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ABSTRACT Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during car-
diac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2þ) spark, which arises
from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release
of Ca2þ from the sarcoplasmic reticulum (SR). The Ca2þ leak out of the SR is an important process for cellular Ca2þ manage-
ment, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2þ spark.
Here, we present a detailed, three-dimensional model of a cardiac Ca2þ release unit that incorporates diffusion, intracellular
buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2þ sparks and robust Ca2þ spark
termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2þ spark
and nonspark-based SR Ca2þ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal
Ca2þ-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR
Ca2þ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have
been observed in experimental models of disease, strongly alter Ca2þ spark dynamics. In addition, we find that the structure
of RyR clusters also influences Ca2þ release properties due to variations in inter-RyR coupling via local subspace Ca2þ concen-
tration ([Ca2þ]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion micro-
scopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural
information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR
dynamics in heart, under normal and pathological conditions.
INTRODUCTION
Contraction of the cardiac myocyte is driven by a process
known as excitation-contraction coupling (ECC), which is
initiated at calcium (Ca2þ) release units (CRUs) when indi-
vidual L-type Ca2þ channels (LCCs) open in response to
membrane depolarization. These events produce Ca2þ flux
into a narrow subspace formed by the t-tubule (TT) and
junctional sarcoplasmic reticulum (JSR) membranes. The
resulting increase in subspace Ca2þ concentration ([Ca2þ]ss)
leads to opening of Ca2þ-sensitive Ca2þ release channels,
known as ryanodine receptors (RyRs), which are located
in the JSR membrane and produce additional flux of Ca2þ

into the subspace. These two sources of Ca2þ flux generate
an intracellular Ca2þ transient that triggers cardiac muscle
contraction. Studying the mechanisms of this Ca2þ-induced
Ca2þ release (CICR) process is therefore critical to under-
standing healthy and diseased cardiac muscle function.
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Individual release events, referred to as Ca2þ sparks, can
be visualized using fluorescent Ca2þ indicators and confocal
microscopy (1,2). Spontaneous Ca2þ sparks are observed in
resting myocytes and during diastole. A Ca2þ spark occurs
when a RyR opens spontaneously and causes a local rise
in [Ca2þ]ss that triggers the rest of the RyR cluster. Recently,
it has been shown that diastolic Ca2þ sparks contribute to
sarcoplasmic reticulum (SR) Ca2þ leak (3), which balances
Ca2þ uptake into the SR by the SR Ca2þ-ATPase (SERCA)
pump. In addition, RyRs can mediate Ca2þ leak in the
absence of Ca2þ sparks (3,4). The spontaneous opening of
a single RyR may fail to trigger the rest of the RyR cluster,
thus releasing only a small amount of Ca2þ (5,6). This
type of event is known as a Ca2þ quark, and it results in a
phenomenon referred to as ‘‘invisible Ca2þ leak’’ because
its fluorescence signal is too small to detect with [Ca2þ]
indicator dyes (7). ‘‘Invisible leak’’ may originate from
RyRs located in clusters or from nonjunctional, i.e., rogue
RyRs (8).

Spark fidelity, or the probability that a single RyR open-
ing triggers a Ca2þ spark, is a property of the RyR cluster,
and it is strongly influenced by RyR gating properties. In
particular, the sensitivity of the RyR to [Ca2þ]ss critically
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influences spark fidelity. When a RyR opens, neighboring
RyRs sense the steep [Ca2þ]ss gradient from the open chan-
nel. If [Ca2þ]ss sensitivity is very high, openings are very
likely to recruit nearby RyRs, whereas low sensitivity to
[Ca2þ]ss results in fewer Ca2þ sparks. Previously, single-
channel studies in artificial lipid bilayers found that the
EC50 for RyR open probability was in the range of 1–
25 mM (9). However, more recent experiments have shown
that this range is likely much higher (45–85 mM) in the pres-
ence of physiological [Mg2þ], [ATP], and JSR Ca2þ concen-
tration ([Ca2þ]jsr) (10–12).

Numerous mechanisms modulate RyR gating. A large
body of work suggests that [Ca2þ]jsr controls sensitivity to
[Ca2þ]ss (9,12–15). The physiological role of [Ca2þ]jsr-
dependent regulation is controversial, but recent single-
channel studies have concluded that [Ca2þ]jsr-dependent
regulation is weak in rat and mouse in the physiological
range of [Ca2þ]jsr (0.1–1 mM) (10,12). There is also evi-
dence that the JSR load affects RyR activity during Ca2þ

sparks by controlling the unitary RyR current amplitude,
which would influence the [Ca2þ]ss gradient during channel
opening (6,10,16). Other regulatory mechanisms include the
effects of protein kinase A (17,18), Ca2þ/calmodulin-depen-
dent kinase II (CaMKII) (19,20), allosteric coupling (21,22),
redox modifications (23), and genetic mutations associated
with catecholaminergic polymorphic ventricular tachy-
cardia (CPVT) (12,24,25). The role of CRU geometry in
Ca2þ spark fidelity has been studied using compartmental
models (26,27), but has yet to be addressed with a detailed
three-dimensional model.

