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~o-languages are sets consis t ing of co-length s t r ings;  ~o-automata are recognit ion devices 
for oManguages.  In  a previous  paper  the  basic not ions  of ~o-grammars, co-context-free 
languages  (co-CFL's) ,  and ~o-pushdown au toma ta  (co-PDA's) were first defined and  
studied.  In  this  paper  various modes  of ~o-type genera t ion are in t roduced  and  the effect o f  
certain restr ic t ions on the  derivat ions in ~o-grammars is investigated.  Several dis t inct  
models  of  recognit ion in co-PDA's are considered,  giving rise to a h ierarchy of  subfamil ies  
of  the  oJ-CFL's .  T h e  relations a m o n g  these  subfamil ies  are es tabl ished and  character iza-  
t ions for each family are derived. Non- l e f t mos t  derivat ions in ~o-CFG's  are s tudied  and it 
is shown  tha t  lef tmost  genera t ion in co-CFG's  is strictly more  powerful  than  non - l e f tmos t  
generat ion.  

0. INTRODUCTION AND PRELIMINARIES 

This paper constitutes the second part of [3]. In part I the notions of oJ-grammars, 
oJ-context-free languages (~o-CFL's), and oJ-pushdown automata (~o-PDA's) were first 
introduced. Some fundamental results were presented and several characterizations of  
the family of co-CFL's (CFL,,) were derived. 

In this paper the properties of co-CFL's are studied, with particular emphasis on 
characterizing and comparing the various modes of generation in co-CFG's and the modes 
of acceptance of oJ-PDA's. In  Section 1 some closure properties of the oJ-CFL's are 
obtained. The use of control sets in ~o-grammars is studied in Section 2 and certain, 
known results from language theory concerning control sets and leftmost generation in 
co-PSG's are generalized to oManguages. In Section 3 the various types of/-acceptance 
by ~o-PDA's are investigated and the corresponding families of o~-CFL's are charac- 
terized and shown to constitute a proper hierarchy within CFLo,. Section 4 is devoted 
to the study of nonleftmost derivations in oJ-CFG's. I t  is established that leftmost and 
nonleftmost generation in w-CFG's  are not equivalent; in fact, leftmost generation is 
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more powerful and the ~o-languages generated by *O-CFG's by non-leftmost derivations 
form a proper subclass of the *O-CFL's. 

The  reader of this paper is assumed to be familiar with Part I [3]. Therefore, most of 
the definitions concerning w-grammars, *O-CFL's, and *o-automata of the various kinds 
will not be repeated here; we only briefly recall here a few definitions, which are particu- 
larly important for this paper, and also introduce some new notation. 

DEFINITION 0. l. For any mapping r A --+ B, define In(r = {b ! b ~ B, card(r ~ *o} 
(card(D) denotes the cardinality of the set D). 

Let .f: N ~ S be a mapping from the set of natural numbers into a set S, and let 
F ~ 2 s. We say that mapping f is 

l-acc@ting w.r.t. F 

l'-accepting w.r.t. F 

2-accepting w. r . t .  F 

T-accepting w.r.t. F 

3-accepting w.r.t. F 

if (3HeF)(3t) f( t)  c H; 
if (3H~F)(Vt)f(t)  ~ H; 
if (3H e F) In( f ) ~ H =fi y; ; 
if ( 3 H e F ) I n ( f )  C H; 
if I n ( f )  eF .  

DEFINITION 0.2. Let M : (M~,F)  be an *O-PDA (*O-FSA). For i = 1, 1', 2, 2', 3 
define T~(M) --- {a c 2: ~ I there exists a run r of M on a s.t. f r  is /-accepting w.r.t. F} 
where for eachj  ~ l , f r ( j )  is the state entered in thej th  step of the computation described 
by run r. 

Ti(M) (i - :  1, 1 ', 2, 2', 3) is the ~o-language i-accepted by M. For i ~ 3,/-acceptance is 
usually referred to as acceptance and the subscript 3 from T3(M ) is omitted. An *o- 
language accepted by an *O-FSA (oJ-PDA) is an w-regular language (o~-CFL). CFL~ 
denotes the class of *O-CFL's. 

For i = 1, 1', 2, 2', an w-language which is/-accepted by some o~-FSA will be called 
an Ai-oJ-regular language. 

For i --  1, 1', 2, 2', the class of ,o-languages/-accepted by *O-PDA's will be denoted 
by Ai-PDL~.  

The  families of Ai-*o-regular languages were studied in [9, l 1]; the families Ai-PDLo~ 
will be studied in Section 3 of this paper. 

Notation 0.3. Let G : ( V  N , V T  , P, S) be a CFG. For X E V~ , P(X) wilt denote 
the set of all X-productions in P. For every H _C VN, let P(H) = Ox~tt P(X) be the set 
of all productions of the variables in H. 

Let d be the following (nonleft) derivation d: % ~ a  al ~ c  "'" ~ a  ~ .  For each 
1 ~ i ~ l, let A~ be the variable rewritten at step i of the derivation; define Var(d) - 
{A  e V N I A --: Ai for some 1 ~ i ~ l}. Var(d) is the set of all variables rewritten at least 
once during derivation d. 

The above notation will also be used for finite derivations in *O-CFG's. 
Recall that for an infinite derivation d in G 

d :  " "  " 
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the mappings de: N --~ P and dr: N --* V are defined by d~,(i) = production used in the 
ith step of d; and dr(i) ,= variable rewritten in the ith step of d. Also define INV(d) = 
In(dv) and INP(d) --  In(dp). 

The  following is a restatement of the co-Kleene closure characterization theorem for 
co-CFL's. 

THEOREM 0.4 [3]. 

CFL~, :~= co-KC(CF) = UiVi ~~ Ui ,  Vi are CFL's ,  i = 1,..., k, k = 1, 2 . . . . .  

1. OPERATIONS ON ~o-LANGUAGES 

Nearly all operations studied in classical language theory can be redefined for co- 
languages. However, here we restrict ourselves mainly to those operations, which are 
essential for obtaining the results of this paper. 

DEFINITION 1.1. Let L 1 , L~ be co-languages over Z. Define the quotient of L 1 with 
respect toL2 to be Lx/L 2 := {x ~ Z*]  3y ~L  2 s.t. xy ~L1}. (Note that the quotient of two 
co-languages is a finite-string language.) For any co-language L over Z, define Init(L) to 
be L/27 ~ 

The next lemma follows directly from the co-Kleene closure characterization theorem 
(Theorem 0.4) and from the closure properties of the context-free and regular languages. 

LEMMA 1.2. Let L be an CO-CFL (w-regular language). Then Init(L) is a CFL (regular 
language). 

As expected from the finite case, we have 

PROPOSlTtON 1.3. (a) CFL~ is not closed under intersection and complementation; 
(b) CFL,o is closed under intersection with co-regular languages. 

Proof. (a) Lo =: { a'b'~a~ I n ~-'~ 1} b ~ is not an CO-CFL by Lemma 1.2 above. But 
L 0 L~ n L2, where L~ .... {#bJaJ [ i, j ~ 1 } b ~" and L 2 {aJbJal [ i, j ~ 1 } b ~ L a and L 2 
are co-CFL's, hence the result follows. 

(b) The  proof fi~llows the classical direct product construction of an co-PDA and 
an w-DFSA. ] 

DEFINITION 1.4. Let X, A be two finite alphabets. A substitution f is a mapping 
f :  Z--~ 2 z*. f is extended to strings in 27* as (l) f(e) = E; (2)f(xa)  = f ( x ) f ( a )  for every 
x ~ Z*, a e Z. For any L ~ X*, define f ( L )  = U~L  f (x) .  f is extended to strings in 270, as 

(3" w: { oo follows. For =: 1-I~=1 a~ e 27,0, a~ e 27 Vi >/ l, define f (a )  == YI,=I b, [ bi ef(ai)}. For 
each L _C 27 o~, define f ( L )  U~Lf(a ) .  Note that for co-language L, f ( L )  C A* • A% I f  
for L C Z",  f ( L )  C A% then we say that.f  is ~o-preserving on L. f is called an co-preserving 
substitution i f f f  is m-preserving on all of X ~ i.e., f ( X  ~ _C A,,J. 
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Subs t i t u t i on f  is said to be an e-free substitution if for each a e Z, E 6 f (a) .  f is said to be 
a finite substitution if f (a) is a finite set for all a in Z'. In  casef (a )  consists of a single word 
for each a e Z, f is a homomorphism, f is said to be a context-free (regular) substitution if 

f ( a )  is a context-free (regular) language for all a in 27. 
As can be readily seen, a subs t i tu t ion f  is ~o-preserving iff it is e-free. 

EXAMPLE 1.5. Let  L = {(ab) ~ and define f (a )  == e, f (b)  : b. Then  f ( L )  = {b~ 
Hence f is to-preserving on L, though not e-free. 

Next, we consider G S M  1 mappings on m-languages. Since every G S M  can be viewed 
as an F S M  which also emits a finite output  string for each input symbol, we shall modify 
the notion of " run"  for G S M  to include also the sequence of output  strings emitted by 
the machine, 

DEFINITION 1.6. Let  S = (K, ~', A, 8, q0) be a (27, A) -GSM.  Let  a - -  [li=1 a i e  2% 
where a~ e Z' Vi ) 1. An infinite sequence r = {(qi, xi)}i>l, where qi e K and xr e A* 
"v'i ) 1, is called a run of S on a if (q~, xl) - -  (q0, E) and for each i / >  1, (q;+l,  x~'+l) a 
3(q~, a~). Define S(a) {% a A* u A ~ I there exists a run r - -  {(q~, x~)}~>l of S on a 
s.t. % = I-Ii~l xi}. For  L _C Z 0~, let S(L) = Uo~L S(a). For  each to-language L over Z', 
G S M  S is called co-preserving on L if S(L) C_ A ~. S is w-preserving if S (Z  ~') C A % 

DEFINITION 1.7. A class ~ of m-languages over X will be called closed under substitu- 
iion h: Z --~ 2 ~* (Cosed under (Z, Z ) - G S M  mapping S) if for every L e ~fl, h(L) ~ Z "  e 
~Lf(S(L) n Z ~  oU). 

