target for

gene ablation, asmutations resulting in loss of protein expression

or haploinsufficiency protect against HIV infection (Catano et al.,

2011; Hütter et al., 2009; Martinson et al., 1997; Samson et al.,

1996). Moreover, transplantation of CCR5 homozygous mutant

HSPCs provides long-term protection against HIV rebound

even after discontinuation of antiretroviral therapy (Allers et al.,

2011; Hütter et al., 2009). Several attempts have been made to

target CCR5 in T cells (Perez et al., 2008; Tebas et al., 2014)

and HSPCs (Holt et al., 2010; Schleifman et al., 2011), though

the efficiency of gene targeting was not sufficient to protect

against viral recrudescence (Tebas et al., 2014). Recently,

CCR5 has been targeted using CRISPR/Cas9 in cell lines (Cho

et al., 2013) and iPS cells (Ye et al., 2014). However, CRISPR/

Cas9 gene editing in primary human hematopoietic cells remains

untested. Here we report that use of CRISPR/Cas9 with single

gRNAs led to highly efficient CCR5 ablation in CD34+ HSPCs

but not B2M in CD4+ T cells. Employing a dual gRNA approach

improved gene deletion efficacy in both cell types with biallelic

inactivation frequencies reaching 34% for B2M in CD4+ T cells

and 42% for CCR5 in CD34+ HSPCs. Importantly, CRISPR/

Cas9CCR5-editedCD34+HSPCs retainedmultilineage potential

in vitro and in vivo upon xenotransplantation. Deep target capture

sequencing of predicted on- andoff-target sites inCD34+HSPCs

revealed highly efficacious on-target mutagenesis and exceed-

ingly low off-target mutagenesis.

RESULTS

We designed gRNAs to target Cas9 to the B2M gene (Figure 1A).

Each guide was first tested for the ability to direct site-specific

mutations in HEK293T cells. Using flow cytometry we measured

the efficiency of each gRNA to direct Cas9-mediated ablation of

B2M surface expression 72 hr posttransfection (Figure 1B). We

observed that B2M was abrogated in �7% (±1.02 SEM, n = 3)

to 48% (±1.80 SEM, n = 3) of HEK293T cells depending upon

the gRNA utilized (Figure 1C; Figure S1A available online). Similar

results were observed using the Surveyor assay, with gRNA-

specific mutation frequencies of 0%–26% in HEK293T cells

(Figure S1B). We also designed gRNAs to target Cas9 to the

CCR5 gene (Figure 1D). Upon introducing these into K562 cells,

we measured targeting efficacy using the Surveyor assay and

observed mutation frequencies ranging from 22%–40% (Fig-

ure 1E). Variation in the efficiency with which a specific gRNA

directed Cas9-mediated ablation was observed, even between

gRNAs targeting the same exon or nearly overlapping sites (Fig-

ures 1A–1E) indicating that on-target efficiency of site-directed

mutation is highly gRNA dependent, as previously noted (Hsu

et al., 2013).

Next, we tested selected single gRNAs in CD4+ T cells and

CD34+ HSPCs. Surprisingly, gRNAs that were highly efficacious

at targeting B2M in HEK293T cells exhibited lower targeting

efficiencies in primary CD4+ T cells ranging from 1.4% (±0.2

SEM, n = 6) to 4.7% (±0.9 SEM, n = 6) ablation ofB2M expression

(Figures 1F, S1C, and S1D) or 3%–11% using the Surveyor

assay (Figures S1B and S1E). For instance, crB2M_13 exhibited

more than 10-fold reduced efficacy in CD4+ T cells (4.7% ±

0.9%) as compared to HEK293T cells (48.0% ± 1.8%) (Figures

1F and S1C). Interestingly, single gRNAs targeting CCR5

showed comparable mutation frequencies in CD34+ HSPCs as

observed in K562 cells (Figures 1E and 1G). To explore this

further, we performed direct Sanger sequencing of several

hundred colonies derived from HSPC clones targeted with

crCCR5_A or crCCR5_B from two donors and observed very

high mutation frequencies in all cases (Figure 1H). As only cells

expressing Cas9 were analyzed, it is unlikely that differences in

on-targetmutation efficiencywere due to differential transfection

efficiencies, although we cannot rule out differential transfection

of individual guides, but rather may reflect intrinsic properties of

certain primary hematopoietic cell types.