The cardiac CRU is formed by the JSR, a flattened
cisternal extension of the SR ~30-nm thick, which wraps
around the TT, forming a narrow subspace of ~12–
20 nm in width. In recent years, viewpoints on the packing
of RyRs within the subspace have evolved. Franzini-
Armstrong et al. (28) observed densely packed RyR foot
structures in the subspace using electron microscopy and
estimated large cluster sizes in excess of 100 RyRs. How-
ever, recent super-resolution fluorescence microscopy
techniques showed heterogeneous peripheral RyR cluster
shapes with unprecedented detail, and quantitative anal-
ysis confirmed that RyR cluster sizes are exponentially
distributed. Of note, the majority of RyR channels were
organized in clusters of ~25 RyRs in rat myocytes (29).
Breakthroughs in electron microscope tomography have
led to detailed three-dimensional reconstructions of the
TT and SR ultrastructure, revealing that the geometry of
the subspace is also heterogeneous due to the irregular
shape of the SR membrane (30,31). Remodeling of the
JSR (32,33) and TT (34,35) has also been observed
in models of chronic heart failure. Despite these new
data, the functional roles of subspace and RyR cluster
geometry remain unclear and cannot be directly investi-
gated through contemporary experimental methods and
technologies.
To study the roles of RyR gating properties, spark fidelity,
and CRU anatomy on CICR, we have developed a three-
dimensional, biophysically detailed model of the CRU.
The model quantitatively reproduces important physio-
logical parameters, such as Ca2þ spark kinetics and
morphology, Ca2þ spark frequency, and SR Ca2þ leak rate
across a wide range of conditions and CRU geometries.
The model also produces realistic ECC gain, which is a
measure of efficiency of the ECC process and healthy
cellular function. We compare versions of the model with
and without [Ca2þ]jsr-dependent activation of the RyR and
show how it can explain the experimentally observed SR
leak-load relationship. Perturbations to subspace geometry
influenced local [Ca2þ]ss signaling in the CRU nanodomain
as well as the CICR process during a Ca2þ spark.

We also incorporated RyR cluster geometries informed
by stimulated emission depletion (STED) (35) imaging
and demonstrate how the precise arrangement of RyRs
can impact CRU function. We found that Ca2þ spark fidelity
is influenced by the size and compactness of the cluster
structure. Based on these results, we show that by represent-
ing the RyR cluster as a network, the maximum eigenvalue
of its adjacency matrix is strongly correlated with fidelity.
This model provides a robust, unifying framework for
studying the complex Ca2þ dynamics of CRUs under a
wide range of conditions.
MATERIALS AND METHODS

Model overview

The model simulates local Ca2þ dynamics with a spatial resolution of

~10 nm over the course of individual release events (~100 ms). It is based

on the previous work of Williams et al. (6) and can reproduce spontaneous

Ca2þ sparks and RyR-mediated, nonspark-based SR Ca2þ leak. It incorpo-

rates major biophysical components, including stochastically gated RyRs

and LCCs, spatially organized TTand JSR membranes, and other important

elements such as mobile buffers (calmodulin, ATP, fluo-4), immobile

buffers (troponin, sarcolemmal membrane binding sites, calsequestrin),

and the SERCA pump. The three-dimensional geometry was discretized

on an unstructured tetrahedral mesh and solved using a cell-centered finite

volume scheme. Parameter values are given in Table S1 in the Supporting

Material.
Geometry

The simulation domain is a 64 mm3 cube (64 fL) with no-flux conditions

imposed at the boundaries. The CRU geometry consists of the TT and

JSR membranes (Fig. 1 A). The TT is modeled as a cylinder 200 nm in

diameter (35) that extends along the z axis of the domain. Unless otherwise

noted, we used a nominal geometry where the JSR is a square pancake

465 nm in diameter that wraps around the TT (36), forming a dyadic space

15 nm in width. The thickness of the JSR is 40 nm and has a total volume of

10�17 L. RyRs are treated as point sources arranged in the subspace on a

lattice with 31-nm spacing, and the LCCs are located on the surface of

the TT. The nominal CRU model contains a square 7 � 7 array of RyRs

and seven LCCs distributed evenly over the RyR cluster (Fig. 1 B). The

SERCA pump and troponin buffering sites are homogeneously distributed

in the cytosol beyond a radius of 200 nm from the TT axis.
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FIGURE 1 Model geometry diagrams. (A) Cross-sectional diagram of

the model geometry and arrangement of ion channels and membrane struc-

tures. The TT is modeled as a cylinder 200 nm in diameter and is partially

encircled by the JSR, forming a subspace 15 nm in width. The ion channels

are treated as point sources and do not occupy any volume in the subspace.

(B) Schematic of flattened JSR (gray) with the arrangement of a 7 � 7 lat-

tice of RyRs with 31-nm spacing (red) and LCCs distributed over the cluster

(green). The depicted JSR membrane is 465 nm in diameter.
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Transport equations

The Ca2þ diffusion and buffering system is based on a previous spark model

by Hake et al. (37). The reaction-diffusion equation for Ca2þ is given by

b
v½Ca2þ�

vt
¼ DCaV

2
�
Ca2þ

�þ
X
i

Ji; (1)

where b is the dynamic buffering fraction due to sarcolemmal binding sites

and DCa is the diffusion coefficient. The Ji terms represent sources of Ca2þ,
including additional buffers, RyR and LCC fluxes, and SERCA uptake.

Diffusion of mobile buffers (ATP, calmodulin, fluo-4) is modeled

using similar transport equations. Each buffer B (excluding sarcolemmal

binding sites) is assumed to bind to Ca2þ according to elementary rate

laws given by

JB ¼ koff ½CaB� � kon½B�
�
Ca2þ

�
; (2)

where and kon and koff are reaction rate constants, and [CaB] is the concen-

tration of Ca2þ-bound buffer. Concentration balance equations and the

values of the diffusion coefficients, reaction rate constants, and buffer

concentrations are provided in the Supporting Material. The LCC (38)

and SERCA (39) flux formulations are adapted from previous work.