The  next result follows from the oJ-Kleene closure characterization (Theorem 0.4) 
and the closure properties of the C F L ' s  and regular languages. 

PROPOSITION ].8. (a) Let L C_ Z ,o be an w - C F L  and r: 2~--~ 2 ~* a context-free 
substitution. Then r(L) n A* is a C F L  and r(L) n A ~ is an w-CFL.  

(b) Let L C X ~' be an m-regular language and z: 27-+ 2 4* a regular substitution. Then 
-r(L) ~ A * is a regular language and r(L) n Aoo is an m-regular language. 

Generalizing some well-known results concerning quotients from the classical theory 
(see L e m m a  9.5 in [8]), we have 

LEMMA 1.9. Let ~ be a class o/w-languages closed under e-free finite substitution and 
intersection with ~o-regular languages. Let ~ be a family of finite-string languages closed under 
homomorphism and intersection with regular languages s.t. {Init(L) I L e 5e} C ~ ;  then the 
quotient of any L e s with respect to any vJ-regular language belongs to ~ .  

PROPOSITION 1.10. (a) Let L be an w - C F L  and R an to-regular language; then L /R  is a 

1 A generalized sequential machine over input alphabet Z and output alphabet A((E, A)-GSM) is a 
5-tupeI S = (K, 2", A, 8, qo), where K is a finite set of states, 8 is a mapping from K x Z' to finite 
subsets of K :.: A* and qo is*the initial state. 
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CFL .  (b )Le t  L be an w-regular language and L 1 an arbitrary w-language; then L/L i is a 
regular language. 

Proof. (a) follows from Lemmas 1.2, 1.9, and Propositions 1.3, 1.8. (b) is proved as in 
the finite-string case. | 

PROPOSITION 1.1 1. Let ~ be a class of w-languages over alphabet Z, closed under 
finite substitution and intersection with Al'-w-regular languages. Then ~ is closed under 
G S M  mapping. 

Proof. Let  S - -  (K, 2J, 27, 8, %) be a GSM.  For  every a ~ 27, let D a = {[q, a, x, p] ] q, 
p ~ K, x e A*, (p ,  x) ~ 8(q, a)} and let f be the finite substi tution f (a)  = D, Va ~ 27. 

oo 
Define the w-language R = {or ~ (0a~z Da) ~ I a = l-li=i [qi-1, ai, x i ,  qi], qo is the 
initial state of S, ai E 2 and ql e K for i = 1, 2,...}; clearly R is Al ' -w-regular .  Let  h be 
the homomorphism on Ua~z D ,  defined as Vy = [q, a, x, p] ~ ~a~Z D a ,  h (y )  = x. Then  
for ever}, L ~ ~,r S(L) = h(f(L)  c3 R) and S(L) C~ 27~o = h(f(L)  t~ R) ~ 27% hence o,W is 
closed under  G S M  mapping. | 

By Propositions 1.3, 1.8, and 1.1 1 we have 

COROLLARY 1.1 2. (a) C FL,o and the class of w-regular languages are each closed under 
G S M  mapping; (b) For every w - C F L  (w-regular language) L C_ 27% and for every (Z, A)- 
G S M  S, S(L) n A * is a C F L  (regular language). 

2. CONTROL SETS 

Control sets serve as the main tool in investigating certain variations and extensions 
of the definition of leftmost generation by w-grammars.  In  this section certain invariance 
properties of w-language families are derived; in particular, it  is shown that leftmost 
derivations in ~o-PSG's yield only w-CFL ' s .  

The  representation of control sets follows [7]. 

DEFINITION 2.1. An unrestrictedw-PSG is an w-PSG of the form s (VN, VT, P,  S, 2e), 
i.e., all subsets of P are repetition sets. An  unrestricted w - C F G  (w-RLG) is an unrestricted 
w-PSG in which the rules are context free (right linear). 

The  following lemma is a generalization of a result in [12]. 

LEMMA 2.2. For every unrestricted w-PSG G, L~(G) 2 is an co-CFL. 

Pro@ Let  G =-(V  u ,  Vr ,  P, S, 2 e) be an unrestricted o~-PSG. Construct  an 
w-PDA M = (K, Vr ,  IF, 8, %,  Zo, F), where Z 0 = S and /" = VN u V r .  I f  l is the 

2 Recall that, by our definitions (see Section 3 in [3]), the left-hand side of each rule in an co-PSG 
is in VN§ furthermore, in a leftmost derivation, in each step the leftmost variable of the sentential 
form must be included in the rewritten substring. 



190 C O H E N  A N D  G O L D  

! i maximal length of the left-hand sides of the rules of P, then K = {q0} k3 {qM I e ~ Ui=IVN }, 
where VN i denotes the set of all words of length i over VN �9 3 is defined as Va c V r ,  
3(q o , a, a) = (qo, ~); VA e F,  3(qo, e, A) = (q[A], e) if Aa --~ y e P for some a v~ E and 
~, ~ V*; 3(qo, E, A) = (qo, V) if A ~ ~, z P; 3(qM, ~, A) = (qt~A], E) if aA~, x --~ ~, z P 
for some ~ , y e  V*, and 3(q M , e , A )  = (qo, yA)  if a ~ v e P -  Define F = {D_C K ]  
qo e D}. I t  can be easily verified that T ( M )  = L,(G). | 

DEFINITION 2.3. Given an unrestricted ~ - P S G  G = (VN,  V r ,  P, S, 2e), let /5 
denote the set of labels of the productions in P. For  y ~ V*, ~? E/5% and ~ ~ S ~ define 
go( Y, ~) = a if ~7 = I-I~=x Pi ,  Vi >~ 1 Pl e/5,  and there exists an infinite leftmost derivation 

y = u 1 ~ 1  ~ UlU2Or ~ "  " ' "  ~ / . / 1  " ' "  uio~i => ""~ 

oo 
where Vi, u i E Vr*, c~ i a VNV* , a = YIi=I ui ,  and step i of this leftmost derivation 
involves the production labeled pz ,  i.e., de(i) = p i .  The  function gs(Y ,  ~) will be un- 
defined if no such a exists. 

For  U_C V* and C_C fi,o, let ga(U, C) = {go(Y, ~?) l Y e U, ~ e C}. Note that 
ga(U, C) may be empty. For  any set C _C/5% define Lc(G ) = ga({S}, C). Lc(G ) is called 
the oManguage generated by G with control set C. 

Clearly, Lc( G ) C_ Lz( G). 

LEMMA 2.4. Given an unrestricted co-PSG G and a control set C, there exist an un- 
restricted co-PSG H(G) of the same type as G, a homomorphism h, and an E-free regular 
substitution -r s.t. Lc(G ) = h(Lz(H(G)) ~ "r(C)). 

Proof. Let  G = (VN,  V r ,  P, S, 2 p) be the unrestricted CO-PSG, then define the 
unrestricted w-PSG H(G) = (Vw , VT' , P' ,  S, 2 e') where V r' = V r u if, P '  =- {u --~ pv [ 
p E/5 is the label of u ~ v}. The  elements of ff are added to V r to serve as left brackets in 
H(G).  Define a homomorphism h: V r' ~ V r u {E} by h(a) - -  a Va ~ V T and h (p )  = e 
Vp ~ [%. Also define z (p)  = VT*pVT* Vp ~ P. T h e n L c ( G  ) = h(Lz(H(G)) n r(C)). ~ is an 
E-free regular substitution; hence the lemma is proved. | 

THEOREM 2.5. The class of co-languages of the form Lc(G), where C is an ~o-regular 
language and G is an unrestricted w-PSG, coincides with C F L ~ .  

Proof. For  any C and G as above, by Lemma 2.4, Lc(G ) = h(L n L'), where L '  -= 
.r(C), L - -L t (H(G)) .  By the closure properties, L '  is an co-regular language, L is an 
(o-CFL and hence Lc(G ) is also an to-CFL. 

To prove the other direction, let L be an CO-CFL generated by an ~o-CFG with variable 

repetition sets G = ( V N ,  VT, P, S ,F) ,  and assume F = (FI) , where F 1 {Ai}~= 1 . 
For  each i = 1,..., l, let the collection of labels of all Ai- rules  be H i , and let De = U i ~  H~. 
The  set of all co-derivations in G in which F 1 is the set of all variables used infinitely often 
is the following co-regular set C(F1) =/5*(H1D2*H~D3* "'" H,DI* ) s.t. Lc(FI~((VN, VT , 
P, S, 2e)) = L((VN,  V r , P, S, {F1})). The  above proof can be extended to the case in 
which F includes more than one repetit ion set. | 
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COROLLARY 2.6. For any oJ-PSG G = (Vw , VT , P, S, F), Lz(G) is an oJ-CFL. 

Proof. An ~o-regular control set C, representing the set of all co-derivations in G for 
which the set of variables used infinitely often belongs to F, can be constructed similarly 
as in the proof of Theorem 2.5 above. Then  we have L~(G) = Lc(G1), where G 1 = 
(VN, VT, P, S, 2~), and by Theorem 2.5,Lc(G1) is an ~o-CFL. | 

Remark 2.7. As a special case of Corollary 2.6 we may deduce that for any ~o-CFG G 
with production repetition sets, L(G) is an CO-CFL; this justifies our choice of eo-CFG 
with variable repetition sets as our standard model of CO-CFG (see [3], Theorem 3.1.4). 

The  next corollary of Theorem 2.5 shows that we still obtain only co-CFL's even if 
we change the criterion for co-generation in co-PSG's as follows. 

COROLLARY 2.8. Let G = (VN, Vr ,  P, S ,F)  be an CO-PSG, where FC_ P. Define 
L2(G ) = {a ~ Vr ~ [ there exists a leftmost derivation d: S ~ (~a~ a, INP(d)  c~F =/= ~}. Then 
L2(G ) is an w-CFL.  

Following the construction in Lemma  2.4, we obtain the following 

COROLLARY 2.9. Let G be an unrestricted CO-RLG and C an co-CFL. Then Lc(G ) is an 
CO-CFL. 

Utilizing L e m m a  2.4 and the proof techniques in Theorem 2.5, we obtain 

COROLLARY 2.10. The class of co-languages of the form Lc(G), where G is an unrestricted 
w - R L G  and C is an co-regular language, coincides with the class of ~o-regular languages. 

