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a b s t r a c t

Suppose G is a semi-direct product of the form Z/pn o Z/m where p is prime and m is
relatively prime to p. Suppose K is a complete discrete valuation field of characteristic
p > 0 with algebraically closed residue field. The main result states necessary and suffi-
cient conditions on the ramification filtrations that occur for wildly ramified G-Galois
extensions of K . In addition, we prove that there exists a parameter space for G-Galois
extensions of K with given ramification filtration, and we calculate its dimension in terms
of the ramification filtration. We provide explicit equations for wild cyclic extensions of K
of degree p3.
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1. Introduction

This paper is about wildly ramified Galois extensions of a complete discrete valuation field k((t)) where k is an
algebraically closed field of characteristic p > 0. We prove that the lower jumps of the ramification filtration of a Galois
extension of k((t))with groupZ/pnoZ/m are all congruentmodulom, Proposition 4.2.We also prove that one can dominate
a given Galois extension having group Z/pn−1 o Z/m by a Galois extension having group Z/pn o Z/m, with control over the
last jump in the ramification filtration, Proposition 5.1. Together with well-known results about ramification filtrations of
Galois extensions with group Z/pn [1], this yields (see Theorem 5.2):

Theorem 1.1. Let G be a semi-direct product of the form Z/pn o Z/m where p - m. Let σ ∈ G have order pn and let m′
= |CentG(σ )|/pn. A sequence u1 ≤ · · · ≤ un of rational numbers occurs as the set of positive breaks in the upper numbering of
the ramification filtration of a G-Galois extension of k((t)) if and only if:

(a) ui ∈ 1
mN for 1 ≤ i ≤ n;

(b) gcd(m,mu1) = m′;
(c) p - mu1 and, for 1 < i ≤ n, either ui = pui−1 or both ui > pui−1 and p - mui;
(d) and mui ≡ mu1 mod m for 1 ≤ i ≤ n.

In the first author’s doctoral thesis, Theorem 1.1 yields restrictions on the stable reduction of certain branched covers of
the projective line.
Our othermain result, Theorem5.6, states that, given a groupG and a ramification filtration η satisfying conditions (a)–(d)

as in Theorem 1.1, there exists a parameter spaceMη whose k-points are in natural bijection with isomorphism classes of
G-Galois extensions of k((t)) having ramification filtration η. We calculate the dimension ofMη in terms of the upper jumps
of η.
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Here is the paper’s outline: in Section 2 we introduce the framework of study, including ramification filtrations and
field theory; Section 3 contains several structural descriptions of cyclic p-group extensions; in Section 4, we prove results
about tame actions on cyclic extensions; and the main results on ramification filtrations and parameter spaces for G-Galois
extensions appear in Section 5.
Our original motivation for this topic was to find explicit equations for Z/p3-Galois extensions of k((t)), see Section 6.

Such equations are useful and are difficult to find in the literature. For example, in [2, II, Lemma 5.1], the authors use
equations forZ/p2-Galois extensions in order to prove a case of Oort’s Conjecture, namely, that everyZ/p2-Galois extension
of k((t)) lifts to characteristic 0 [2, Thm. 2].
Similar results for elementary abelian p-group extensions are in [3].

2. Framework of study

This section contains background on extensions of complete discrete valuation fields and ramification filtrations and
introduces the situation studied in this paper, in which the Galois group is a semi-direct product of the form Z/pn
o Z/m.

2.1. Extensions of complete discrete valuation fields

Let k be an algebraically closed field of characteristic p > 0.We fix a compatible system of roots of unity of k. In particular,
this fixes a primitivemth root of unity ζ in k. Let R be an equal characteristic complete discrete valuation ring with residue
field k and fraction field K . Then R ' k[[t]] and K ' k((t)) for some uniformizing parameter t .
Suppose L/K is a separable Galois field extension with group G. Let S be the integral closure of R in L. Then S/R is a Galois

extension of rings with group Gwhich is totally ramified over the prime ideal (t).
This type of field extension arises in the following context. Suppose φ : Y → X is a Galois cover of smooth k-curves.