We reasoned that using two gRNAs directed against the same

locus might generate predictable mutations (deletions) more

frequently than that achieved by error-prone non-homologous

end joining, which represents the predominant DNA double

strand break repair pathway in HSPCs (Beerman et al., 2014).

Indeed, this approach has previously been utilized for ZFNs,

TALENs, and the CRISPR/Cas9 system to achieve predictable

deletions (Bauer et al., 2013; Canver et al., 2014; Gupta et al.,

2013; Lee et al., 2010; Wang et al., 2014; Zhou et al., 2014).

Six dual gRNA combinations targeting B2M with DNA sequence

lengths between their predicted Cas9 cleavage sites ranging

from 81 to 2,261 nt were introduced in CD4+ T cells together

with Cas9 (Figure 2A). We observed a trend of improved target-

ing efficacy for most of the tested gRNA pairs and greatly

improved efficacy for one gRNA pair (crB2M_13+8), which re-

sulted in 18.0% (±8.35 SEM, n = 3) ablation of B2M surface

expression (Figures 2B, 2C, and S2A). B2M ablation led to a

concomitant reduction of MHC class I cell surface expression

(Figure S2B). We further interrogated mutation frequency at a

clonal level via single-cell quantitative PCR, which revealed

28.2% (n = 301 cells analyzed) of CD4+ T cells were homozygous

null for B2M (Figure S2C). Upon Sanger sequencing across the

predicted Cas9 cutting sites, we observed deletion of the inter-

vening sequence (Figure S2D).

We next applied the dual guide strategy to primary CD34+

HSPCs by introducing three gRNA pairs along with Cas9 (Fig-

ure 2D). Sorted CD34+ HSPCs expressing Cas9 were plated

into methylcellulose and emergent clonal colonies were picked

2 weeks postplating for analysis. Individual colonies were

analyzed by PCR to quantify the deletion efficacy of CCR5

(Figures 2D and 2E). Remarkably, although variation in CCR5

ablation was noted among different donors and gRNA pairs,

we consistently observed high monoallelic and biallelic inactiva-

tion of CCR5 in all cases (Figures 2E and S2E). For example, one

dual gRNA combination (crCCR5_D+Q) generated biallelic

CCR5 deletion in CD34+ HSPCs at a rate of 26.8% (±7.1 SEM)

across four donors (Figures 2E and S2E). It should be noted,

however, that the mutation rates determined by this PCR strat-

egy underestimate actual mutation frequency, since small inser-

tions or deletions (InDels) are not detected by this approach. A
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Figure 1. Targeting Clinically Relevant Loci in Human Cells Using CRISPR/Cas9

(A) Schematic of gRNAs targeting B2M.

(B) Histogram of B2M surface expression in HEK293T cells.

(C) B2M deletion efficiency with various gRNAs in HEK293T cells; n = 3 (mean ± SEM).

(D) Schematic of gRNAs targeting CCR5. Orange and green arrows represent primer pairs used to amplify the region for analysis.

(E) Surveyor assay of each gRNA targeting CCR5 in K562 cells. Percentage InDels is indicated under each guide.

(F) B2M deletion efficiency of selected gRNAs in primary CD4+ T cells in comparison to 293T cells; n = 6 (mean ± SEM).

(G) Surveyor assay of crCCR5_A and crCCR5_B targeting CCR5 in K562 cells and HSPCs.

