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Abstract

In this paper, by using the Riccati transformation technique, chain rule and inequality

A� − �AB�−1 + (� − 1)B� �0, �>1,

whereA andB are positive constants, we will establish some oscillation criteria for the second-order half-linear
dynamic equation

(p(t)(x�(t))�)� + q(t)x�(t)= 0, t ∈ [a, b]
on time scales, where�>1 is an odd positive integer. Our results not only unify the oscillation of half-linear
differential and half-linear difference equations but can be applied on different types of time scales and improve
some well-known results in the difference equation case. Some examples are considered here to illustrate our main
results.
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1. Introduction

In this paper, we are concerned with oscillation of second-order half-linear dynamic equation

(p(t)(x�(t))�)� + q(t)x�(t)= 0, t ∈ [a, b] (1.1)

on time scales, where
(H) p, q are positive, real-valuedrd-continuous functions, and�>1 is an odd positive integer. We

shall also consider the two cases∫ ∞

t0

(
1

p(t)

)1/�

�t = ∞ (1.2)

and ∫ ∞

t0

(
1

p(t)

)1/�

�t <∞. (1.3)

By the solution of (1.1), we mean a nontrivial real-valued functionx(t) ∈ C1
rd[tx,∞), tx� t0�a, which

has the propertyp(t)(x�(t))� ∈ C1
rd[tx,∞) and satisfying Eq. (1.1) fort� tx . Our attention is restricted

to those solutions of (1.1) which exist on some half-line[tx,∞) and satisfy sup{|x(t)| : t > t1}>0 for
anyt1� tx .A solutionx(t) of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative, otherwise it is nonoscillatory. Eq. (1.1) is said to be oscillatory if all its solutions are oscillatory.
Half-linear dynamic equations derive their name from the fact that if {x(t)} is a solution, then so is {cx(t)}
for any constantc.

Much recent attention has been given to dynamic equations on time scales (or measure chains), and
we refer the reader to the landmark paper of Hilger[16] for a comprehensive treatment of the subject.
Since then; several authors have expounded on various aspects of this new theory; see the survey paper
by Agarwal et al.[1] and the references cited therein. A book on the subject of time scales, by Bohner
and Peterson[4], summarizes and organizes much of time scale calculus; we refer also the last book by
Bohner and Peterson[5] for advances in dynamic equations on time scales.

In recent years there has been much research activity concerning the oscillation and nonoscillation of
solutions of dynamic equations on time scales. We refer the reader to the papers[2–4,6–15,18,19].

In this paper, we apply the Riccati transformation technique to obtain some oscillation criteria for (1.1)
when (1.2) or (1.3) holds. Our results not only unify the oscillation of second-order half-linear differential
and difference equations but can be also applied on different types of time scales. The paper is organized
as follows. In Section 2, we present some basic definitions concerning the calculus on time scales. In
Section 3, we apply the Riccati transformation technique, a simple consequence of Keller’s chain rule,
and the inequality

A� − �AB�−1 + (� − 1)B��0, �>1, (1.4)

whereA andB are nonnegative constants, to obtain some oscillation criteria for Eq. (1.1). Our results
when (1.2) holds are sufficient for oscillation of all solutions of (1.1) and when (1.3) holds our results
ensure that all solutions either oscillate or converge to zero.
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2. Some preliminaries on time scales

A time scaleT is an arbitrary nonempty closed subset of the real numbersR. On any time scaleT we
define the forward and backward jump operators by

�(t) := inf {s ∈ T : s > t}, �(t) := sup{s ∈ T, s < t}. (2.1)

A point t ∈ T, t > inf T, is said to be left-dense if�(t) = t , right-dense ift < supT and�(t) = t , left-
scattered if�(t)< t and right-scattered if�(t)> t. The graininess function� for a time scaleT is defined
by �(t) := �(t)− t.