3. i-AccEPTANCE BY ~-PDA's  

In  Part I of this paper it was established that the family of co-languages (3-)accepted by 
co-PDA's coincides with C F L o ,  and also coincides with the family of co-languages 2- 
accepted by co-PDA's (A2-PDLo~). This  means that 2-acceptance and 3-acceptance by 
co-PDA's are equivalent (incidentally, this is no longer true w.r.t, deterministic co-PDA's 
[4]). As will be shown below, for i = 1, 1', 2', the families of co-languages/-accepted by 
co-PDA's (Ai-PDL~o) constitute proper subfamilies of CFLo~ ; in fact A I ' - P D L ~  C 
A1-PDL~o = A 2 ' - - P D L o ~  C C F L ~ .  This  section is devoted to the study of these 
families. 

3.1. Properties of the Families Ai-PDLo, 

DEFINITION 3.1.1. Two co-PDA's M and M '  will be called /-equivalent (for i -= 
1, 1', 2, 2') iff T~(M) T~(M'). 

THEOREM 3.1.2. A1-PDL,,, - -  A2'-PDL~o. 
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Proof. I t  follows from the definition that A1-PDL~ _C A2'-PDLo~. Let L be 2 '-  
accepted by an ~o-PDA M = (K, 27,/', ~, q0, Z0, F), where F ---- {Fi}~= 1 . Clearly, we 
may assume w.l.o.g, that for i 4= j F~ ~ F j .  Construct a U-~o-PDA M 1 = (Kx, 27, F, 
3 ~ , q o , Z 0 , F ) , w h e r e f o r l  <~ i <~ l,F~ { q " ) ] q e F ~ } , F =  ~ - : Ui=I F i ,  and K 1 : K u F. 
Whenever M enters some state q e F i ,  3/1 may choose to enter the corresponding state 
q") in F~ and continue to imitate M within F , ,  guessing that from now on M will stay 
in Fi �9 3//, is blocked in case M later on enters a state outside Fi �9 | 

PROPOSITION 3.1.3. For each i = 1, 1', 2, 2', every oJ-PDA can be replaced by an 
i-equivalent U-m-PDA (i.e. o~-PDA with a single designated set). 

Proof. For i =~ 1' the construction of a l '-equivalent U-oo-PDA is similar to that in 
the proof of Theorem 3.1.2 above. For i = 1 and i = 2 the result is obvious and for 
i = 2' the result follows from Theorem 3.1.2. | 

Utilizing Proposition 3.1.3 above, one can prove 

LEMMA 3.1.4. AI'-PDL~, _C A1-PDL,o. 

THEOREM 3.1.5. The class of w-regular languages is properly included in A I ' - P D L ~ .  

Proof. Let R be an oJ-regular language; then R is 2-accepted by some U-os-FSA A 
(K, X, 3, qo, F)  [1, 13]. Construct a Y-equivalent U-oJ-PDA M with two special symbols 
Z, Z 1 among its pushdown symbols. By a sequence of C-moves, M nondeterministically 
writes ZJZ 1 on top of the pushdown store for s o m e j / >  1, guessing that A is about to enter 
a state in F within the next j steps. M then starts imitating A and is blocked if the guess 
turns out to be wrong; otherwise M proceeds to make a new guess j and the whole 
procedure is repeated. 

To show that the inclusion is proper, let 27 = {a, b} and consider the w-language 
L~ -- {a e 27o~ I Vn ~ 1, #~(a/n) ~ #b(cr/n)}, where for x e X*, #c(x) denotes the number of 
occurrences of letter c in x. L~ is an example of a nonregular w-language in AI'-PDLo~. | 

Ui=l LiLi , THEOREM 3.1.6. A2'-PDL~o equals the class ~ of ~o-languages of the form ~ 
where l >/ 1 and for each 1 <~ i <~ l, L i is a C F L  a n d L /  e A I ' - P D L ~ .  

Proof. L e t L  be a CFL,  a n d L '  e AI ' -PDL,o .  Then  there exists a P D A  A acceptingL 
by empty store, and a U-~o-PDA B which Y-accepts L' .  Using our standard techniques, 
one can construct from A and B a new o - P D A  P which T-accepts LL'. Hence ~o C 
A2'-PDLoj.  

L e t L  e A2'-PDLoj; by Theorem 3.1.2L is 1-accepted by a U-os-PDA M = (K, 27, F, 3, 
q0, Z0 ,F) .  Let B = {(q, y) [ I Y I > 0 and (q, y) in the range of 3}. For each (q, y) e B 
define L(q, y) as the following CFL:  L(q, y) = {x e 27* I there exists a run of M on x s.t. 
x: (q0, Z0) ~-m (ql, YI) #-M (q2, ZY2) ~---m (q, YY2), where Yl, Y2 ~ / ' * ,  Z e f '  and q, eF}  
and let L'(q, y) be the w-language in AI ' -PDLo, ,  consisting of all w-words for which there 
is a complete run of M, starting in configuration (q, y). Then  clearlyL = U(q.,)~BL(q, y) 
L'(q, y). | 
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DEFINITION 3.1.7. Let G -- (VN, Vr ,  P, S,F)  be an CO-CFG. For i = 1, 1', 2, 2', 
define Li(G) = {a e 2:~ I there exists an infinite leftmost derivation d: S = ~  e s.t. dv 
is/-accepting w.r.t. F}. Li(G) (i = 1, 1', 2, 2') is the m-language/-generated by G. 

The following proposition is proved similarly to Theorem 4.1.3 in [3]. 

PROPOSITION 3.1.8. For i == 1, 1', 2, 2', Ai-PDLo, equals the class of co-languages 
i-generated by oJ-CFG's. 

Note that for any co-language L, if L is l ' -generated by the ~o-CFG with a single 
repetition set G -- (VN, Vr ,  P, S, {F}), then L is also generated by the unrestricted 
CO-CFG G 1 = (VN, VT, P1, S, 2P1), where P1 = P(F) is the set ofF-productions. On the 
other hand, generation by an unrestricted CO-CFG can be considered as a special case of 
l ' -generation by an CO-CFG with a single repetition set. By Propositions. 3.1.3, 3.1.8, 
every co-language L in A I ' - P D L ~  can also be l '-generated by an co-ClOG with a single 
repetition set. Thus  we obtain 

PROPOSITION 3.1.9. A I ' - P D L ~  coincides with the class of w-languages generated by 
unrestricted co-CFG's. 

PROPOSITION 3.1.10. For i = 1', 2', Ai-PDL~ is closed under: (a) union, (b) finite 
substitution, (c) intersection with Ai-w-regular languages, and (d) GS?r mapping. 

Proof. (a) Obvious. (b) L e t L  e A I ' - P D L  .... let G = (VN, VT, P, S ,F)  be an CO-CFG 
that 1 '-generatesL, and let h: VT --+ 2 z* be a tinite substitution. Extend h to VN by defining 
h(A) A VA e VN . Construct a new ~ - C F G  G1 =- (VN , 27, P1, S,F), where P1 = 
{A -~ 13 ] 13 c h(e), A --+ ~ e P}. Clearly. LI,(G ) = h(L) n 27% The same construction 

' p  will do for L e A 2 -  DL,~ (c) Is proved by the standard direct product construction. 
(d) Follows from Propositir n 1.1 1 and (b), (c) above. 

3.2. Real-Self-Embedding co-CFG's 

The notion of real-self-embedding co-CFG introduced below plays an important role 
in the proofs to follow. 

DEFINITION 3.2.1. Let G = (V~v, VT, P, S) be a CFG. A variable X is called self- 
embedding iff X ~ o~Xfi for some ~, f le  V +. In  case ~ e VT +, X is called real-self- 
embedding. 

Every CFG which has a (real-)self-embedding variable is called (real-)self-embedding. 
Otherwise it: is called non-(real-) self-embedding. 

We say that variable X is reachable from variable Y if there exists a derivation d: 
Y *-~, xXfi, x e Vr*, fi ~ V*. A variable that is reachable from S will be simply called 
reachable, and nonreachable otherwise. 

DEFINITION 3.2.2. Let L C VT* and X a symbol not in Vr �9 Define the following 
substitution h(X,L): g r kJ {X} -+ 2 vr, h(X,L)(a) = a for a e Vr and h(X,L)(X) = L. 

Substitution h(X, L) will be frequently used in the following sections. 
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Notation 3.2.3. Let  G = (VN,  Vr ,  P, S) be a CFG. Let X e l/~; we shall write 
X *~ VT*[VT +] if there exists x e Vr*[Vr +] and a derivation d: X *~ x. If  no such 
derivation exists we shall write X ~ Vr*[Vr+]. 

P~(X) will denote P --  P ( X )  (the complement of P ( X )  with respect to P). 
The  above definitions and notation will also be used w.r.t, eo-CFG's. 

Remark 3.2.4. Note that if G : (VN, VT,  P, S) is non-real-self-embedding, then 
for each X e Vrr such that X *~a Vr + and for each S 1 E V u - -  {X}, the grammar G 1 -- 
( V N - - { X } ,  V T W { X } ,  P~(X), $1) is also non-real-self-embedding. For suppose 
Y ~(;~ x Y ~  for Y c VN --  {X),  c~ e V*, x e (Vr  U {X})+; since by assumption X %G xl e 
VT +, substituting x 1 for X into x, we obtain Y *=>a xo.Ya, where x~ ~ VT4, contradicting 
the assumption that G is non-real-self-embedding. 

The following technical lemma will be needed later. 

LEMMA 3.2.5. Let G (VN,  VT,  P, S)  be a non-real-self-embedding, ~-free CFG. 
Then the following hold. 

(a) L(G) is a regular language. 

(b) For each Q c_ VN,  the language Lo(G ) = {x E Vr* ! there exists a derivation 
d: S ~r x s.t. Q c Var(d)} (Notation 0.3) is regular. 

(c) For each X e VN , the language Lx'  = {x ~ V~.* I there exists a derivation 
d: S *~c, xX3,  f i e  V*} is regular. 