(H) Clonal deletion efficiency of crCCR5_A and crCCR5_B targeting of CCR5 in HSPCs (n = 2) as determined by Sanger sequencing. (Note: crB2M_14 is not

depicted in [A] schematic, as it is located 20 kb downstream of coding sequence.). See also Figure S1.
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similar dual gRNA approach targeting CCR5 (crCCR5_A+B) in

CD4+ T cells resulted in a biallelic inactivation rate of 8.8% at

the single-cell level (n = 363) (Figure S2F). Again, after Sanger

sequencing, we noted excision of the DNA between the Cas9

cleavage sites (Figure S2G). Taken together, these data demon-

strate that highly efficacious ablation of clinically relevant genes

Figure 2. A Dual gRNA Approach for CRISPR/Cas9 Genome Editing in Primary Human Hematopoietic Stem and Effector Cells

(A) Schematic of dual gRNA approach for targeting theB2M locus. gRNA pairs are in red. The offset in base pairs between Cas9 sites for each gRNA combination

(right panel).

(B) B2M deletion efficiency in CD4+ T cells for six dual gRNA combinations (n = 3; mean ± SEM).

(C) FACS plots showing loss of B2M expression of either crB2M_13 or crB2M_8 alone or in combination in primary CD4+ T cells.

(D) Schematic of dual gRNA approach for targeting CCR5. gRNA pairs are shown in red. Orange and green arrowheads represent the primer pair used to amplify

the region. The offset between the Cas9 sites of each gRNA pair (right panel).

(E) Gel electrophoresis image of CD34+ HSPCs-derived clones targeted with crCCR5_D+Q analyzed by PCR. Note the deletion of the 205 bp region between the

two gRNA cutting sites (top panel; WT: wild-type; DCCR5: deleted; green *: WT; orange *: heterozygote; and red *: null clone). Clonal deletion efficiency for three

dual gRNA combinations targeting CCR5 in CD34+ HSPCs (n = 4; % mean ± SEM; bottom panel). See also Figure S2.
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can be achieved in primary hematopoietic CD4+ T cells and

CD34+ HSPCs using a dual gRNA strategy.

In order to determine whether CD34+ HSPCs that had under-

gone genome editing with CRISPR/Cas9 retained their potential

to differentiate into effector cells, we performed in vitro and

in vivo differentiation assays. Toward this, CCR5-edited CD34+

HSPCs were plated in methylcellulose and clonal colonies

that emerged 2 weeks postplating were counted and scored

for contribution to granulocyte, macrophage, erythrocyte, and

megakaryocyte lineages. Comparable colony numbers and col-

ony types were observed regardless of whether single, dual, or

no gRNAs were used demonstrating that CD34+ HSPC colony

forming potential was not impacted byCRISPR/Cas9 (Figure 3A),

despite the high CCR5 mutation frequencies observed in these

experiments (Figures 1H and 2E).

We next tested the in vivo reconstitution potential of HSPCs

following CRISPR/Cas9 targeting of CCR5 by xenotransplanta-

tion of control (Cas9-only), and CCR5-edited (Cas9 + crCCR5

D+Q) CD34+ HSPCs into NOD-PrkdcScid-IL2rgnull (NSG) recipi-

ents.Recipientswere sacrificedat 12weeksposttransplantation,

Figure 3. CCR5-Edited CD34+ HSPCs Retain Multilineage Potential

(A–C) (A) Representative pictures of colonies formed in methylcellulose CFC assay (left panel) with quantified data on colony number and types are presented

(right panel). Representative FACS plot showing human hematopoietic cell (hCD45+) engraftment andmultilineage reconstitution at 12 weeks posttransplantation

in the bone marrow (B) and spleen (C) of NSG recipient mice.

(D) PCR results confirmed predicted deletion of targeted region at CCR5 locus in human hematopoietic cells sorted from NSG mice transplanted with CRISPR/

Cas9-treated HSPCs. Human peripheral blood mononuclear cells (PBMCs) from healthy donor taken as control. (WT: wild-type; DCCR5: deleted.)

Cell Stem Cell

CRISPR/Cas9 Gene Ablation in Hematopoietic Cells

Cell Stem Cell 15, 643–652, November 6, 2014 ª2014 Elsevier Inc. 647



Figure 4. Targeted Capture and Extremely Deep Sequencing of On-Target and Predicted Off-Target Sites in CD34+ HSPCs

(A) Schematic of targeted capture deep sequencing of on-target and predicted off-target sites (red bar); probe sets are indicated in blue. A 500 bp region flanking

the site (in yellow) was included for detection of structural rearrangements (i.e., translocations).