For a functionf : T → R (the rangeR of f may be actually replaced by any Banach space) the (delta)
derivative is defined by

f �(t)= f (�(t))− f (t)
�(t)− t , (2.2)

if f is continuous att andt is right-scattered. Ift is not right-scattered then the derivative is defined by

f �(t)= lim
s→t

f (t)− f (s)
t − s , (2.3)

provided this limit exists. A functionf : [a, b] → R is said to be right-dense continuous if it is right
continuous at each right-dense point and there exists a finite left limit at all left-dense points, andf is said
to be differentiable if its derivative exists. A useful formula is

f (�(t))= f (t)+ �(t)f �(t). (2.4)

We will make use of the following product and quotient rules for the derivative of the productfg and the
quotientf/g (wheregg� �= 0) of two differentiable functionf andg

(fg)� = f �g + f �g� = fg� + f �g�, (2.5)(
f

g

)�

= f �g − fg�

gg�
. (2.6)

Fora, b ∈ T, and a differentiable functionf , the Cauchy integral off � is defined by∫ b

a

f �(t)�t = f (b)− f (a). (2.7)

An integration by parts formula reads∫ b

a

f (t)g�(t)�t = [f (t)g(t)]ba −
∫ b

a

f �(t)g(�(t))�t, (2.8)

and infinite integrals are defined as∫ ∞

a

f (t)�t = lim
b→∞

∫ b

a

f (t)�t.
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In caseT = R, we have�(t)= �(t)= t, �(t) ≡ 0,

f � = f ′ and
∫ b

a

f (t)�t =
∫ b

a

f (t)dt

and in caseT = Z, we have�(t)= t + 1, �(t) ≡ 1,

f � = �f and
∫ b

a

f (t)�t =
b−1∑
t=a

f (t),

in the caseT = hZ, h>0, we have�(t)= t + h, �(t)= h,

f � = �hf = f (t + h)− f (t)
h

and
∫ b

a

f (t)�t =
b/h−1∑
i=a/h

f (i);

and in the caseT = qN = {t : t = qk, k ∈ N, q >1}, we have�(t)= qt , �(t)= (q − 1)t ,

x�
q (t)=

x(qt)− x(t)
(q − 1)t

and
∫ ∞

a

f (t)�t =
∞∑
k=0

�(qk)f (qk).

3. Main results

In this section, we give some new oscillation criteria for (1.1). Since we are interested in oscillatory
behavior, we suppose that the time scale under consideration is not bounded above, i.e., it is a time scale
interval of the form[a,∞). Also, we will use the formula

(x�(t))� = �

∫ 1

0
[hx� + (1 − h)x]�−1 dhx�(t), (3.1)

which is a simple consequence of Keller’s chain rule[4, Theorem 1.90].
First, we consider the case when (1.2) holds

Theorem 3.1. Assume that(H) and (1.2) hold. Furthermore, assume that there exists a positive�-
differentiable function�(t) such that

lim sup
t→∞

∫ t

a

[
�(s)q(s)− p(s)(��(s))

�+1
+

(� + 1)�+1��(s)

]
�s = ∞, (3.2)

where(��(t))+ = max{0, (��(t))}. Then every solution of Eq.(1.1) is oscillatory on[a,∞).
Proof. Suppose to the contrary thatx(t) is a nonoscillatory solution of (1.1). Without loss of generality,
we may assume thatx(t) is an eventually positive solution of (1.1) such thatx(t)>0 for all t� t0>a.
We shall consider only this case, since the substitutiony(t)=−x(t) transforms Eq. (1.1) into an equation
of the same form. In view of (1.1), we have

(p(t)(x�(t))�)� = −q(t)x�(t)<0, (3.3)
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for all t� t0, and so{p(t)(x�(t))�} is an eventually decreasing function. We first show that{p(t)(x�(t))�}
is eventually nonnegative. Indeed, sinceq(t) is a positive function, the decreasing functionp(t)(x�(t))�

is either eventually positive or eventually negative. Suppose there exists an integert1� t0 such that
p(t1)(x

�(t1))
� = c <0, then from (3.3) we havep(t)(x�(t))�<p(t1)(x

�(t1))
� = c for t� t1, hence

x�(t)�c1/�
(

1

p(t)

)1/�

,

which implies by (1.2) that

x(t)�x(t1)+ c1/�
∫ t

t1

(
1

p(s)

)1/�

�s → −∞ as t → ∞, (3.4)

which contradicts the fact thatx(t)>0 for all t� t0. Hencep(t)(x�(t))� is eventually nonnegative.
Therefore, we see that there is somet0 such that

x(t)>0, x�(t)�0, (p(t)(x�(t))�)�<0, t� t0. (3.5)

Define the functionw(t) by

w(t)= �(t)
p(t)(x�(t))�

x�(t)
, t� t0. (3.6)