Proof. (a) The proof is similar to that of the well-known theorem on self-embedding 
grammars, as it appears in [14, pp. 46]. Let  L be generated by a non-real-self-embedding 
CFG G = (VN, Vr ,  P, S). Without loss of generality, assume that every X in V N is 
reachable from S. We separate two cases: 

Case 1. S is reachable from every variable in VN �9 Every production in P containing 
at least one nonterminal on the right-hand side is of one of the four forms: (1) X -+ aYfi; 
(2) X --~ c~Y; (3) X -+ Ylfi; (4) X --* Y; where X, Y, Y1 ~ Vx and ~,/3 ~ V ~. If  P contains 
a production of form (1), say X - +  c~tYfll, then cq r Vr* , because otherwise X *~ 
xlYfi l  ~ xtxSflfl 1 %  xlxx2Xfi2[3fll; hence cqYfll = A 7, where A ~ VN and A r Vr+. 
I f  P contains, for some X, productions of forms (2) and (3), then by a similar argument, 
i f X  -+  ~IY, then ~IY =: A7 where A ~ VN and A 4>* Vr +, so X -+ alY is a production 
of form (3). I f  P contains, for some X, only productions of form (2), then there are 
X - +  xY ,  where x ~ VT +. We conclude that for each X e VN, the X-productions are 
either right linear or of the form X--*  A~, A ~ VN, ~ E P ,  where A ~ *  Vr*. Let  
Gt = (VN,  VT,  P1, S), where P1 contains all of the right-linear productions of P; 
then L(G1) -- L(G), hence L(G) is regular in this case. 

Case 2. There is a variable X 1 s.t. for no words x and w does X t *~ xSw. The proof 
that L(G) is regular is in this case by induction on the number n of variables. 

(b) I f  Q = {S}, then Lo(G ) = L ( G )  is regular by (a). Suppose Q = {X} and 
X @- S. I f X  ~ *  VT*, t henLo(G ) = ~ is regular; so assume X *~ Vr*. Define G2 = 
( V N - - ~ X } ,  V . r ' ,P , (X ) , S )  where VT' = V r u f X }  and G , - :  ( V N , V  r , P , X ) .  Let 
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L~ == L(G~) for i 1, 2. By (a), L i ,  i = 1, 2 is regular and hence also L{x}(G) = 
h(X, L1)(L 2 n V T XV}. ) is regular. I f  [Q 1 > 1 then Lo(G ) = Ox~oL{x}(G) is regular 
by the above argument.  

(c) Define Iq = { A E V w ] A * ~  V r * } , a n d f o r e v e r y A e [ 7 1 , d e f i n e L  A = L ( G a ) ,  
where GA (VN , V r ,  P, A). Then  LA is a regular language for each A e V 1 . Let  
V1 ..... {A ! A e V1} and let P be obtained from P as follows. I f  A --> ~ E P, then for every 
decomposition ~ ~ alfllB s.t. Og I ~ ( V  T W V1)*  , B ~ V N and/3 ~ V*, P will include the 
productions A--+ h(al)B, and A--+  h(~l) , where Va 6 V r ,  h ( a ) =  a and VY~ V 1 , 
h(Y)  -- Y. Define the right-l inear grammar G a = (VN,  Vr  U F 1 k.) {c}, P U {X --+ c}, S), 
where c is a new symbol. Let  L' L(G1)/{c} and h 1 be the regular substi tution Va E V r ,  
h(a) a and VA ~ V~, h(A) = L A . I t  is easily verified that L x' = hl(L' ) and hence 
L x' is a regular language. I 

Note that Lemma 3.2.5 above was stated only for e-free CFG ' s ;  this weak version 
happens to be sufficient for our purposes and simplifies the proof  to some extent. However, 
by modifying the above proof  appropriately, it can be shown that the lemma holds for 
C F G ' s  with e-rules as well. 

The  next theorrem is a (not so straightforward) generalization of the well-known result 
from the classical theory [2, 14]. A weaker version of this theorem will be used in the 
proof of Proposit ion 3.3.l below. 

THEOREM 3.2.6. For every non-real-self-embedding E-free co-CFG G, L(G) is an 
oo-regular language. 

Proof. Let  G = (l/~.,  VT ,P ,  S , F )  be a non-real-self-embedding e-free oJ-CFG; 
w.l.o.g, we may assume that every variable in VN is reachable. For  the purpose of this 
proof, a variable with no productions will be called dummy. As in [14] and Lemma 3.2.5 
we distinguish two cases: 

Case 1. S is reachable from every nondummy variable. Following the argument in 
Lemma 3.2.5(a), we conclude that for each X E V~,  the X-product ions  are only in the 
forms (1) right linear, (2) X - - ~  An, A c VN,  a ~ V +, where A ~ *  Vr* , (3) X - - ~  xZ7, 
x ~  V r * u  l~v,  y E  V*, and Z a dummy variable. Construct a new oJ-CFG G 1 = 
(VN,  VT,  P1,  S ,F) ,  where P1 contains all r ight-linear productions in P,  on top of the 
additional productions X -+  A ~ P1 for each rule X --+ Aft ~ P s.t. fl ~ V* and A ~ V u . 
Clearly L(Ga) = L(G) and since G 1 is r ight linear, the assertion follows. 

Case 2. There  is a nondummy variable X 1 s.t. for no x ~ Vr* and a ~ V*, does 
X a ~ xS~. We shall prove that L(G) is an ~o-regular language by induction on the 
number n of nondummy variables in G. For  n = 1, since S *~ S, S must  be a dummy 
variable and L(G) = ~v. Assume that the assertion holds for n = k. Let  k + 1 be the 
number of nondummy variables in G. Without  loss of generality we may assume that F 
consists of only one set, denoted by F itself. 

First  assume X 1 ~> VT*. 

Subease a. X 1 ~ f .  Define C F G G 1  = (VN,  Vr , Pc(S) ,X~) and two ~o-CFC's: 
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G~ --  (VN,  Vr ,  P~(S), X~ ,F), G~ = (VN --  {X1}, VT U {X~}, Pc(&),  S , F ) .  Let L~ - 
L(G1) C VT ~ = L(G2) (5 ( V  T k.) {X1})*VT ~~ and L a = L(G1) C VT*. By the induction 
hypothesis,/7,1 and/,2 are w-regular languages, and L~ is regular by Lemma 3.2.5(@ Hence 
alsoL~ = h(X~,  La)([,~) (see Definition 3.2.2), representing the derivations in G which are 
not "blocked" by 221, is w-regular. Let  L ~ ' =  {x e g r *  [ there exists a derivation 
d: S N a  xA~a, a e V*}. Then  L~' is regular by Lemma 3.2.5(c) and hence La -- Lo'L~ is 
an ~o-regular language. Since L = L z ~ L~ , L is ~-regular. 

Subcase b. X 1 EF. Define: a set of new symbols E = {Yo [Q _C_F}; a finite substitu- 
tion hi on Vr u {Xa}: Va e Vr ,  hi(a) = a and hi(X1) -~ {X1} t3 E; and a CFG Ga = 
(Vlv, Vr ,  P~, X1), where Pa = UAsF P(A) .  For each Q _c F, let L o = {x e Vr* ] there 
exists a derivation d: X 1 *~G, x s.t. Q C Var(d)} (Notation 0.3). 

By Lemma 3.2.5(b) L o is regular for each Q _c F. For each H _C F - -  {X1} , define the 
w-CFG GH = (Vu - -  {X1}, g r  t.) {Xl} , Pc(X1), S, H);  also define R H to be the following 
regular language R H = {x [ for some l >/ 1, x = I I i = l  x i Y o , ,  where xi ~ VT*, Yo,  ~ E 

l 
for 1 ~ i <~ l, a n d F  --  H _C Ui=~Qi}. T h e n L ~  ) = hI(L(GH)) n (VT U {X1})*RH ~ is an 
oJ-regular language by the induction hypothesis. Let h2 be the following regular substitu- 
tion on Vr U {Xa} kJ E: Va E Vr ,  h2(a) = a, h2(Xa) = L(G~), where G~ is as defined in 
Subcase a, and VYo  ~ E, he(Yo) = L o . Then  clearly LH = h2(L~ )) is also an ~o-regular 
language. SinceL = L 3 U (ORC_F-(X,} LH), whereLa is as in Subcase a, L is ~o-regular. 

Now assume A]  4~* VT*. In  Subcase a L = L 3 U (L(G2) n Vr ~) and in Subcase b 
L = L 3 , hence the proof is completed. | 

3.3. Proof of  Al'-PDLo~ C A2' -PDL~ C CFLo, 

We are now in a position to prove the two main results of this section, namely, A l ' -  
PDLo~ ~ A2'-PDLo~ C CFLo~. 

First, we exhibit a family of w-CFL's  in A2'-PDLo~, which cannot be l '-accepted by 
any co-PDA; this family consists of all co-languages of the form Ld% where L is a non- 
regular C F L  not containing d. We next exhibit a family of a ~o-CFL's which cannot be 
2'-accepted by any ~o-PDA; this second family is the class of all languages of the form 
(Ld)% where L is as above. 

PROPOSITION 3.3.1. For each nonregular language L over  alphabet 271 and symbol 

d r Z1 ,  Ld ~ r AI'-PDLo~. 

Proof. Assume L 1 = Ld ~ ~ A I ' - P D L ~  for some nonregular L. Let  27 = 271 k) d. 
By Proposition 1.10, L 1 is not co-regular. By Proposition 3.1.9, there exists an unrestricted 
oJ-CFG G = (VN,  27, P, S, 2 p) that generates L 1 . We may assume that G is e-free. By 
Theorem 3.2.6, G is real-self-embedding. We shall construct from G a new equivalent 
unrestricted oJ-CFG which is non-real-self-embedding, leading to the contradictory 
conclusion that L 1 must be an m-regular language. 

Let A ~ VN be a real-self-embedding variable in G, and let u ~ 27+, where A ~-c uA~ 
for some o~ ~ V*. A is reachable, hence S *~ xAfl  for some x e 27* and thus xu ~ EL 1 . It  
follows that every u E 2:+, s.t. A *~ uAa, ~ E V*, is in d +. 
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Define P1 to be the set of productions obtained by modifying P as follows: Let B be a 
new variable. 

Add to P the rules A --~ dB, B -+ dB; 

Every production A -+ earl  e P, where ~ e ( V  - -  A)  +, fl ~ V*, is replaced by 

(1) 
(2) 

A --~ ~B. 