[Ca2þ]jsr is modeled spatially in the JSR with the same diffusion coefficient

as in the cytosol. The network SR (NSR) Ca2þ concentration ([Ca2þ]nsr) is
assumed to be constant. JSR Ca2þ is refilled by the NSR at each element in

the JSR volume, with a flux term given by

Jrefill ¼ vrefill

��
Ca2þ

�
nsr

� �
Ca2þ

�
jsr

�
; (3)

where nrefill is a constant that was adjusted to achieve a refill time constant

of ~130 ms (40). Refilling of the JSR throughout its volume is unlikely to

have significant impacts on [Ca2þ]jsr dynamics, inasmuch as JSRs typically

have approximately four connections to the NSR (36).

Negatively charged phospholipid headgroups on the inner sarcolemmal

membrane surface are known to exert significant electrostatic effects on

[Ca2þ]ss dynamics (41). However, the Debye length for the electric field

at the membrane is ~1 nm, which would have required much higher spatial

resolution. This was computationally prohibitive to include in this

model due to the small time steps required. Instead, a rapid buffering

approximation was used for Ca2þ binding to high affinity sarcolemmal

binding sites, as described in Peskoff et al. (42) (see Supporting Materials

and Methods).
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Ion channels

RyRs and LCCs are simulated stochastically using Markov chains. The

LCC model used here was described previously in Greenstein and Winslow

(38). The RyR is a minimal, two-state Markov chain that incorporates

activation by [Ca2þ]ss- and [Ca2þ]jsr-dependent regulation of the opening

rate (6). State transitions are determined according to a fixed closing rate

(k�) and an opening rate given by

ropen ¼ kþf
�
Ca2þ

�h
ss
; (4)

where kþ is the opening rate constant, f represents a [Ca2þ]jsr-dependent
regulation term, and h is a constant. The unitary RyR Ca2þ flux is given by

Jryr ¼ vryr

��
Ca2þ

�
jsr
� �

Ca2þ
�
ss

�
; (5)

where nryr is a constant. The values of k
þ, h, and nryr were adjusted to yield

physiological resting Ca2þ spark frequency and leak rate at 1 mM [Ca2þ]jsr.
Fig. S1 shows the dependence of whole-cell Ca2þ spark frequency on the

EC50 for [Ca
2þ]ss activation of the RyR and on h. A narrow range of these

parameters yielded a realistic spark rate of ~100 cell�1 s�1. The value of nryr
was adjusted to a unitary current of 0.15 pA at 1 mM [Ca2þ]jsr. The f-term
is an empirical power function given by

f ¼ fb þ
��

Ca2þ
�
jsr

.
fk

�4

; (6)

where fb and fk are constants. At 1 mM [Ca2þ]jsr, PO at diastolic [Ca2þ]ss
(100 nM) is extremely low (1.76 � 10�6), and the EC50 for activation is

55 mM. We assumed that [Ca2þ]jsr strongly regulates PO (43) such that at

2 mM [Ca2þ]jsr, the EC50 decreases to 29 mM (see Fig. S2 A). In accordance

with recent data (10,12), however, we assumed that the [Ca2þ]jsr weakly
regulates the RyR when [Ca2þ]jsr is <1 mM such that the EC50 does not

change significantly (see Fig. S2, B and C). In cases where [Ca2þ]jsr-depen-
dent regulation was assumed to be absent, f¼ 1—which corresponds to the

effect of a resting level of 1 mM [Ca2þ]jsr on RyR opening rate when this

regulation is intact.
Numerical methods and implementation

The simulation domainwas discretizedwith an unstructuredmesh consisting

of ~12,000 tetrahedral elements, and was generated using TETGEN (44).

The transport partial differential equations were solved in space using a

cell-centered finite volume scheme for unstructured grids and explicitly

in time using the first-order Euler method. For the nominal model geometry,

numerical stability and solution convergence was achieved for time

steps <47 ns. We utilized a 12-ns time step, which ensured both stability

and accuracy across all tested CRU geometries. RyR andLCC gatingmodels

were simulated using the method described by Alfonsi et al. (45) (see the

SupportingMaterial). AGALAXY(46) toolsetwas developed for themodel,

allowing users to explore sample datasets and run simulations with custom-

ized CRU geometries and model parameters on a cloud-based service.

Example workflows are available for performing linescan simulations,

Ca2þ spark fidelity and leak estimation, and ECC gain estimation. (The tools

can be found under the Calcium Spark model and the example histories and

workflows under Shared Data at http://cvrg.galaxycloud.org.)
Spark analysis

Linescans were generated by convolving a Gaussian point spread func-

tion with the Ca2þ-bound indicator dye concentration, as described in

Smith et al. (47), and the raw fluorescence signal was normalized to the

baseline signal (F0). Gaussian noise was superimposed to resemble intrinsic

http://cvrg.galaxycloud.org
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photon noise. Spark kinetics and morphology were computed using

SPARKMASTER (48). Methods used to estimate Ca2þ spark fidelity,

rate, leak, and ECC gain are given in the Supporting Material. Unless other-

wise noted, each plotted data point is derived from an ensemble of at least

1000 independent simulations.
Spectral analysis of RyR clusters

RyR clusters were defined by the channel positions on a two-dimensional

lattice. For a given cluster with N channels, we define the N � N adjacency

matrixAwith elements aij¼ 1 if RyRs i and j are adjacent, and 0 otherwise.