Thenw(t)>0, and using (2.5) and (2.6) we obtain

w�(t)= �(t)

x�(t)
(p(t)(x�(t))�)� + p(x�)�)�

[
x�(t)��(t)− �(t)(x�(t))�

x�(t)x�(�(t))

]
. (3.7)

In view of (1.1) and (3.7), we get

w�(t)= −�(t)q(t)+ ��(t)

�� w� − �(t)(p(x�)�)�(x�(t))�

x�(t)x�(�(t))
. (3.8)

Using (3.4) we havex��x(t), and then from the chain rule (3.1) we obtain

(x�(t))� = �

∫ 1

0
[hx� + (1 − h)x]�−1x�(t)dh

��

∫ 1

0
[hx + (1 − h)x]�−1x�(t)dh= �(x(t))�−1x�(t). (3.9)

It follows from (3.8) and (3.9) that

w�(t)� − �(t)q(t)+ (��(t))+
�� w� − �(t)(p(x�)�)��(x(t))�−1x�(t)

x�(t)x�(�(t))

= − �(t)q(t)+ (��(t))+
�� w� − ��(t)(p(x�)�)�x�(t)

x(t)x�(�(t))

� − �(t)q(t)+ (��(t))+
�� w� − ��(t)(p(x�)�)�x�(t)

x�+1(�(t))
. (3.10)
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From (3.5) since(p(t)(x�(t))�)�<0 we have

x�(t)>
(p�)1/�

p1/� (x�)�. (3.11)

Substituting (3.11) in (3.10) we find that

w�(t)< − �(t)q(t)+ (��(t))+
�� w� − ��(t)(p�)(�+1)/�(x�)�+1(�(t))

p1/�x�+1(�(t))

= − �(t)q(t)+ (��(t))+
�� w� − ��(t)

(��)�p�−1(t)
(w�)�, (3.12)

where� = (� + 1)/�. Set

A=
[

��(t)

(��)�p�−1(t)

]1/�

w� and B =
[
(��(t))+

���

(
��(t)

(��)�p�−1(t)

)−1/�
]1/(�−1)

.

Using inequality (1.4), we have

(��(t))+
�� w� − ��(t)

(��)�p�−1(t)
(w�)�

�(� − 1)��/(�−1)
(
(��(t))+

��

)�/(�−1)(
��(t)

(��)�p�−1(t)

)−1/(�−1)

= Cp(t)(�
�(t))

�/(�−1)
+

�1/(�−1)(t)
= Cp(t)(�

�(t))
�+1
+

��(t)
, (3.13)

whereC = (� − 1)��/(�−1)�−1/(�−1) = 1/(� + 1)�+1. Thus, from (3.12) and (3.13) we obtain

w�(t)<−
[
�(t)q(t)− p(t)(��(t))

�+1
+

(� + 1)�+1��(t)

]
. (3.14)

Integrating (3.14) fromt0 to t, we obtain

−w(t0)<w(t)− w(t0)<−
∫ t

t0

[
�(s)q(s)− p(s)(��(s))

�+1
+

(� + 1)�+1��(s)

]
�s, (3.15)

which yields∫ t

t0

[
�(s)q(s)− p(s)(��(s))

�+1
+

(� + 1)�+1��(s)

]
�s <w(t0),

for all larget . This is contrary to (3.2). The proof is complete.�

From Theorem 3.1, we can obtain different conditions for oscillation of all solutions of (1.1) by different
choices of�(t). For instance, let�(t)= t , t� t0. By Theorem 3.1, we have the following result.
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Corollary 3.1. Assume that(H) and(1.2)hold. Furthermore, assume that

lim sup
t→∞

∫ t

a

[
sq(s)− p(s)

(� + 1)�+1s�

]
�s = ∞. (3.16)

Then, every solution of(1.1) is oscillatory on[a,∞).
Let �(t) = 1, t� t0. By Theorem 3.1, we have the following well-known result (Leighton–Wintner

Theorem).