Suppose y ∈ Y is a ramified point with inertia group G. Consider the complete local rings S = ÔY ,y and R = ÔX,φ(y). Then
S/R is a Galois extension of rings with group G which is totally ramified over the unique valuation of R as described in the
preceding paragraph.
For a Galois extension L/K as above, the group G is a semi-direct product of the form P o Z/mwhere P is a p-group and

p - m [4, IV, Cor. 4]. Throughout the paper, we assume that the subgroup P is cyclic.

2.2. Subgroups of a semi-direct product

Suppose G is a semi-direct product of the form P o Z/m where P ' Z/pn and p - m. Let σ be a chosen generator of P .
Let c be a chosen element of orderm in G and letM = 〈c〉. Letm′ = |CentG(σ )|/pn. In other words,m′ = #{g ∈ M | gσg−1
= σ }.
For 0 ≤ i ≤ n, the element σi := σ p

i
has order pn−i and Hi := 〈σi〉 is the unique subgroup of order pn−i in G. Then

{id} = Hn ⊂ Hn−1 ⊂ · · · ⊂ H0 = P .
The semi-direct product is determined by the conjugation action ofM on P . Since cσ c−1 also generates P , then cσ c−1 =

σ α
′

for some integer α′ such that 1 ≤ α′ < pn and p - α′. The action of c stabilizes Hi. Let Ji := (Hi−1/Hi) oM .

Lemma 2.1. (i) The value of α′ does not depend on the choice of generator of P;
(ii) The value of α′ depends on the choice of generator of M as follows; if c0 = cβ for some integer β , then α′0 ≡ (α

′)β mod pn.

Proof. (i) If τ = σ γ , then cτ c−1 = (cσ c−1)γ = (σ α′)γ = τ α′ .
(ii) By induction, c iσ c−i = σ (α

′)i . Thus c0σ c−10 = σ
α′0 . �

Lemma 2.2. The groups Ji are canonically isomorphic for 1 ≤ i ≤ n.

Proof. The groups Ji are semi-direct products of the form Z/p o Z/m. Thus it suffices to show that the action of c on the
equivalence class of σi−1 modulo 〈σi〉 is the same for 1 ≤ i ≤ n. Note that cσ pc−1 = (σ p)α

′

. Thus cσic−1 = σ α
′

i . �

The residue of α′ modulo p can be canonically identified with an element α ∈ F∗p . Alsom/m
′ is the order of α in F∗p .

2.3. Towers of fields

Suppose L/K is a separable Galois extensionwhose group G is of the form Z/pnoZ/mwith p - m. We fix an identification
of Aut(L/K)with G and indicate this by writing that L/K is a G-Galois extension.
Consider the fixed fields Li = LHi and Ki = LHioM for 0 ≤ i ≤ n. So, Ln = L and K0 = K . Let vi be the natural valuation

on Li. Let Θi be the integral closure of R in Li. Then L/Li is an Hi-Galois extension and Li/L0 is a P/Hi-Galois extension. Also
Li/Ki−1 is a Ji-Galois extension. This yields a tower of fields:
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L0
� � Z/p // L1

� � Z/p // · · · � � Z/p // Ln−1
� � Z/p // L

K0
� � //?�

Z/m

OO

K1
� � //?�

OO

· · ·
� � // Kn−1

� � //?�

OO

Kn
?�

OO

By Kummer theory, there exists x ∈ L0 such that L0 ' K [x]/(xm − 1/t). After choosing c ∈ G such that c(x) = ζ x, one
can determine the values of α′ and α for the extension L/K .