(3) Define 

K 1 = { X e  V N I X  =/= A ,  X C K &  A ~ Xa,  o~e V*}. 

The productions of the variables in K and K 1 will be modified as follows. 

(a) Substitute B for A in the productions of K. 

(b) Substitute B for A in the productions of 1s excluding appearances of A as 
the first symbol of a right-hand side of a rule as X -+ A~, X ~ 1s o~ e V*. 

Let G 1 = (VN W {B}, X, P1, S, 2P0, where /)1 is the above modified version of P. 
To show that L(G1) = L(G),  note that L(G) is not changed by (1) and (2) above because 
if o~ *~ x ~ Vr +, then x ~ d +, therefore only d ~~ will be generated from this point on. 
Hence L ( G ) - - L ( G 1 ) ,  and moreover, G 1 has one less real-self-embedding variable 
(namely A) than G. The above procedure can therefore be repeated for all real-self- 
embedding variables in G, yielding a new unrestricted ~o-CFG G' which is non-real-self- 
embedding and equivalent to G. This concludes the proof. | 

Since clearly Ld ~ ~ A2'-PDLo, for each C F L L  over Z'l, we have 

COROLLARY 3.3.2. AI ' -PDL~ C A2'-PDL~.  

PROPOSITION 3.3.3. For each nonregular language L over alphabet X and d 6 l ,  
(Ld) ~ r Ae'-PDLo,. 

Proof. Suppose (Ld )~e  A2'-PDL~o. By Theorem 3.1.6, there exist for some integer 
l >/ 1, 21 sets L~ 1) and L~ ~ where L~ 1) is a CFL and L(/~) e AI'-PDLo, for 1 ~ / ~< l, s.t. 
(rzx~ I I ~ rn)rt~) Clearly for every x eL,  there is some x 1 E 27"d u (e} s.t. xl(xd) ~ /~a]  = V i = I  ~ ' i  ~ i  ' 

UL rf'. 
Construct the following GSM S = ({ql, q2, q~}, 27 U {d}, I7 u {d}, 8, qa) where Va e 27, 

3(ql ,a)  = ( q l , e ) , 8 ( q l , d )  = (q2,e), 3(q2,a) = (q2,a),  8(q2,d) = ( q a , d )  and VaE 
X V3 {d}, 3(qa, a) = (qa, d). Then S([J~=~L~ 0")) = Ld% But Ld ~ ~ AI'-PDL~ by Proposi- 
tion 3.3.1, and by Proposition 3.1.10 also wi=l fj~ ~ir(2)r a contradiction. I t  
follows that (Ld)" (~ A2'-PDLo,. | 

COROLLARY 3.3.4. A2'-PDL~ C CFL~. 

Remark 3.3.5. Using the same proof techniques as in Propositions 3.3.1 and 3.3.3 
'~ ' , i 6 A2-PDL~, where above, we can also prove that (a) Loa ~ A1 -PDL~ and (b) L0% L ~ ' 

L o = {anb ~ [ n ~ 1} and L 1 = {wcw R [ w e {a, b}*}. We conjecture that for every strict 
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deterministic [10] nonregular language L, L~162 A2'-PDL,o,  but we have been able to 
establish this only for certain types of strict deterministic languages, e.g. those with a 
"natural"  endmarker, likeLd in Proposition 3.3.3, or those which are bounded CFL ' s  [6], 
like L 0 in (b) above. 

As a by-product of the proof techniques developed in this chapter, we now obtain a new 
and elegant proof for the inclusion of CFL~ in the w-Kleene closure of the context-free 
languages. Unlike our original proof in [3], the new proof is straightforward and algebraic 
in nature, with no reference to w-PDA's. However, unlike our original proof, this proof 
relies on the characterization of the nondeterministic w-FSA languages as w-KC(Reg) [13] 
(a result which was rather easy to prove), whereas our original proof was independent 
of it. 

THEOREM 3.3.6. CFLo~ C w-KC(CF).  

Proof. Let G = (V~v, Vr ,  P, S ,F)  be an w-CFG. With no loss of generality, we 
may assume that F consists of only one set, denoted by F itself. Define new sets of 
symbols: F = {A I A E V~} and E~ = {A o ] Q C F} for every A ~ Vw. Also define a 
substitution ha on l T by hl(a ) = a, Va ~ VT and ht(A ) = .4 k3 E A , VA ~ VN. For each 
A~VN, QC-F, let L(A,Q) = { x ~ V r * l t h e r e  exists a derivation d : A * ~ o x  s.t. 
Var(d) = Q} (Definition 0.3), and let/~A = L(G), where G -=- (VN, VT, P, A). Let /5  be 
obtained from P as follows. I f  A ~ a ~ P, then for every decomposition a = alB~2 s.t. 
c~, ~z E V*, B c I @ , / 5  will include the set {A --* fib ] fl E hl(o~O}. For each H C F, define 
the w-RLG Gn --= ( 1 ~ ,  VT • V U {EA}a~vu,/5, S, H);  also define the regular language 
Rn = {x I f  or some l>~ 1, x = I-I~-~ x~A(~},, where x~ ~ Vr*, A m E F, A~)E EA,,,  
for 1 ~< i ~< l, F --  H _C [.)~=1 Q*}- Tl~en L~ ~ = L(Gn) n (V r k3 V)*Rn ~ is an w-regular 
language. 

Define a context-free substitution h 2 on V r u V u {EA}A~Vu , as Va E Vr,  h2(a) = a; 
VA e V, h2(A) :.:: L~ and VA e VN, VQ C_ F, h.(Ao) = L(A, Q). Now, L : L(G) = 
h2(l.)nc_rL~)), (Jnc_vL~ ~ is w-regular, thus belongs to w-KC(Reg) and hence to co-KC(CF). 
Since the context-free languages are closed under context-free substitution, we obtain 
L e w-KC(CF).  II 

4. NoN-LEFTMOST GENERATION IN oJ-CFG's 

This section deals with non-leftmost (nl) derivation in w-CFG's .  The  class of w- 
languages nl-generated by w-CFG's,  n l -CFL~,  is investigated. The  main result is, 
somewhat surprisingly, that certain w-CFL's  cannot be nl-generated by w-CFG's;  
however, any ~o-language nl-generated by an w-CFG is an ~o-CFL. Hence leftmost 
generation is strictly more powerful. 

A problem arising with respect to 3-generation of w-sequences by nl-derivations is that 
parts of the required repetition sets may be a contribution of some "unreached" part of the 
sentential form. Therefore, for each variable occurring in the hi-derivation, one has to 
determine whether it belongs to the "reached" or to the "unreached" part of the sentential 
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form, and in the latter case its possible contribution to the repetit ion sets must  be taken 
into account. This  is accomplished with the aid of the new notions of "self -providing" 
and " t ransient"  sets of variables introduced in Subsection 4.1 below. 

4.1. Analysis of Non-Leftmost Derivations 

In  this section we develop the basic tools for dealing with non-leftmost derivations. 
Some preliminary result on nl-CFLo~ are derived and the inclusion of n l - C F L ,  in CFL,o 
is established. 

P~OPOSIT1ON 4.1.1. nl-CFLo~ equals the class of co-languages generated by non-leftmost 
derivations by w - C F G ' s  with production repetition sets. 

Proof. Let  G (VN, VT, P, S ,F)  be an CO-CFG with production repetition sets, 
where b~, = {Ai}~=~, P(Ai) = {Ai -+ ~ )  ~ P [ 1 ~ j <~ ki} are the Ai-product ions  in P.  
Define a new set of variables VN =D~=t{B~ jl] 1 < ~ j ~ k i } .  Let  Pz ={B~ j ) - - * f l l  
Ai ~ )  ~ P,/3 ~ h(~l)} ,  where h is defined by  h(a) = a Va ~ V r and h(Ai) YB 0 ~  - - ~  - ~  t i ] j = t  

for 1 ~ i ~; l. Assuming A~ = S, define P~ ~ P2 ~ {B --+ B~ ~) ] 1 ~ j ~ kl} , where B 
is a new symbol. For  every H _C VN, let P t t =  {A; --~ ~ )  [ B~ ~) ~ H).  Define the w- 
CFG G~ -- (VN W {B}, Vr,  P~, B, FO, whereFx = {H_C FN I P~ eF}. ClearlyL.i(G0 = 
Ln~(G). 

The  other direction follows directly from the definitions. II 

PROPOSITION 4.1.2. For any CO-CFG with E-rules there can be constructed an e-free 
co-CVG G 1 s.t. Lnl(G1) = Lnl(G). 

Proof. Let G == (VN, Vr ,  P, S, F). For  every a e V +, define NL(o,) = {D C VN[ 
there exists a derivation d : ,  *~a ~ s.t. Var(d) = D} (Notation 0.3). Define V~ = VN • 2 vN, 
and for each A e VN, let h(A) - -  A • 2vN if NL(A) = ;~, h(A) = A • 2 v N u  {E} if 

l l B NL(A) .... o ,  and h(a) a for a e V T . Let  c~ --= I-Ii 1 Ai  and 13 = 1-I~=~ ; e h(c~), where 
A i ~ V  and B ~ V  1U V r u f e }  for i =  1 .... , l .  Define D(fl) = { 0 ~ = x H i [ H , =  ~ if 
B~ == Ai~  Vr or Bi r A~ ~z 2 vu, and It~ ~ NL(A~) if B; ---- ~}. Also let P t  = {(A, H)  - ~  
/3 I A -+  ~ c P, E v~ fl ~ h(a), H E D(/3)} w {S~ --~ (S, H) I H C Vu), where S~ is a new 
symbol. For  every D c F,  define / )  ~ {K _C Vt I var(K) ~ D}, where V(A, H)  ~ V1, 
var((A, 1t)) {A} w H and VK~, K z _C Va, var (K 1 u K z ) ~ -  var(K~) w var(K~). Let  
G~ =: (/~] ~3 {Sa), Vv, P t ,  Sx ,if), where F = (O]  D ~F}. By definition, G t is an ~-free 
CO-CFG and it can be easily verified that Lnl(G~) = Ln~(G). | 

DEHNITION 4.1.3. Let  G == (VN, Vr ,  P, S, F) be an ~o-CFG, let d be the following 
nonleft derivation d: % -~a % ~ a  "'" ~ ~z and let % = floYo be a decomposit ion of % .  
For  each l ~ i ~ l, ai can be decomposed into fliTi, where fli(7i) is generated from 
fii-a(7~-l) in step i of d. Let  d~0 denote the derivation 130 *=>a fll *~a "" *~a/3~ and let d~o 
denote the derivation 7o *~c 71 *~ ~ "'" *~ a 7~, where for each 1 ~ i ~ l either/3i_ 1 ~a /3 i  

and 7i--x := Yi or 7~ 1 ~ 'c  7i and f l i - a  = /3 i  " 

DEFINITION 4.1.4. Let  G ~ (VN, Vr ,  P, S ,F)  be an CO-CFG. Let  d be a nonleft 

57I/I5]z-6 



200  COHEN AND GOLD 

infinite derivation, d: ~ ~ a  ~1 ~ c  "" ~G ~i :~ " " .  For  each i , j / >  1 s.t. i ~ j ,  d(i , j)  
will denote the derivation ei ~ 6  "'" ~ a  c~. Every sentential form ei can be decomposed 

into ~i = fliYl s.t. 