Corollary 3.2 (Leighton–Wintner). Assume that(H) and(1.2)hold. If∫ ∞

a

q(s)�s = ∞. (3.17)

Then every solution of(1.1) is oscillatory on[a,∞).
Remark 3.1. From Theorem 3.1, we can give sufficient conditions for oscillation of (1.1) on different
types of time scales, for example we can deduce that

∫ ∞

t0

1

(p(s))�
ds = ∞ and lim sup

t→∞

∫ t

t0

[
�(s)q(s)− p(s)(�′(s))�+1

+
(� + 1)�+1��(s)

]
ds = ∞,

where(�′(t))+ = max{0, �′(t)}, are sufficient conditions for oscillation of the second-order half-linear
differential equation

(p(t)(x′(t))�)′ + q(t)x�(t)= 0, t ∈ [t0,∞], (3.18)

∞∑
i=n0

[
1

(p(i))�

]
= ∞ and lim sup

n→∞

n−1∑
i=n0

[
�(i)q(i)− p(i)(��(i))�+1

+
(� + 1)�+1��(i)

]
= ∞,

where(��(i))+ = max{0,��(i)}, are sufficient conditions for oscillation of the second-order half-linear
difference equation

�(p(n)(�x(n))�)+ q(n)x�(n)= 0, n ∈ [n0,∞], (3.19)

∞∑
i=n0/h

[
1

(p(i))�

]
= ∞ and lim sup

n→∞

n/h−1∑
i=n0/h

[
�(i)q(i)− p(i)(�h�(i))

�+1
+

(� + 1)�+1��(i)

]
= ∞,

where(�
h
�(i))+ = max{0,�h�(i)}, are sufficient conditions for oscillation of the general second-order

half-linear difference equation

�h(p(n)(�hx(n))
�)+ q(n)x�(n)= 0, n ∈ [n0,∞], (3.20)

∞∑
k=0

�(�k)

[
1

(p(�k))�

]
= ∞ and

∞∑
k=0

�(�k)

[
�(�k)q(�k)− p(�k)(�

�
�(�k))�+1

+
(� + 1)�+1��(�k)

]
= ∞,
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where(�
�
�(i))+ =max{0,�

�
�(i)}, are sufficient conditions for oscillation of the second-order half-linear

�-difference equation

��(p(n)(��x(n))
�)+ q(n)x�(n)= 0, n ∈ [n0,∞]. (3.21)

Remark 3.2. In [20], Thandpani et al., considered the second-order half-linear difference Eq. (3.19)
whenp = 1 and proved that every solution is oscillatory if

∞∑
n0

q(n)= ∞. (3.22)

But, one can easily see that this result cannot be applied in discrete half-linear Euler difference equation,
so our results extend and improve the results in[20].

Theorem 3.2. Assume that(H) and(1.2)hold. Let�(t) be as defined in Theorem3.1.If

lim sup
t→∞

1

tm

∫ t

a

(t − s)m
[
�(s)q(s)− p(s)(��(s))

�+1
+

(� + 1)�+1��(s)

]
�s = ∞, (3.23)

for an odd positive integer m. Then every solution of(1.1) is oscillatory on[a,∞).
The proof is similar to that of the proof of Theorem 3.2 in[19] by using inequality (3.14) and hence is

omitted.
Note that when�(t)= 1, then (3.23) reduces to

lim
t→∞

1

tm

∫ t

a

(t − s)mq(s)�s = ∞.

Then (2.23) can be considered as the extension of Kamenev-type oscillation criteria for second-order
differential equations (see[17]).

From Theorem 3.2, we have the following oscillation criteria for Eqs. (3.18)–(3.20), and the oscillation
conditions for Eq. (3.21) are left to the reader.

Corollary 3.3. Assume that(H) holds and∫ ∞

t0

1

(p(s))�
ds = ∞.

Let�(t) be a positive real-valued differentiable function such that

lim sup
t→∞

1

tm

∫ t

t0

(t − s)m

�(s)q(s)− p(s)

(
�′(s)

)�+1
+

(� + 1)�+1��(s)


 ds = ∞,

for an odd positive integer m. Then every solution of(3.18)is oscillatory.
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Corollary 3.4. Assume that(H) holds and

∞∑
i=n0

[
1

(p(i))�

]
= ∞.

Let {�(n)} be a positive sequence such that

lim sup
n→∞

1

tm

n−1∑
s=n0

(t − s)m
[
�(s)q(s)− p(s)(��(s))�+1

+
(� + 1)�+1��(s)

]
= ∞,

for an odd positive integer m. Then every solution of(3.19)is oscillatory.

Corollary 3.5. Assume that(H) holds and

∞∑
i=n0/h

[
1

(p(i))�

]
= ∞.