This represents a graph where vertices represent RyRs and edges represent

adjacency. It is well known that the spectrum of the adjacency matrix of a

graph contains valuable information about its structural properties (49). We

computed A for a collection of RyR cluster geometries to show that its

maximum eigenvalue lmax is a reliable predictor of spark fidelity.
RESULTS

Model validation

To validate the model, a nominal parameter set and geome-
try were selected to produce a representative Ca2þ spark
with realistic appearance, frequency, and integrated flux.
The Ca2þ spark was initiated by holding a RyR open for
10 ms. The linescan simulation exhibited a time-to-peak
of 10 ms, full duration at half-maximum of 24 ms, and
full width at half-maximum of 1.65 mm (Fig. 2 A). The
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FIGURE 2 Representative Ca2þ sparks and RyR gating properties. (A) Simula

the temporal fluorescence profile through the center of the spark (bottom), and

dimensional renderings of the Ca2þ spark showing TT (blue), JSR (red), and 1

noticeable asymmetry in the [Ca2þ]i gradient throughout the spark. (C) Averag

average [Ca2þ]jsr with (blue) and without (red) [Ca2þ]jsr-dependent regulation d

tative sparks; (right panels) averages of at least 100 sparks. Note that the peaks o

example Ca2þ spark dataset can be viewed at http://cvrg.galaxycloud.org/u/mw
width is slightly lower than what is observed experimentally
(1.8–2.2 mm), but this discrepancy could not be remedied by
increasing release flux or altering the CRU geometry. This
Ca2þ spark-width paradox is difficult explain using mathe-
matical models (10,47,50), but it may be due to non-Fickian
diffusion in the cytosol (51). [Ca2þ]ss at the center of the
subspace peaked at 280 mM (data not shown), and optical
blurring decreased peak F/F0 sixfold due to the small
volume of the subspace (see Fig. S3 A). The local [Ca2þ]ss
transients in the vicinity of an open RyR were similar to
that shown for a 0.2-pA source in previous work that incor-
porated electrodiffusion and the buffering effects of nega-
tively charged phospholipid heads of the sarcolemma (41)
(see Fig. S3, B and C).

The model was also constrained to reproduce whole-cell
Ca2þ spark rate and overall SR Ca2þ leak. The Ca2þ spark
frequency at 1 mM [Ca2þ]jsr was estimated to be 133
cell�1 s�1 (see Supporting Materials and Methods), which
is in agreement with the observed Ca2þ spark rate of ~100
cell�1 s�1 in rat (52). The leak rate of 1.01 mM s�1 is also
close to that of a previous model of the rat myocyte used
to study SERCA pump-leak balance (6) and is consistent
with an experimental study in rabbit (3).

ECC gain was estimated for a 200-ms membrane depolar-
ization at test potentials from �20 to 60 mV in 20 mV steps.
The gain was then computed as a ratio of peak total RyR flux
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to peak total LCC flux. ECC gain decreased from 20.7
at �20 mV to 1.5 at 60 mV, in reasonable agreement
with experimental studies (53) (see Fig. S4). This valida-
tion was achieved without further fitting of the model
parameters.
The life and death of Ca2D sparks

The model provides fresh insights into local Ca2þ signaling
during release. Fig. 2 B shows the asymmetrical profile of
the 1 mM cytosolic Ca2þ concentration ([Ca2þ]i) isosurface
during a spark (see Movie S1). Linescan simulations with
scans parallel to the TT (z direction), orthogonally through
the center of the subspace (x direction), and in the y direc-
tion exhibited full width at half-maximums of 1.65, 1.50,
and 1.35 mm, respectively, but showed no significant asym-
metry in their respective spatial profiles (data not shown).
The presence of the JSR caused noticeable rotational asym-
metry in [Ca2þ]i, however, particularly on the back face of
the JSR, where [Ca2þ]i reaches ~1–4 mM (see Fig. S5, A
and B). Shrinking the JSR lessened this effect on the
[Ca2þ]i isosurface, but still resulted in an uneven distribu-
tion during release (see Movie S2). [Ca2þ]i outside
the CRU reached ~10 mM on the side opposite the JSR
due to lower resistance to diffusion (see Movie S3 and
Fig. S5 C). These results highlight the importance of
accounting for the nanoscopic structure of the CRU in
studying localized Ca2þ signaling in microdomains.

During Ca2þ spark initiation, a rise in local [Ca2þ]ss
around an open channel triggers the opening of nearby
RyRs, resulting in a rapid increase in average [Ca2þ]ss
(Fig. 2 C) and the sustained opening of the entire clus-
ter of RyRs (Fig. 2 D). Note that release continues
for >50 ms, despite much shorter spark duration in the line-
scan. This is explained by the decline in release flux (Fig. 2
E) due to emptying of JSR Ca2þ over the course of the Ca2þ

spark (Fig. 2 F and see Movie S4). When [Ca2þ]jsr reaches
~0.2 mM, the declining [Ca2þ]ss can no longer sustain RyR
reopenings, and the Ca2þ spark terminates. This indirect
[Ca2þ]jsr-dependent regulation of the RyR is critical to the
process by which CICR can terminate. Fig. 2, C–F, also
shows sparks where [Ca2þ]jsr-dependent regulation was
removed, in which case spark dynamics were very similar
and termination still occurred.