(1) for any variable A in fii s.t. fli = ~Ar '  for some ~, ),' ~ V*, there is j >~ i for 
which dv(i,j): y *~a Vr*; 

(2) for any variable A in ~i s.t. 7i ~ yA), '  for some 7, y '  ff V*, for every j ~ i, 

d~v(i,j): rid" N a  V*V~V* .  

fli(Yi) will be referred to as the reached (unreached) part of ~i �9 
I f  in some w-derivation, a string ), appears in the unreached part  of the sentential form, 

then its possible impact on the derivation lies only in its set of variables (with multiplicities) 
and the potential contribution of this set toward obtaining the repetit ion set INV(d).  
Informally,  for a given string 7, a set of variables H is self-providing if there exists an 
infinite nl derivation d '  starting from 7 s.t. the set of variables rewritten infinitely many 
times in d '  is precisely H (hence we may say that  H reproduces itself infinitely many times 
during the derivation d') .  A set of variables H is transient for ~ if there exists a finite 
derivation starting from ),, in which precisely the variables in H are rewritten. 

DEFINITION 4.1.5. Let  G = (Vw,  V r ,  P, S , F )  be an w-CFG.  For  any y c  V +, the 
class of self-providing sets (SP(7)) and the class of transient sets (TR@)) of ~ are defined as 

SP(~,) = {D C VN i there exists an infinite nl derivation d starting in ~ s.t. INV(d)  = D}. 

(Note that  d is not required to generate a string from Vr~; here we are only concerned 
with the repetit ion set INV(d).)  

TR(y)  = {D C l/'N [ there exists a derivation d: ), *~ 7' for some ~' ~ V* s.t. Var(d) = D~. 
G 

Remark 4.1.6. I t  follows from the definition, that SP(c~fi) = {H 1 u H o [ H 1 c SP(~), 
H 2 6 SP(fi)} for every ~, fi ~ V +. This  proper ty  of SP will be often utilized in the con- 
structions to follow. 

THEOREM 4.1.7. For any oJ-CFG G =- (VN , Vr  , P, S ,F) ,Ln l (G)  is an ~o-CFL. 

Proof. With no loss of generality we may assume F consists of only one (variable) 
repeti t ion set, denoted by F itself. We may also assume that P = / ) 1  ~ P e ,  where the 
rules in P1 are of the form A --~ ~, a ~ VN + and the rules of P2 are of the form A --~ a, 
a e Z' t3 {e}. Define G 1 to be the C F G  G 1 = (VN,  VT,  P(F), S), where P(F) denotes the 
set of F-product ions  in P, and define for any ~ E V*, TRI (a  ) ~ {D C F ] there exists a 
derivation d: ~ *>ol y for some V e V* s.t. D C Var(d)}. (Note the slight difference 
between the definition of TR(a)  (Definition 4.1.5) and that  of TRI(a  ) above.) 

Construct  the following U-oJ-PDA M = (1<21, VT,  I', [q0, ~ ] ,  S, {~/ • 2F}), where 
321 = {qo} X B t3 {ql} X 2 F X 2 v U {q} • 2 F, /" ~--- V N k3 g r t.3 {Z}, B = 22e, and Z is 
a new symbol. 3 is defined as follows. 

Stage 1. V H e B ,  V A e V w ,  ( [ q o , H ] , e )  e 3 ( [ q o , H ] , a , A )  if A - - ~ a ~ P 2  and 
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([%, HI,  V) c 8([%, HI,  E, A) if A --~ y c/)1 �9 I f  A --~ y c P1,  then for every 71,72 ~: E" 

s.t. ~,1~2 - 7, ([q0, H1], 71z) e ~([q0, H], ~, A), where HI = {D1 • D2 F D1 e H, O2 e 
sP(n)}. 

In  Stage 1 the machine M nondeterministically simulates some finite derivation d: 
S ~ s~ in G, and in each step nondeterministically chooses a decomposition 7172 (denoted 
by Z on the pushdown store) of the r.h.s, of the rule into the reached and unreached part. 
The addition of 72 to the unreached part of s~ is only represented by its contribution to the 
collection H 1 of self-providing sets of the unreached part, rememebered by the second 
component of the finite control. 

Stage 2. For every A c VN, H_C 2 N and for every K _C F s.t. K ~ H, ([q~, F --  K, ~ ], A) 
8([q0 , H], E, A). 

In  Stage 2 the machine nondeterministically chooses one of the self-providing sets, K, 
belonging to the collection H of self-providing sets of the unreached part of a and contained 
in F. From now on M only has to check that the variables in F - -  K also will be rewritten 
infinitely many times. This is done using the third component of the state above. Initially 
this third component is set to r In  Stage 3 below, we accumulate in this component the 
variables in F rewritten in the simulated derivation, and also those variables in F which 
could be rewritten in the newly generated unreached part (namely those appearing in 
transient sets of ~2)- 

Stage 3. K, H C F .  VA~F,  (i) if A - + a E P 2 ,  then ( [ q l , F - - K ,  H u { A } ] , E ) ~  
8([qx , F - -  K, S],  a, A); (ii) if A - ~ ? c P 1 ,  then (a) ( [ q l , F - - H ,  K u f A } ] , 7 )  e 
8(ql, F - -  K, H], e, A), and (b) for every 71,72 -'-/: E s.t. 7172 = Y, ([qa, F -- K, I t  w H i u 
{A}], y1Z) ~ 8([ql, F -- K, H], E, A) for each H 1 E TR1(72 ). 

Stage 4. K, HC F,  VA c VN, ([q,F --  K],  A) ~ 8([q~ , F  --  K, H],  ~, ,4) i f F  --  K C H 
and ([qa, F --  K, :,~ ], A) ~ ~([~/, F --  K],  E, A). 

In  Stage 4, whenever the third component of the state contains all o f f  --  K, M, enters 
state [q, F - -  K], and then reenters [ql, F --  K, ~ ], where Stage 3 starts all over again. 
Thus  entering state [q, F --  K] denotes the event of having rewritten each of the variables 
i n F  --  K at least one more time since the last time M has been in this same state. 

Clearly T2(M) - Ln1(G), henceLm(G) is an w-CFL. II 

4.2. Real-Self-Embedding in nl-Derivations 
, p  Paralleling the proof for A 2 -  DL~ C CFL,~ in Section 3, the proof for the non- 

equivalence of nl-CFL,o and CFL,o also relies heavily on the notion of real-self-embedding 
~o-CFG's. In  this section we derive an analog of Theorem 3.2.6 for nonleft derivations, 
which will be utilized in the next subsection for proving the main result. 

DEFINITION 4.2.1. In an ~o-CFG G, variables of the following types will be called 
dummy. 

0.--Variables with no productions; 

l .--Variables of which the only productions are of the form A -~ B, where B is of  
type 0 above; 
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2.--Variables  of which the only productions are of the form A ~ B, where B is of 
type 3 below; 

3. - -Variables  of which the only productions are of the form A - ~  A. 

Let  G be an w-CFG.  We now add to G a set of dummy variables which are duplicates of 
the variables of G and which will be used in self-providing and transient sets in the deriva- 
tions of G. The  next definition and notation will be frequently used in the rest of this 
section. 

DEFINITION 4.2.2. Let G ( [ / ' N '  V T , P ,  S ,F )  be an ~o-CFG. For  i = 1 ,2 ,3 ,  
define V(~)x - = .{A ~i) I~ A ~ VN} and V~ 0 == {Z} w {U~=I V~)}, where Z is a new symbol. 
For  ,1.'~a)N define the following set of productions Pa 

P,~ == {A (1) --+ Z I A e V N }  I.) { A  (2) ~ A(a) ] A e V N }  1,..) { A  (3) ~-~ A (3) [ A e V N } .  

With the aid of P d ,  a distinction will be made between the inclusion of a variable in a 
transient set, in which case we use its duplicate from -Nv(~), and its appearance in a self- 
providing set, in which case its duplicate from V~ ) will be used. The  phase in which a 
variable is generated to be included in a self-providing set is designated by the use of its 
duplicate in V(~ I. The  above distinction will be particularly useful in the proof of Theorem 
4.2.7 below. 

DEFINITION 4.2.3. Let  G, V~  ), and Pc. be as above. L e t p r  be the projection p,.(A r = 
A VA (i) ~ V~ ~, i ::-: 1,2, 3, and VA c Vu w {Z}, pr(A) -= A. p,. is extended to strings 
and sets of strings in the standard way. 

We now define a concatenating function to be any arbitrarily chosen function/~: 2 v --+ V* 
s.t. for any set D C V, J3(D) is a string made up of the variables of D in some arbitrary 
order. For  i .... 1, 2, 3, define fis: 2 v --~ V~ )*, where VD C V, p,.(fl~(D)) =: fi(D). 

DEFINITION 4.2.4. Let  G, Vla)_N ' and Pa be as above and let A ~ V N . Define P,~(A) = 
{ X - ~  f i l f l  ~ h(oO, X-- , .  c ~ e P -  P(A)}, where h is the substitution h ( X ) -  X for 
X e l" - -  {A} and h(A) =: {]~I(D) I D e TR(A)} W {fl2(D) I D e SP(A)}. P,,,(A) is a modi- 
fication of the set of all productions in P, excluding those of A, obtained by subst i tut ing 
all appearances of A by the concatenated version of its self-providing and transient sets. 