Let {�(n)} be a positive sequence such that

lim sup
t→∞

1

tm

n/h−1∑
s=n0/h

(t − s)m
[
�(s)q(s)− p(s)(�h�(s))

�+1
+

(� + 1)�+1��(s)

]
= ∞,

for an odd positive integer m. Then every solution of(3.20)is oscillatory.

Next we consider the case when (1.3) holds.
Now, we give some sufficient conditions when (1.3) holds, which guarantee that every solutionx(t) of

Eq. (1.1) oscillates or converges to zero.

Theorem 3.3. Assume that(H) and(1.3)hold. Let�(t) be as defined in Theorem3.1such that(3.2)holds.
If ∫ ∞

a

[
1

p(t)

∫ t

a

q(s)�s

]1/�

�t = ∞. (3.24)

Then every solution of Eq.(1.1) is oscillatory or converges to zero.

Proof. We proceed as in the proof of Theorem 3.1. We assume that Eq. (1.1) has a nonoscillatory solution
such thatx(t)>0, for t� t0>a. (We shall consider only this case, since the substitutiony(t) = −x(t)
transforms Eq. (1.1) into an equation of the same form.) From the proof of Theorem 3.1 we see that there
exist two possible cases for the sign ofx�(t). The proof whenx�(t) is eventually positive is similar to
that of the proof of Theorem 3.1 and hence is omitted.

Next, suppose thatx�(t)<0 for t� t1� t0. Thenx(t) is decreasing and limt→∞x(t)= b�0 exists. We
assert thatb = 0. If not, thenx(t)> b>0 for t� t2> t1. Define the function

u(t)= p(t)(x�(t))�,
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then from Eq. (1.1) fort� t2, we obtain

u�(t)= −q(t)x�(t)� − b�q(t).

Hence, fort� t2 we have

u(t)�u(t2)− b�
∫ t

t2

q(s)�s <− b�
∫ t

t2

q(s)�s.

Sinceu(t2)= p(t2)(x�(t2))
�<0, integrating the last inequality fromt2 to t , we have∫ t

t2

x�(s)�s� − b
∫ t

t2

[
1

p(s)

∫ s

t2

q(�)��

]1/�

�s.

By condition (3.24), we getx(t) → −∞ ast → ∞, and this is a contradiction to the fact thatx(t)>0
for t� t0. Thusb = 0 andx(t) → 0 ast → ∞. The proof is complete. �

Theorem 3.4. Assume that(H) and(1.3)hold. Let�(t) be as defined in Theorem3.1such that(3.23)and
(3.24)hold. Then every solution of Eq.(1.1) is oscillatory or converges to zero.

From Theorems 3.3 and 3.4 we can deduce some new sufficient conditions, which insure that the
solutions of Eqs. (3.18)–(3.21) are oscillatory or converge to zero. For example, for Eq. (3.19) we have
the following result which improves the result established in[20].

Corollary 3.6. Assume that(H) hold,

∞∑
i=n0

[
1

(p(i))�

]
<∞

and

∞∑
n=n0


 1

p(n)

n−1∑
i=n0

q(i)




1/�

= ∞.

Let {�(n)} be a positive sequence such that

lim sup
n→∞

n−1∑
i=n0

[
�(i)q(i)− p(i)(��(i))�+1

+
(� + 1)�+1��(i)

]
= ∞,

where(��(i))+ = max{0,��(i)}. Then every solution of Eq.(3.19)is oscillatory or converges to zero.

4. Applications

In this section, we give some examples to illustrate our main results in this paper and show that the
results improve the results in[20] for the difference equation case.
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Example 4.1. Consider the half-linear dynamic equation

((x�(t))3)� + 1

t2
x3(t)= 0, (4.1)

for t ∈ [1,∞). Herep(t)= 1 andq(t)= 1/t2. Then, by Corollary 3.1, we have

lim sup
t→∞

∫ t

1

[
sq(s)− 1

(� + 1)�+1s�

]
�s = lim sup

t→∞

∫ t

1

[
sq(s)− 1

256s3

]
�s

= lim sup
t→∞

∫ t

1

[
1

s
− 1

256s3

]
�s = ∞.