This is not surprising, given that [Ca2þ]jsr-dependent
regulation <1 mM was weak in this model (see Fig. S2).
The release extinction time, defined as the time from the first
RyR opening to the last RyR closing, was marginally higher
on average without [Ca2þ]jsr-dependent regulation (56.4 vs.
51.5 ms). Our data clearly show that Ca2þ sparks terminate
via stochastic attrition facilitated by the collapse of [Ca2þ]ss
due to localized luminal depletion events (i.e., Ca2þ blinks).
Importantly, this conclusion is consistent with our earlier
models (6,50,54,55) and in agreement with recent models
by Cannell et al. (10) and Gillespie and Fill (56). However,
Biophysical Journal 107(12) 3018–3029
it is not clear that attributing this existing termination mech-
anism to something such as induction decay or pernicious
attrition provides additional insight beyond a simple
acronym such as stochastic termination on Ca2þ depletion
(STOP). Regardless, the critical role played by [Ca2þ]jsr
depletion in Ca2þ spark termination is clear, and this
depletion must be robust enough for [Ca2þ]ss to decrease
sufficiently so that spontaneous closings of active RyRs
outpaces Ca2þ-dependent reopenings.
Direct [Ca2D]jsr-dependent regulation of RyRs

The role of direct [Ca2þ]jsr-dependent regulation on RyR
gating remains controversial. As shown in the previous sec-
tion, we found that such regulation is not essential for Ca2þ

spark termination. To see how this mechanism influences
cell function, we investigated its effects on spark fidelity,
Ca2þ spark rate, leak, and ECC gain over varying SR loads.

Experimental studies have demonstrated that Ca2þ spark
frequency and SR Ca2þ leak rate increase exponentially at
elevated [Ca2þ]jsr (3,57,58). There are two intrinsic factors
contributing to the exponential rise.

1. Higher [Ca2þ]jsr results in larger concentration gradients
across the JSR membrane, thereby increasing the unitary
current of the RyR and accelerating the [Ca2þ]ss rising
rate, and thus perpetuating release from other RyRs.

2. Higher SR loads also increase the amount of Ca2þ

released per Ca2þ spark, contributing to increased Ca2þ

spark-based leak.

[Ca2þ]jsr-dependent regulation introduces two additional
mechanisms that contribute to increased Ca2þ spark fre-
quency.

1. [Ca2þ]jsr-dependent regulation of the RyR enhances its
sensitivity to [Ca2þ]ss at higher [Ca

2þ]jsr, increasing the
likelihood that the cluster will be triggered.

2. The enhanced Ca2þ sensitivity also increases the fre-
quency of spontaneous Ca2þ quarks (6).

To elucidate the importance of [Ca2þ]jsr-dependent regu-
lation in the SR leak-load relationship, we tested two ver-
sions of the model with and without it (see Fig. S2 C).
In the case without it, f ¼ 1, so that Ca2þ spark frequency
and leak are still properly constrained at 1 mM [Ca2þ]jsr.
Spark fidelity and the total Ca2þ released per Ca2þ spark
were estimated from an ensemble of simulations of indepen-
dent CRUs, from which Ca2þ spark frequency and SR Ca2þ

leak rate could be estimated for [Ca2þ]jsr values ranging
from 0.2 to 1.8 mM (see Supporting Materials and
Methods). The presence of [Ca2þ]jsr-dependent regulation
increased fidelity at high [Ca2þ]jsr due to enhanced [Ca2þ]ss
sensitivity, which increased the likelihood that a single open
RyR triggered nearby channels (Fig. 3 A) . The frequency of
Ca2þ sparks, which is proportional to spark fidelity, was
therefore also elevated for the same reason but additionally
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because of a higher spontaneous opening rate at resting
[Ca2þ]ss (Fig. 3 B).

Average Ca2þ released per Ca2þ spark was slightly lower
in the presence of [Ca2þ]jsr-dependent regulation (Fig. 3 C).
This is because the RyR gating model exhibits a small
decrease in [Ca2þ]ss sensitivity upon JSR depletion, thus
accelerating spark termination and decreasing total Ca2þ

release. However, the combination of enhanced spark fidel-
ity and the increased rate of individual RyR openings re-
sulted in an exponential increase in Ca2þ spark frequency
under Ca2þ overload, despite the purely linear relationship
observed in the absence of [Ca2þ]jsr-dependent regulation
(Fig. 3 D). Therefore, the exponential rise in spark rate
and leak rate at elevated [Ca2þ]jsr cannot be accounted for
solely by the greater driving force for Ca2þ release flux
and higher SR load, but it can be explained by RyR sensiti-
zation by [Ca2þ]jsr -dependent regulation.

Fig. 3 E shows that there was a small effect on the fraction
of leak attributed to nonspark events, with greater invisible
leak at lower [Ca2þ]jsr in the presence of [Ca2þ]jsr-depen-
dent regulation. This is due to the fact that [Ca2þ]jsr-depen-
dent regulation decreases [Ca2þ]ss sensitivity at low values
of [Ca2þ]jsr and therefore lowers spark fidelity. Interestingly,
we find that invisible leak is maximal at 1 mM [Ca2þ]jsr (see
Fig. S6). The decrease in invisible leak under SR overload is
explained by a decline in the mean open time for nonspark
RyR openings (1.90 ms at 1 mM vs. 0.64 ms at 1.8 mM).
This occurs because a larger flux through the RyR occurs
at higher [Ca2þ]jsr, causing other RyRs to be triggered
earlier. It is then more likely that even short openings would
initiate Ca2þ sparks, decreasing the average Ca2þ release of
nonspark events. Finally, Fig. 3 F shows small differences in
ECC gain at a 0 mV test potential between models with and
without [Ca2þ]jsr-dependent regulation at varying [Ca2þ]jsr,
reflecting differences in RyR sensitivity to trigger Ca2þ.
Subspace geometry

Ultrastructural remodeling of the subspace has been impli-
cated in diseases such as heart failure (32,33,59) and
CPVT (60,61). We investigated how changes in subspace
geometry influence CRU function. We first altered the dis-
tance between the TTand JSR membranes. Ca2þ spark fidel-
ity (Fig. 4 A),rate (Fig. 4 B), and leak (Fig. 4 C) decreased
steeply as the TT-JSR separation increased beyond the nom-
inal width of 15 nm. This separation reduced the initial rise
of [Ca2þ]ss during CICR due to the increase in subspace vol-
ume. The resulting drop in spark fidelity led to fewer sparks
and less leak. The ECC gain at 0 mV also declined in a
similar manner, dropping sharply from 16.8 at 12 nm to
2.4 at 30 nm (Fig. 4 D). This is not surprising given the
effects of subspace width on fidelity, because LCCs also
Biophysical Journal 107(12) 3018–3029
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initiate release through CICR. Ca2þ sparks, Ca2þ spark-
based leak, and ECC function were nearly abolished at sub-
space widths >60 nm, with the exception of invisible leak,
which was nearly constant over all distances.