(B) Plots showing sequencing depth coverage at both on-target (left panel) and off-target (right panel) sites, achieving a coverage exceeding 3,0003 for all

on-target sites. Decrease in sequencing depth at the on-target sites in dual-gRNA libraries is marked by arrow, supporting predicted deletions (bottom left;

i = 35 bp, ii = 205 bp, iii = 205 bp).

(legend continued on next page)
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and human hematopoietic cell engraftment (hCD45+) was exam-

ined in the bone marrow, revealing CD19+ lymphoid cells and

CD11b+ myeloid cells (Figure 3B). Human CD45+ hematopoietic

cells were also found in the spleens of transplanted mice (Fig-

ure 3C). PCR analysis on DNA isolated from sorted human

CD45+ hematopoietic cells from reconstituted mice demon-

strated that CCR5-edited cells (DCCR5) robustly contributed to

humanhematopoietic cell chimerism (Figure 3D). Taken together,

these results demonstrate that CRISPR/Cas9 CCR5-edited

CD34+ HSPCs retained multilineage potential in vitro and in vivo.

CRISPR/Cas9 has been shown to generate off-target muta-

tions depending upon experimental setting and cell type (Cho

et al., 2014; Cradick et al., 2013; Fu et al., 2013; Fu et al.,

2014; Hruscha et al., 2013; Lin et al., 2014). To examine this,

we performed target capture sequencing of CD34+ HSPCs

subjected to CRISPR/Cas9 CCR5 editing. These experiments

captured each gRNA target site (n = 5) and predicted off-target

sites (n = 126) with expanded capture intervals of 500 bp flanking

each site to ensure accurate detection of any genetic lesion

occurring at or near the selected sites (Figure 4A; Table S1).

We have previously shown this approach can identify structural

variations, such as translocations and inversions, in proximity

to the capture site (Talkowski et al., 2011). Sorted CD34+ HSPCs

treated with Cas9 alone or in combination with multiple single or

dual gRNA combinations were sequenced to a mean target

coverage of 3,390X across each 23 bp gRNA sequence and

PAM (Figure 4B). Analysis of these data revealed highly effica-

cious on-target mutagenesis with a diverse array of mutated

sequence variants observed in both single and dual gRNA treat-

ments (Figure 4C). As expected, we detected small InDels of up

to 10 bp in addition to single nucleotide substitutions at the pre-

dicted target sites in single gRNA conditions. Strikingly, in each

dual gRNA experiment, no fewer than 15 alternate mutant alleles

were observed at either one of the gRNA sites (Tables S2–S4).

Notably, the sequencing depth of our analysis permitted estima-

tion of mutation frequency for each particular variant, including

mutations that were observed in only a few hundredths of a

percent of the sample sequenced (Table S5). Predicted deletions

(i.e., deletions between the two Cas9 target sites) were the

most common mutations observed, while small InDels were

also frequent (Figure 4C). Interestingly, for two combinations,

crCCR5_A+B and crCCR5_D+Q, we also observed inversions

between the predicted Cas9 cleavage sites. The most effica-

cious combination crCCR5_D+Q led to mutations in approxi-

mately 48% of the captured sequence reads.

We next examined the capture sequence reads at predicted

off-target sites in the genome (Table S1). An N-fold enrichment

analysis was performed, wherein we compared the total number

of non-reference sequencing reads at each predicted off-target

site in gRNA-treated and control (Cas9 only) samples. This anal-

ysis generated a ratio where 1.0 indicates an equivalent number

of nonreference sequence reads in both treated and control

samples, values less than 1.0 indicate fewer non-reference reads

in treated samples, and values greater than 1.0 indicate a greater

number of non-reference reads in treated samples (Figure 4D).