Then, every solution of (4.1) is oscillatory on[1,∞).
Example 4.2. Consider the half-linear dynamic equation

((x�(t))�)� + t	−�x�(t)= 0, (4.2)

for t ∈ [1,∞), where	 is a positive constant and�>1 is a positive integer. In (4.2),p(t) = 1 and
q(t)= t	−�. Then, by Corollary 3.1, we have

lim sup
t→∞

∫ t

1

[
sq(s)− 1

(� + 1)�+1s�

]
�s = lim sup

t→∞

∫ t

1

[
s1+	−� − 1

(� + 1)�+1s�

]
�s = ∞,

if 	 − �� − 2. Then every solution of (4.2) is oscillatory when	 − �� − 2.

Example 4.3. Consider the half-linear dynamic equation

(t�−1(x�(t))�)� + 


t2
x�(t)= 0, (4.3)

for t ∈ [1,∞), where	 is a positive constant and�>1 is a positive integer. In (4.3),p(t)= t�−1 which
satisfies condition (1.2) since∫ ∞

1

(
1

t

)(�−1)/�

�t = ∞, for �>1,

andq(t)= 
/t2. Then, by Corollary 3.1, we have

lim sup
t→∞

∫ t

1

[
sq(s)− 1

(� + 1)�+1s�

]
�s = lim sup

t→∞

∫ t

1

[



s
− 1

(� + 1)�+1s

]
�s = ∞,

if 
>1/((� + 1)�+1). Then every solution of (4.3) is oscillatory when
>1/((� + 1)�+1).

Example 4.4. Consider the half-linear dynamic equation

(t�+1(x�(t))�)� + 
x�(t)= 0, (4.4)

for t ∈ [1,∞), where	 is a positive constant and�>1 is a positive integer. In (4.4),p(t)= t�+1 which
satisfies condition (1.3) since∫ ∞

1

(
1

t�+1

)1/�

�t =
∫ ∞

1

(
1

t (�+1)/�

)
�t <∞ for �>1,
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andq(t)= 
. Then, by Corollary 3.1, we have

lim sup
t→∞

∫ t

1

[
sq(s)− 1

(� + 1)�+1s�

]
�s = lim sup

t→∞

∫ t

1

[

s − s�+1

(� + 1)�+1s�

]
�s

= lim sup
t→∞

∫ t

1

[

 − 1

(� + 1)�+1

]
s�s = ∞,

if 
>1/(�+1)�+1. Then every solution of (4.4) is oscillatory or converges to zero when
>1/(�+1)�+1.

Note that condition (3.22) in the difference equation case cannot be applied to Eq. (4.1) and also cannot
be applied to Eqs. (4.2)–(4.4). So our results improve the results in[20] in the difference equation case.

5. Conclusion

In this paper, by using the chain rule and the Riccati transformation technique, we have established
some new oscillation criteria of second-order half-linear dynamic equations on time scales. Our results not
only unify the oscillation of differential and difference equations but also improve the results of second-
order half-linear difference equations established in[20]. Also, we established some oscillation criteria
for Eqs. (3.20) and (3.21) which are essentially new. Not only this, but also our results can be applied
on different types of time scales. For examples, whenT = N2

0 = {n2 : n ∈ N0}, then�(t)= (√t + 1)2,
�(t)= 1 + 2

√
t ,

�yN(t)= y((
√
t + 1)2)− y(t)
1 + 2

√
t

and
∫ ∞

t0

f (t)�t =
∞∑
t=t20
(1 + 2

√
t)f (t2),

and (1.1) becomes the second-order half-linear difference equation

�N(p(t)(�Nx(t))
�)+ q(t)x�(t)= 0, t ∈ [t20,∞], (5.1)

whenT = {tn : n ∈ N0} wheretn be the so-called harmonic numbers defined by

t0 = 0, tn =
n∑
k=1

1

k
, n ∈ N,

then�(tn)= tn+1, �(tn)= 1/(n+ 1),

x�(tn)= (n+ 1)�x(tn) and
∫ ∞

t0

f (t)�t =
∞∑
0

1

n+ 1
f (tn)

and Eq. (1.1) becomes the second-order half-linear difference equation

�tn(a(tn)(�tnx(tn))
�)+ x�(tn)= 0, tn ∈ [0,∞]. (5.2)

By using the results in Section 3, we can obtain some sufficient conditions for oscillation of all solutions
of Eqs. (5.1) and (5.2) which are essentially new. The details are left to the interested reader. The results
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are proved in the case�>1 and cannot be applied in the case when� = 1 or if 0< �<1 is a quotient of
odd positive integers. So it would be interesting to extend the above results to conclude the case when
� = 1 and find another method to study the case when� is a quotient of odd positive integers.
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