We also investigated the effects of resizing the JSR mem-
brane diameter (as depicted in Fig. 1 B) over a range of
217� 217 nm2 to 465� 465 nm2. We observed higher spark
fidelity for JSRs of larger diameter (Fig. 5 A), which intro-
duced resistance to diffusion of Ca2þ out of the subspace.
Larger JSRs also exhibited greater spark-based leak and
decreased invisible leak (Fig. 5 B). The enhanced spark-
based leak was due to the higher spark rate and larger JSR
volume, which provides more releasable Ca2þ per spark.
The effect on invisible leak was smaller in absolute
terms, dropping from 0.090 mM s�1 at 217 � 217 nm2 to
0.082 mM s�1 at 403 � 403 nm2, but then to 0.051 mM
s�1 at 465 � 465 nm2. Smaller JSRs are more likely to
leak invisible Ca2þ because of their lower fidelity. These
results suggest that remodeling of the JSR, as observed in
diseased hearts, may alter SR Ca2þ leak and the effective-
ness of CICR and extend previous observations (35).
(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)
RyR cluster structure

Super-resolution imaging techniques have revealed the di-
versity and complexity of channel arrangements of periph-
eral RyR clusters (29). We explored how the geometry of
the RyR cluster may be related to spark fidelity. Images
of peripheral RyR clusters were acquired using super-
resolution STED microscopy of RyR immunolabelings in
isolated adult mouse myocytes (C57Bl6) (35,62). Imaging
protocols were adjusted to sample RyR immunofluorescent
signals at a lateral imaging resolution <70 nm and pro-
duced variable and complex cluster shapes. These images
were then used to extract RyR cluster geometries and infer
the arrangement of RyRs in each cluster. For this purpose,
high signal levels equal to and above the 95th percentile
brightness were interpreted to represent a closed lattice of
RyR channels (63).

We incorporated a collection of 15 RyR cluster arrange-
ments that represented the diversity of cluster geometries
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in the model and estimated the fidelity of each RyR using
the protocol from Fig. 3 A. Fig. 6 illustrates the RyR cluster
arrangements, where each RyR is colored according to its
spark fidelity. Larger and denser clusters exhibited higher
spark fidelity. For example, cluster (i) with four RyRs had
a 1.2% average fidelity, while cluster (xv) with 91 RyRs
had an 11.1% average fidelity. Evidently, there were also
spatial gradients in fidelity, particularly across the larger
clusters. RyRs located on the boundary of a cluster were
less likely to initiate sparks, while those near the epicenter
had a high chance of triggering sparks because they had
more neighboring RyRs.

We also explored the spark fidelity of two artificial cluster
types: square arrays and randomly generated clusters in
which cluster lattice spaces contained a RyR with 50%
probability (see Fig. S7). The number of RyRs in a cluster
was a robust predictor of spark fidelity for the STED-based
clusters and square arrays (see Fig. S8 A). For these two
cluster types, larger clusters exhibited higher spark fidelity.
In a cellwide population of release sites, clusters with >30
RyRs contributed to 92% of spark-based leak (see Fig. S8,
B and C). This result is discussed further in the Supporting
Material. However, the number of RyRs was not a robust
predictor of spark fidelity for the randomly generated
clusters. RyRs with zero, one, or two adjacent RyRs were
common in the random clusters, but they contributed little
to spark fidelity. Therefore, clusters with the same number
of RyRs exhibited different spark fidelity because of hetero-
geneity in cluster structure.
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FIGURE 6 Spark fidelity of RyR cluster geometries inferred from STED
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Spectral analysis of RyR cluster structure

To understand why clusters with the same number of RyRs
exhibit different fidelity requires consideration of the chan-
nel arrangement. A natural approach is to use a graph-based
analysis in which adjacent RyRs, represented by nodes, are
connected by edges.

We computed the maximum eigenvalue lmax of each
cluster’s adjacency matrix for square arrays, STED-based
clusters, and the randomly generated clusters and found
a remarkably strong correlation with spark fidelity (Spear-
man’s rank correlation r ¼ 0.9055). Fig. 7 A shows each
cluster’s lmax value plotted against its spark fidelity for the
nominal set of model parameters. The range of lmax values
was 1.8–3.92, near the theoretical bounds of 1–4. STED-
based clusters had a wide range of lmax values (2.0–3.69)
due to their varying sizes and degrees of compactness.
Densely packed square arrays had mostly higher values
(2.83–3.92). The randomly generated clusters fell in a lower
range (1.80–3.23) due to their fragmented structure (see
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Fig. S7). It can be shown that hdi < lmax < dmax, where
hdi and dmax are the average and maximum degrees of the
graph, respectively (49). Fig. S9 shows that the fidelity of
the clusters from Fig. 7 A was also significantly correlated
with hdi (r ¼ 0.8730). The slightly lower correlation coeffi-
cient may be attributed to the fact that lmax takes into account
the full structure of the RyR network.