Remark 4.2.5. Let  G (VN, VT, P, S , F )  be an w-CFG;  then there exists an 
~o-CFG G 1 s.t. Lnl(G1) = Ln1(G) and all nondummy variables in G1 are reachable. To 
show this, suppose X is a nondummy variable in G, which is not reachable from S. Clearly 
X ~ S. Construct a new co-CFG G~ --= ({VN --  X }  U V ~  ), Vr ,  P, , (X)  v Pa,  S ,F) ,  
where F {D I D C { V  N - -  {X}} i.j If(d) --N , p,,(D) e F }  and v(al Pa,  P, , (X),  and Pr are 
as in Definitions 4.2.2-4.2.4. Clearly Lnl(G1) = Ln1(G). I f  there are several nondummy 
nonreachable variables in G, the above procedure can be carried out simultaneously on all 
of  them. 

The  following is a modification of Lemma 3.2.5(@ 

LEMMA 4.2.6. Let G --  (VN , V r ,  P, S ,F )  be a non-real-self-embedding oJ-CFG, 
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X ~  VN and K C_ VN; then L~c -: {x~ Vr* [ there exists a derivation d: S ~ c  xX~ for 
some c~ c V* s.t. K ~ SP(~)) is a regular language. 

Proof. Modifying the proof of part (c) of Lemma 3.2.5, define V 1 , L A ,  V1 and 
homomorphism h as in that proof, and also define Q -- {H [ H C 2VN}, QK = {H C_ 2VN I 
K ~ H),  and the alphabet Ctc -- {CH [ H ~ QK}. Let  P be obtained from P as follows. For  
each A --+ ~ e P and for every decomposit ion a = cqBfi, a t ~ (V r ~3 V1)*, B E Vx and 
fi ~ V*, P will include, for each D ~ Q, [A, D] --~ h(a~)[B, H] where H = {H 1 ~ H~ ] 
//1 ~ D, Hz ~ SP(/3)}. In  case B = X and H above is in QK, P will also include [A, D] 
h(~l) cH . Define the right-linear grammar G 1 ~ (VN • Q, Vr w VI ~ CK, P, IS, ~ ] )  
and let h~ be the regular substi tution h~(a) a for a ~ VT and h~(A) = L A for A ~ V 1 . 

Then  LK = h~(L(Ga)/Cx) is a regular language. | 

Following Theorem 3.2.6 we have 

THEOREM 4.2.7. For any non-real-self-embedding c-free o~-CFG G, Lnt(G) is an 
o J-regular language. 

Proof. Let  G .... (VN,  VT,  P, S ,F) .  By Remark 4.2.5, we may assume that every 
nondummy variable in VN is reachable. The  proof parallels that of Theorem 3.2.6. As 
in that  proof, we separate two cases. 

Case 1. S is reachable from each nondummy variable. Following the argument in  
Lemma 3.2.5(a), we conclude that for each X e VN,  the X-product ions  are in the forms 
(I) right linear, (2) X - +  A~, A c V x ,  ~ ~ V +, where A ~ *  Vr*, (3) X - - *  xZ71 or 
X --~ AZ71,  x ~ F r * ,  A ~ VN,  71 E V*, and Z is a dummy variable. Wi th  no loss o f  
generality we may assume that  F consists of only one set, denoted by F itself. Le t  f i  
include all r ight-l inear productions in P with the following additions. For  each X- -~  
AV ~ P, P includes the set ( X  --~ fl3(D)A ] D ~ SP(~,)} and in case X EF,  P also includes 
{ X  -+ fll(D)~4 ] D ~ TR(y)}, where SP(7') and TR(7) are as in Definit ion 4.1.5. For  every 
H _C F, define G n ( V  N , V T k..) V(N 1) k..) 17(3),N, P, S, H).  Lna(G) is an oJ-regular language 
since GtI is an , , - R L G .  For  each D C F ,  define R D = {x E (VT U V~)) * [ D I~) is the set 
of variables from V~ ~ in x and pr(D (3)) - -  D}, /~D = {X E (V  T U Va)) * ] D ~1) is the set 

of variables in x and p,.(D ~1)) = D}. T h e n L  n = UF--HCDuD'.O.D'C_F (Lnl(GH) n RDR~, ) is 
an oJ-regular language. Since Lnl(G) - -  Unc_FLH, Lnl(G) is an ~o-regular language. 

Case 2. There  is a nondummy variable X a s.t. for no x ~ VT* , ~ ~ V*, does X a * xS~. 
We shall prove that Lnl(G) is oJ-regular by induction on the number  n of nondummy 
variables in G. 

For  n ~ 1 clearly S must  be a dummy variable and L(G) - ;J. Assume the assertion 
holds for n - -  k, and let the number  of the nondummy variables in VN be k -? l .  Without  
loss of generality we may assume t h a t F  consists of only one set, denoted by F itself. 

First  assume X 1 *~- VT*. 

Subcase (a). ~X~r Define a C F G G t  = ( V u ,  V r , P - - P ( S ) , X 1 ) ;  then L 1 - 
L(G1) C Vr* is regular by Lemma 3.2.5(a). For  every K C_ VN , L x ,  defined as in Lemma 
4.2.6, is regular. For  every HCF,  define G H = ( (V  N -- S)  t.3 T.rca), u , Vr, P~(S)  kd Pa, X1,  H),  
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where 1i - - { K a  _C (VN - -  {S}) U V~)IHC_p,.(K1) _CF} and V(a),N, Pc, P,,,(S) and pr  
are as in Definitions 4.2.2-4.2.4. GH has all nondummy variables of G except for S, thus 
bu induction hypothesis L H = Lnl(GH) is w-regular for every H C F .  Define L a = 

r~(a, {X~}, Po(X) V.) P,,(X1) v.) Pa , S, F), (JKvU__vLKLH. Let  G 2 = ((V N - -  {X1} ) v) v N , I/~ V.) 
where F = {F 1 [p,.(Fl) = F}. Again by induction hypothesis /'2 = LnI(G2) n (VT V) 
{X1})*lTr ''' is an w-regular language. Since L = L a U L a ,  where L a = h(/72)and 
h = h(X1 , L1) (see Definition 3.2.2), L is an w-regular language. 

Subcase (b). Xa e F .  Let  G 1 be as in Subcase (a) above and E, hi,  Ga, Lo ,  RH, 
hz as in Subcase (b) in Theorem 3.2.6. For  every H C F - -  {X1} , define the w -CFG ' s  

G4 :: ( ( [ /N - -  {Xl})  kD [/'(N 0), V T k.) {Xl}  , era(A1) k_) ? d  , S, Fx1), w h e r e  Fxa = {H  1 I 01  C_ 
(VN --  [X1} ) W V~ ) u V~ ), p,.(H1) = F} and G~t = ((Vu - -  {X1}) v0 V~ ~ V r v) {X1}, 
P~(X1) vJ P,,, S ,F , ) ,  whereYH = {H 1 C_ (V N - -  {Xl} ) i..) --NV(d) [ P, '(H1) = O}. 

Let  L 4' ::: Lnl(G4) ~ (V T vA {X1})*VT ~ and L , '  = hl(Lnl(G,,')) c~ (V r k3 {X1})*RH% 
' L ' L4' and La  are w-regular languages by hypothesis. Therefore L 4 = {(JHgv-{x,} he( H )} V) 

h2(L4' ) is w-regular. Again we have L La v) L 4 , where L a is as in Subcase (a). Hence L 
is ~-regular .  

Now assume X 1 #~* VT*. In  Subcase (a)L = L,~ t j  (Lnl(Ge) n Vr ~) and in Subcase (b), 
L La; thus in both subcases L is co-regular. This  concludes the proof. | 

4.3. The Nonequivalence of n l -CFL~ and CFL~ 

We now define a new type of generation in co-CFG's,  denoted 4-nl, which turns out to 
be a useful tool both for characterizing nI -CFL~ and for proving the main result of this 
chapter, namely that there exists an co-CFL which cannot be nl-generated by any w-CFG.  

DEFINITION 4.3.1. For  any CO-CFG G = (VN, VT, P, S,F), define La_nl(G) = 
{ a t  VT'" ] there exists an infinite nonleft derivation d: S =>~ a s.t. 3 H e F  for which 
H C INV(d)};L4_nl(G ) is the co-language 4-nl generated by G. 

PROPOSITION 4 . 3 . 2 .  nl-CFLo, equals the class 5e 4 of w-languages of the form L -- 
I,)~=I LiL( , where l >~ 1 and for each 1 <~ i <~ I, Li is a C F L  and L /  is an w-language 4-nl 
generated by some CO-CFG. 

Proof. Following the definitions one can prove that ~ _C n l - C F L ~ .  Let  L = LnI(G), 
where G - -  (V,~ , V r , P, S, F )  is an w - C F G .  Without  loss of generality we may assume 
t h a t F  consists of only one set of variables, denoted b y F  itself. Le t  C ~ {(X, K ) [ X  EF, 
K ~ F ) ,  and for each (X, K ) ~  C, define L(xao = {x ~ VT* I there exists a derivation 
d: S ~c, xA% E K 6 S P ( a ) } ;  also define the w - C F G  G(x.m = (VN, Vr ,  P(F), X, 
{F - -  K}) and let L~x,K ) = L4.nl(G(x,,O). Clearly for each (X, K) ~ C, L(x. K) is a CFL,  
and L - -  [,J(x.K)~c L(x.lr Hence n l -CFL~ ___ ~f4 and the assertion follows. I 

Following the lines of the proof of Proposition 4.1.2, we can also prove 

LEMMA 4.3.3. For any w - C F G  G with E-rules, there can be constructed an E-free 
co-CFG G 1 s.t. L,wa(G1) = L4_nx(G ). 
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LEMMA 4.3.4. The family of m-languages 4-nl generated by oJ-CFG's  is closed under 
G S M  mappings. 