This analysis found that the mean enrichment of mutations at

off-target sites in all the gRNA-treated samples compared to

control closely conformed to the null hypothesis (i.e., 0.99-fold

enrichment compared to controls), indicating that off-target mu-

tation events were extremely rare. Indeed, statistical evaluation

of all captured off-target sites yielded a single site (1/126;

0.6%, Figure 4D) in the sample treated with crCCR5_B alone

that passed multiple test correction for a statistically significant

enrichment for off-target InDels versus controls (p % 7.6 3

10�11) (Table S5). When we scrutinized the sequencing reads

from this site, which was located in the highly homologous

CCR2 gene (Figure S3A), we found that all sequence variants

(36 out of 5,963 total reads) were one or two base InDels, (Fig-

ure S3B). Of note, the other sample in which crCCR5_B was

used (in combination with crCCR5_A) only 13 out of 5,339 reads

supported mutation; however, these events did not meet statis-

tical significance above controls (Figure S3B; Table S5). Thus,

off-target mutagenesis was exceedingly rare and, moreover,

the use of two gRNAs in combination did not increase the very

low incidence of off-target mutagenesis. We also performed

analyses for structural variation at all sites, and though we

could readily detect on-target inversions in crCCR5_A+B and

crCCR5_D+Q treatments, there was no evidence for inversion

or translocation at any off-target sites. These data indicate that

on-target mutagenesis efficiency was very high and further that

off-target mutagenesis was extremely infrequent for both single

and dual gRNA treatments.

DISCUSSION

In this study we utilized the CRISPR/Cas9 system in human pri-

mary CD4+ T cells and CD34+ HSPCs to target two clinically rele-

vant genes B2M and CCR5. Surprisingly, the activity of the

CRISPR/Cas9 systemwas remarkably variable in different human

cell types, with the same gRNA exhibiting highly efficacious on

target mutagenic activity in HEK293T cells but little activity in

CD4+ T cells. In contrast, the targeting efficacy in K562 cells and

CD34+ HSPCs was comparable. Moreover, consistent with previ-

ous reports (Hsuetal., 2013),weobserved that theefficiencyof the

CRISPR/Cas9 system was gRNA specific, as even gRNAs with

partially overlapping sequences displayed significantly different

targeting efficiencies. Further, a dual gRNA approach yielded

increased gene ablation efficacy in both CD4+ T cells and CD34+

HSPCs, leading to predicted deletions at the targeted loci.

The lack of CRISPR/Cas9 activity observed in T cells, espe-

cially with single gRNAs, may be due to a number of factors,

including inefficient plasmid DNA delivery, the innate immune

(C) Precise estimation of on-target mutation allele frequencies by capture sequencing. Notably, the rate of mutation exceeds previous estimates by PCR of

predictable deletions, as smaller InDels and inversions also occur at appreciable frequencies.

(D) Estimation of mutation frequencies at predicted off-target sites. (*One off-target site was statistically different from controls following correction for multiple

comparisons; p% 7.63 10�11.) N-fold enrichment is determined based on the ratio of non-reference reads in treated libraries compared to untreated library and

represents the average of all off-target sites for a given experiment. Enrichment of 1 is equivalent to untreated control. **For reference to on-target enrichments,

on-target combined represents the proportion of non-reference reads (including single and dual gRNA treatments using a given gRNA) to total reads at on-target

sites in treatment compared to control. See also Tables S1, S2, S3, S4, and S5.
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response of T cells to foreign nucleic acid (Monroe et al., 2014),

and/or active DNA repair machinery. Given the efficacy of the

CRISPR/Cas9 system in a wide variety of cell types and species

both in vitro and in vivo (Sander and Joung, 2014), the lack of ac-

tivity observed in T cells is likely the exception and not the rule.

Nonetheless, our results highlight that CRISPR/Cas9 targeting

efficacy can differ between cell lines and primary cells. Ulti-

mately, further studies will be necessary to determine how vari-

able the activity of CRISPR/Cas9 is in different primary human

cell types.