We then tested how an increase in RyR Ca2þ sensitivity
would alter the relationship between spark fidelity and
lmax because of its relevance to RyR hypersensitivity in
CPVT (12,64). Fig. 7 B shows the fidelity of the STED-
based and square clusters when the RyR EC50 was
decreased to from 55 to 25 mM by increasing the mean
open time (tO) to 10 ms or increasing the opening rate
constant. The strong correlation between lmax and fidelity
still held for this set of parameters, with r ¼ 0.9266 and
0.8169 for increasing tO and the opening rate, respectively.
Increasing tO elevated fidelity to a range of 0.45–0.72,
which was greater than the range 0.31–0.50 resulting from
increased opening rate. Note that the changes in model
parameters were approximately fivefold in both cases, sug-
gesting that Ca2þ spark fidelity is more sensitive to changes
in tO. These results show how an increase in RyR sensitivity
resulting from CPVT-linked mutations causes dramatically
increased Ca2þ spark fidelity.

In all cases, lmax was a consistent predictor of spark fidel-
ity for a given set of physical parameters. We therefore
conclude that the precise arrangement of RyRs in the sub-
space has a significant impact on the spark initiation process
and that the fidelity of the RyR cluster can be reliably pre-
dicted from lmax, which only requires knowledge of the
RyR cluster structure.
DISCUSSION

Here we have presented a believed-novel three-dimensional
model of the cardiac CRU to investigate mechanisms of
Ca2þ release. The model is based on previous work, which
demonstrated that RyR-mediated leak through Ca2þ sparks
and nonspark Ca2þ quarks is sufficient to achieve SERCA
pump-leak balance in resting cells (6). This work is the first,
to our knowledge, to quantitatively capture these dynamics
and exhibit a realistic ECC gain in a super-resolution spatial
framework that is not limited by the assumptions of a
compartmental model, such as the uniformity of [Ca2þ]ss
within the subspace or simplified cytosolic transport fluxes.
The model has enabled us to explore how perturbations of
subspace geometry and RyR cluster arrangements, like
those that may occur under normal physiological conditions
and in various diseased states, affect Ca2þ release. It also
provides a framework for exploring nanoscopic Ca2þ

signaling and can be used to investigate a plethora of topics
such as the roles of Ca2þ load, RyR gating properties,
[Ca2þ]ss and [Ca2þ]jsr sensitivity, and CRU geometry in
Ca2þ release.
Biophysical Journal 107(12) 3018–3029
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RyR cluster spectral properties

A significant finding of this work is that the maximum
eigenvalue of the RyR cluster adjacency matrix is a reliable
predictor of Ca2þ spark fidelity. Spectral graph theory is a
mature field that has been used in a variety of applications,
such as the study of Internet networks (65), spread of social
contagion (66), protein side-chain cluster detection (67),
biological networks (68), phylogeny inference (69), EEG
analysis (70), and infectious disease models (71). These
studies leverage the information contained in graph spectra
to characterize network structure and develop novel metrics
for predicting functional system properties.

Similarly, we have discovered an important role for lmax

in predicting an important functional property of a complex
system. The correlation with spark fidelity is remarkable,
given the complexity and nonlinearity of the model. Note
that this enables one to compare fidelity across clusters for
a given physiological state, and it only requires knowledge
of the RyR cluster structure. We believe this to be an elegant
theoretical tool that can be used for functional comparison
of different cluster structures in experimental studies.
[Ca2D]jsr-dependent regulation

Termination of Ca2þ release is essential to stable cell func-
tion. However, it remains unclear exactly how a Ca2þ spark
terminates given the regenerative nature of CICR. Several
potential mechanisms have been proposed, including
[Ca2þ]ss- or use-dependent RyR inactivation (72) and
[Ca2þ]jsr-dependent regulation of RyRs (13). Our model
predicts that deactivation of the RyR caused by [Ca2þ]jsr-
dependent regulation is not necessary for Ca2þ spark termi-
nation. Note that this result may be dependent on the refill
rate of the JSR, inasmuch as faster rates can prevent suffi-
cient JSR depletion and thus Ca2þ spark termination as
well by this mechanism (data not shown) (73,74). A more
detailed model that incorporates diffusion of Ca2þ in the
network SR may be able to address this issue more carefully.
Similarly, we did not include RyR-RyR interactions (21,22),
because Ca2þ spark termination did not require it. Neverthe-
less, there is reasonable biological evidence that support
such interactions. When features that require such inter-
actions in the generation and/or termination of Ca2þ sparks
are shown experimentally, they can be used to constrain and
inform Ca2þ spark features.

We have also shown that [Ca2þ]jsr-dependent regulation
can explain the exponential shape of the SR leak-load rela-
tionship (3,57) by 1), enhancing RyR sensitivity to the local
rise in [Ca2þ]ss during a Ca2þ quark; and 2), increasing the
spontaneous RyR opening rate. It is also possible that Ca2þ-
activated regulators, such as CaMKII (19,20), RyR muta-
tions (64), or mutations in RyR-linked proteins (75), may
affect the relationship between SR load and spark frequency
in a similar manner or that propagation of release between
Biophysical Journal 107(12) 3018–3029
adjacent sites could enhance leak under overload (76).
Nevertheless, the model predicts that the leak-load relation-
ship cannot be adequately captured in the absence of these
mechanisms.
Physiological and pathophysiological
significance

We have shown how an increase in spark fidelity leads to
higher Ca2þ spark frequency and Ca2þ spark-based leak.
Ca2þ spark frequency is an important property that controls
cellular and SR Ca2þ load by providing a pathway for Ca2þ

to leak from the SR during diastole. Diastolic spark-based
leak leads to extrusion of Ca2þ from the cell through
the sarcolemmal Naþ/Ca2þ exchanger and also delicately
balances SR refilling via the SERCA pump (6,77). Under
conditions with enhanced SR Ca2þ leak, these pathways
contribute to reduced SR Ca2þ load and impaired systolic
function.