Proof. Let  G ~ (VN,  VT, P, S , F )  be an m-CFG over 27. Following Co) in Proposi-  
tion 3.1. l 0, for any finite substi tution h: 27 ~ 2 a*, there exists an m - C F G  Gx s.t. L4.nl(G1) ~-~ 
h(L4_nl(G)) n A ~ By Proposition 1.1 1 it suffices to show that the family is closed under  
intersection with Al ' -m-regular  languages. Thus  let R be an Al ' -m-regu la r  language and 
let M - -  (K, 27, 8, P0, H)  be an m - D S F A  with a single designated set H that l ' -accepts  R. 
I f  R - -  ~" we are done; thus assume P0 E H. Define G 1 = (V1,27, / )1 ,  S t ,  F1), where 
Vt = H  "< V x H u { S 1 }  and S 1 is a new symbol. / )1 is defined as follows. For  every qEH, 
$1 --* ( Po,  S,  q) E P~; for every q, p E H and a ~ Z, (p ,  a, q) -+  a e / )1  if  8(p,  a) ~ q 
and for each A E VN, p E H (p ,  A , p )  - *  E if A --* r E P; also let (p ,  A, q) - +  

k--1 /~ 
I-Ii=0 (qi, Bi+l , qi+l) ~ P1 for every production A -*  l-li=1 B~ E P, Bi ~ V for 1 ~< i ~< k, 
and for every q i E K ,  0 < ~ i ~ k ,  s.t. q0 = P ,  qk = q .  L e t F  1 = { D C H •  V •  
3D' E F  s.t. D' C p2(D) C_ D' U Vr}, where P,(D) is the projection of the second com- 
ponent of D. Clearly L4-nl(G~) = L4-m(G) n R. By the above and Proposit ion 1.11 the 
assertion follows. | 

LEMMA 4.3.5. For no m-CFG G does L4_nl(G ) = L = {a"b n [ n >/ 1} d% 

Proof. Let  2 7 - - { a ,  b, d}. Suppose G = (V  x ,  27, P, S, F)  is an m-CFG for which 
L = L4_nI(G ). By Lemma 4.3.3 we may assume that G is e-free. Let  F = {K C Vzr ] 
3 H E F  s.t. H C K}; then L4.nI(G ) = Lnl(G), where G' = (VN,  Z ,  P, S ,F) .  Since L is 
not m-regular by Proposit ion 1.10, G, and therefore also G, are real-self-embedding.  We 
now define a slight variation of SP(a), the class of self-providing sets (Definition 4.1.5). For  
every ~ E V*, let 

SPI ( ,  ) -~ {D C VN ] there exists an infinite nonleft  derivation d: o~ ~ a E Vr ~ (a) 

s.t. INV(d)  ---- D}. 

Note that here d is only allowed to generate an infinite string. Let  A be a real-self- 
embedding variable. By the argument in Remark 4.2.5 we may assume that  A is reachable 
from S in the derivation of some a EL. We claim that every word u ~ Z+ s.t. A ~ a  uAfl 
for some/3 ~ V*, is in d § We have two cases. 

Case 1. There  is a derivation in G S ~ xA~x *=> xxl~x ~ ,o xxla EL. As the derivation 

is nonleft also xu ~ E L. Hence u E d +. 

Case 2. In every derivation of G of the form S *~ xAo~ ~ '  xa eL ,  o: ~ V* is never 
reached; in this case xu*a C_ L. By the structure of L, u E d +. 

We shall now construct from G a non-real-self-embedding m - C F G  G1 s.t. L~_nl(G) 
L~_nl(G1) , contradicting the fact that L is not m-regular. The  rest of the proof will follow 
the lines of Proposition 3.3.1. Let  P1 be obtained by  modifying P as follows. Let  B be a 
new variable. 

(1) Add to P the productions B --~ dB, A ~,. dBfi2(D ) for each D E SPt(A ). 



2 0 6  COHEN AND GOLD 

(2) Every production A ~ ~Mfl e P, where ~ e (V --  A) +, 13 e V*, will be replaced 
by all productions of the form A ~ odc(A~), where h is the substitution h(A) = 
{B} w {fl2(D) I D e SP(A)} u {ill(D1) [ D 1 e TR(A)} u {Bfl2(H ) [ H e SPI(A)} and h(X) = 
X f o r  all X e  V, X @ A. 

(3) Define K = { ) 2 e V u l X @ A  & A*~xXo~,  x e X + ,  a e V * }  and K 1 = 
{ X E  V N - -  K]  X va A &  A *~ Xo~, a e  V*}. 

The productions of the variables in K and K1 will be modified by substituting h(A) 
for A in (a) all productions of the variables in K;  (b) all productions of the variables in 
K 1 , excluding occurrences of A at the beginning of a right-hand side of a rule of the 
form X --~ A~, X e K 1 , ~ e V*, where A remains unaltered. 

(4) All the other rules in P remain unchanged in P1 - 

In  (2) and (3) above, substituting B for A takes care of the case A *~a VT+ in the deriva- 
d ~ and tion, substituting Bfl2(H), where H E  SPt(A), for A takes care of the case A ~ c  

substituting A by fin(D) and ill(D1), where D e SP(A), D 1 e TR(A), serves the case A is 
never reached in the course of the derivation. Let  G 1 = (VN w {B} t3 V(N a~, Z', PI w P~,  
S1, FI) , where Pa is the above-modified version of P andF~ = {D C VN ~3 V~  ) ] p~(D) e F} u 
{D U {B} [ D C V~ tA V~ ), A q~ D andp~(D ~ {A}) eF}.  It  can be verified thatL~_nl(G1) = 
La_n~(G). Moreover, G~ has one less real-self-embedding variable (namely A) than G. 
The  above procedure can therefore be repeated for all real-self-embedding variables in G, 
until a new ~o-CFG G' is obtained, which is non-real-self-embedding and s.t. L4_m(G' ) = 
L~_m(G), leading to the above contradiction. This concludes the proof. | 

We are finally ready to exhibit an ~o-CFL which cannot be generated by any co-CFG by 
nonleft derivations. 

PROPOSITION 4.3.6. {anb ~ [ n >/ 1} '~ ~ nI-CFL,o. 

Proof. L e t L  = {anb n ] n >/ 1} and supposeL ~ e nl-CFLo,.  By Proposition 4.3.2 there 
exist for some I ) 1, 2l sets L~ t) and L(i e) s.t. L '~ li t  L m L  (2J where for 1 ~ i ~ l, = ~Ji=l i i , 

L~ l) is a C F L  and L~ 2) = L4_nl(Gi) for some ~o-CFG G i = (V(~),  • ,  Pi , S i  , H(i)) and 
Z = {a, b). We may assume V(~ ) f~ V~ ) = ;~ for i @ j'. Let G = (VN U {S}, Z, if, S, H), 
where VN = ~)~=1 V(~ ), S a - new symbol, P = {U~=~ P~} k) {S ~ S~ [ 1 <~ i ~< l}, H = 
(,J~=~ H(i); then L4_nl(G ) = (J~=tL~ 2). The proof proceeds similarly to that of Proposition 
3.3.3. Since for every y EL, 3 x e a * b  + s.t. xy~ [)~=IL~ 21, one can construct a GSM 
which maps [J~=IL~ ~) onto {anb~ I n >/ l} d ~. 

By Lemma 4.3.4, there exists an oJ-CFG G'  s.t. La.nl(G') = Ld% which contradicts 
Lemma 4.3.5 above. We conclude tha tL ~' @ nl-CFLo). | 

From the above and Theorem 4.1.7 we have 

THEOREM 4.3.7. nI-CFLo, C C F L ~ .  

Remark 4.3.8. In  Section 2 we saw that nothing is added to CFL,o by using co-regular 
control sets in leftmost derivations of co-CFG's. However, though nl-CFL~ C CFL~ ,  
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using regular control sets in nonleft derivations leads us outside the class CFL~,  as the 
following example (motivated by [14]) will show. 

Let G -~ ({X0, X, Y, Z, W), {a, b, c}, P, )to,  2 P) be an unrestricted co-CFG, where P is 

pl: .~--~ X Y Z W ,  po: X--+ aX, p~: Y - + b Y ,  

pa: Z -+ cZ Ps: X - + a ,  Ps: Y---~ b, 

PT: Z--~ c, Ps: W - *  aW, 

Let C -~ Pl( P2 P3 P~)*P5 P6 P~ P~. Clearly C is an ~-regular set but Lc(G ) ~ {a'bnc~ I 
n ~ 1} a ~ is not an CO-CFL. | 

CONCLUSION AND PREVIEW OF FURTHER WORK 

In this paper the theory of co-languages and w-machines, initiated in [3], was further 
developed, providing a deeper insight into the properties of co-grammars, co-CFL's. 
and co-PDA's. Emphasis was placed upon the study and comparison of various generation 
modes in w-grammars, and of the various recognition types in co-PDA's. The families 
Ai-PDL~,  i = 1, 1', 2, 2', 3 were investigated and type 3 (also type 2) acceptance shown 
to be the most powerful acceptance mode in co-PDA's. 

We were particularly concerned with the analysis of non-leftmost generation in co- 
CFG's, providing the tools for establishing the proper inclusion of nI-CFLo~ within 
CFL,~. The following hierarchy of families of co-CFL's was obtained 

o~-Regular C AI ' -PDL~ ~ A1-PDL~ = A2'-PDL~ C nl-CFL,~ C CFL~ ~- �9 

A problem which remains open is whether the inclusion of A2'-PDL~ in nl-CFL~ is 
proper. Another open problem concerns the validity of the conjecture stated in Remark 
3.3.5, namely, that for every strict deterministic nonregular language L, the co-CFL L ~ 
cannot be T-accepted by any CO-PDA. 

A subsequent paper [4] is devoted to the deterministic variants of co-PDA's. A rich 
hierarchy of deterministic and quasi-deterministic co-CFL families is obtained, differing 
in structure from the above rather simple hierarchy of nondeterministic co-CFL families. 
An extensive study of the families is made, algebraic characterizations are derived, and 
certain problems, generally undecidable, are shown to be decidable within some of the 
families. 

Still another paper [5] presents the theory of co-type Turing machines and type 0 
co-languages. The theory differs considerably from the classical theory of Turing machines 
and due to the nonterminating nature of the input tapes, a few rather peculiar results are 
obtained. 
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