Our mutational analysis revealed highly efficacious mutagen-

esis of on-target sites in CD34+ HSPCs. Single gRNAs generated

a range ofmutations with the vastmajority comprised of small In-

Dels. In contrast, dual gRNA combinations largely led to pre-

dicted deletions, though a diverse array of mutations including

InDels and even inversions were detected. Importantly, we

only identified one statistically significant off-target site in the

highly homologous CCR2 gene, which occurred in one out of

six experimental settings (gRNA crCCR5_B alone). Sequence

analysis of crCCR5_B in comparison to the identified off-target

site in CCR2 indicated that it perfectly matched in the seed re-

gion and contained three sequence mismatches at the 50 end
of the gRNA sequence. These data are consistent with studies

showing that mismatches in the 50 end of the gRNA are tolerated

by Cas9 (Lin et al., 2014; Wu et al., 2014). Our data support the

idea that judicious guide design is critical for minimizing off-

target mutations. Of note, our very deep sequencing analysis

enabled detection of the lone off-target event, whereas analysis

performed at lower sequencing depth—such as 50X coverage

used in previous studies (Smith et al., 2014; Suzuki et al., 2014;

Veres et al., 2014)—would have been unable to detect this event.

Overall, our analysis of CRISPR/Cas9 mutational activity in

CD34+ HSPCs revealed very high on-target mutation rates and

extremely low incidence of off-target mutagenesis.

The ability to direct efficient and predictable deletions using

dual gRNAs opens the possibility of using this strategy to target

noncoding regions in the genome such as enhancers and si-

lencers that control expression of disease-relevant genes. For

example, recent studies have identified regulatory regions that

control expression of fetal hemoglobin (Bauer et al., 2013), which

if deleted increase fetal globin expression in cells otherwise

restricted to expressing adult b-globin (Bauer et al., 2013; Xu

et al., 2011). Targeted deletion of such regions in CD34+ HSPCs

followed by transplantation into patients may provide a durable

therapy for the treatment of b-hemoglobinopathies such as

sickle cell anemia and b-thalassemia (Xu et al., 2011). Overall,

our data demonstrate that CRISPR/Cas9 can be used to ablate

genes of clinical significance in CD4+ T cells and CD34+ HSPCs

with an efficiency that is therapeutically meaningful for a number

of clinical settings, such as the treatment of HIV. Our demon-

stration that CRISPR/Cas9-targeted CD34+ HSPCs retain multi-

lineage potential in vitro and in vivo, combined with very high

on-target and minimal off target mutation rates, suggests that

CRISPR/Cas9 could have broad applicability enabling gene

and cell-based therapies of the blood.

EXPERIMENTAL PROCEDURES

Animal experiments were done following institutional guidelines.

Molecular Biology

All guideswere designed using the online optimized design tool at http://crispr.

mit.edu. gRNA and primer sequences are enlisted in supplemental data.

Transfection of Cells

Human primary CD4+ T cells and CD34+ HSPCs were transfected with Cas9-

2A-GFP and gRNA encoding plasmids using respective Amaxa Nucleofector

kits using cell-specific Nucleofector program with Nucleofector II device.

Surveyor Assay

Amplicons spanning the different targeted regions were PCR amplified using

the Phusion polymerase and HF Buffer (New England Biolabs), and CEL assay

was carried out using the Surveyor Mutation detection kit (Transgenomic) as

per manufacturer’s instructions.

In Vivo Transplantation of CD34+ HSPCs

A total of 75,000 sorted CD34+ HSPCs expressing Cas9 alone (control group,

n = 2) or Cas9 with crCCR5_D+Q gRNAs (experimental group, n = 5) were

transplanted in to NSG recipient mice. At 12 weeks posttransplantation, all

mice were euthanized, and blood, bone marrow, and spleen samples were

taken for characterization of human hematopoietic cell chimerism. Human

CD45+ cells were sorted for DNA isolation and analysis of CCR5 deletion.

Off-Target Prediction and Capture Sequencing

Each guide RNA target site (n = 5) and predicted off-target sites (n = 126) was

selected for capture sequencing (Table S1) using the Agilent SureSelectXT

Target Enrichment System. Capture Sequencing was performed as described

earlier (Talkowski et al., 2011).

For details on experimental procedures, see Supplemental Information.

ACCESSION NUMBERS

All raw reads from capture sequencing are available at NCBI Bioproject,

accession number PRJNA264619.
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Supplemental Information includes three figures, five tables, and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.stem.2014.10.004.
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