CPVT is an inherited genetic disorder that often leads to
syncope and sudden cardiac death. The disease has been
linked to mutations in the RyR (RYR2) and calsequestrin
(CASQ2) genes (78). Chen et al. (12) recently showed that
R33Q-CASQ2 knock-in mice exhibit CPVT-like symptoms
and then showed through single-channel studies that this
mutation causes an increase in RyR tO to ~10 ms. They
attributed this increase to a loss of calsequestrin-dependent
regulation of the RyR. Jiang et al. (64) studied a CPVT-
linked RYR2 mutation that resulted in decreased mean
closed time of the channel.

We have shown that these mutations result in dramatically
higher spark fidelity (compare Fig. 7, A and B). The
increased sensitivity to [Ca2þ]ss directly elevated leak, as
did the higher Ca2þ spark rate that it caused, and both would
contribute to the reduction in SR load and spontaneous cell-
wide release (i.e., Ca2þ sparks and Ca2þ waves) observed
in experimental models of CPVT (79–81). This model and
these data suggest that CICR underlies these changes in
Ca2þ sparks and waves, and not stored overload-induced
Ca2þ release (82).

Using the R33Q-CASQ2 knock-in model, Liu et al. (60)
and Denegri et al. (61) observed extensive ultrastructural
remodeling of the CRU, resulting in JSR fragmentation,
reduced subspace areas, and smaller RyR clusters. Our re-
sults are in agreement with a recent compartmental model
by Lee et al. (27), who showed that subspace volume and
efflux rate critically influence spark fidelity. Interestingly,
our data suggest that this could be a compensatory mecha-
nism—one that helps reduce the enhanced fidelity, spark
frequency, and SR Ca2þ leak caused by the increase in tO.

Chronic heart failure in cardiac myocytes is characterized
by diminished excitation-contraction coupling and slowed
contraction (35,83), which are in part due to a reduction in
SR Ca2þ load (3,84). It has been shown that RyR-mediated
leak alone is sufficient to cause the decrease in SR Ca2þ
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load (3). This can be attributed to a variety of posttransla-
tional modifications to the RyR, including PKA-dependent
phosphorylation (18), CaMKII-dependent phosphorylation
(85), and redox modifications (86). The model shows how
the spark rate rises quickly for sensitive channels (see
Fig. S1 A), suggesting that minor increases in RyR [Ca2þ]ss
sensitivity could significantly enhance SR Ca2þ leak in heart
failure.

Structural changes to the CRU may be caused by a down-
regulation of the protein junctophilin-2 (JP2) in heart failure
(32,33,59). Wu et al. (33) observed a reduction in the length
of the JSR and subspace in both failing rat myocytes and a
JP2 knockdown model. This, in part, led to reduced [Ca2þ]i
transients and desynchronized release. This work has
confirmed that the CICR process is sensitive to the diameter
of the JSR, which acts as a barrier to Ca2þ efflux from
the subspace. Shortening the JSR reduces spark fidelity
(see Fig. 5 A) and thus the ability of trigger Ca2þ from the
LCCs to efficiently activate the RyRs. In addition, van
Oort et al. (59) demonstrated experimentally that JP2
knockdown resulted in an increase in the variability of sub-
space width. This is consistent with the model prediction
that ECC gain is sensitive to the distance between the JSR
and TT (see Fig. 4 D), implying that subspace width
variability would also contribute to nonsynchronous release
during ECC.

JSRs become separated from the TT during chronic heart
failure, resulting in orphaned RyR clusters that are un-
coupled from the LCCs (87). Again, the model predicts
that the separation of the JSR and TT membranes strongly
decreases spark frequency and ECC gain due to the increase
in subspace volume. This corroborates the findings of Gaur
and Rudy (26), who demonstrated that increasing subspace
volume causes reduced ECC gain. We conclude here that
orphaned RyR clusters contribute less to spark-based leak
and Ca2þ release during ECC, but they may mediate invis-
ible leak.

The heterogeneity of spark fidelity among release sites
may have implications for the formation of Ca2þ waves.
Modeling studies have suggested that conditions that enable
one Ca2þ spark to trigger another are needed to initiate a
Ca2þ wave (88). Although it is unclear exactly how this
occurs in every instance, conditions favoring regenerative
Ca2þ sparks among local CRUs lead to both the generation
of macrosparks and Ca2þ waves (89,90). Therefore, RyR
clusters with greater spark fidelity may be more arrhythmo-
genic because they have a higher propensity for exhibiting
spontaneous release, and are more likely to be influenced
by the local elevation of [Ca2þ]ss produced by a nearby
Ca2þ spark.

The model also provides insights into nanoscopic Ca2þ

signaling during release. Movie S2 shows how a small
JSR results in a spherical 1 mM [Ca2þ]i isosurface, while
in Movie S1 the larger JSR causes lower [Ca2þ]i on its
back face (see also Fig. S5). Furthermore, peak [Ca2þ]i
just outside the subspace ranged from ~1–12 mM depending
on the relative position of the JSR. Additional barriers to
diffusion not incorporated here, such as a mitochondrion
abutting the back face of the JSR, could result in even higher
local [Ca2þ]i. These results may have implications for local
Ca2þ sensing by mitochondria (91), CaMKII signaling (92),
and Naþ/Ca2þ exchanger activity (93,94). Future work
incorporating these components could advance our under-
standing of their individual contributions to cell function
under normal and pathological conditions.
SUPPORTING MATERIAL
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