2.4. Ramification filtrations

Here is a brief review of the theory of ramification filtrations from [4, IV]. Consider the natural valuation v = vn on L and
a uniformizing parameter π ∈ L. For r ∈ N, let Ir be the rth ramification group in the lower numbering for the extension
L/K . In other words, Ir is the normal subgroup of all g ∈ G such that v(g(π)− π) ≥ r + 1.
The ramification filtration is important because it determines the degree δ of the different of S/R. Namely, by [4, IV,

Prop. 4], δ =
∑
r≥0(|Ir | − 1). If φ : Y → X is a cover of smooth projective connected k-curves, the genus of Y can be found

using the Riemann–Hurwitz formula [5, IV, Cor. 2.4] and this formula relies on the degree of the different at each ramification
point of φ.
Let g ∈ G with g 6= 1. The lower jump for g is the non-negative integer j so that v(g(π) − π) = j + 1. Then g ∈ Ij and

g 6∈ Ij+1. By [4, IV, Prop. 11], p - j for any positive lower jump j. If |P| = pn, then there are n positive indices j1 ≤ · · · ≤ jn at
which there is a break in the ramification filtration in the lower numbering, which are called the lower jumps of L/K .
There is also a ramification filtration I` in the upper numbering. The upper jumps of L/K are the positive breaks u1 ≤ · · · ≤

un in the ramification filtration in the upper numbering. The lower numbering is stable for subextensions [4, IV, Prop. 2] and
the upper numbering is stable for quotients [4, IV, Prop. 14]. Using Herbrand’s formula [4, IV, Section 3], one can translate
between the two ramification filtrations: letting j0 = u0 = 0, then ui − ui−1 = (ji − ji−1)/pi−1m for 1 ≤ i ≤ n.

3. Wild cyclic extensions

In this section, we describe the equations and ramification filtration of the Z/pn-Galois subextension L/L0. The material
in this section is mostly known, but it is all necessary for later results in the paper.

3.1. Cyclic towers of Artin–Schreier extensions

Lemma 3.1. The ith lower jump ji of L/K equals the lower jump of Li/Li−1.

Proof. The ith lower jump ji of L/K is the lower jump of the automorphism σi−1. This is the same as the lower jump of σi−1
for the extension L/Li−1 by [4, IV, Prop. 2]. Since this is the smallest lower jump for the extension L/Li−1, it also equals the
upper jump of σi−1 for L/Li−1. By [4, IV, Prop. 14], this is then the same as the upper jump, and thus the lower jump, of
Li/Li−1. �

3.2. Witt Vectors and p-power cyclic extensions

We recall someWitt vector theory. Let℘ be the operation Fr−Id onWitt vectors, where Fr denotes Frobenius. An element
a of a field F of characteristic p is a ℘th power in F if the polynomial zp − z − a has a root in F .
By [6, p. 331, Ex. 50], every Galois extension of L0 ∼= k((x−1))with group Z/pn has Witt vector equations

(yp1, . . . , y
p
n) = (y1, . . . , yn)+

′(x1, . . . , xn). (1)

where xi ∈ L0 for 1 ≤ i ≤ n such that x1 is not a ℘th power in L0 and where+′ denotes addition of Witt vectors: Moreover,
there is a generator τ of Z/pn such that the action of τ on Witt vectors is

τ(y1, . . . , yn) = (y1, . . . , yn)+′(1, 0, . . . , 0). (2)

Modifying (x1, . . . , xn) by an element w ∈ W n(L0), where W n is the nth truncation of the Witt vectors, changes the
isomorphism class of the extension precisely when w 6∈ ℘(W n(L0)). Thus, since k is algebraically closed, one can choose
(x1, . . . , xn) to be in standard form, i.e., xi ∈ k[x] and either xi = 0 or xi has no exponent divisible by p.
To make (1) more explicit, for 0 ≤ i ≤ n− 1, letWi =

∑i
d=0 p

dXp
i−d

d+1 be the ith Witt polynomial, [4, II, Section 6]. Define
Si ∈ Z[X1, . . . , Xi+1, Y1, . . . , Yi+1] to be the unique formal polynomial such that

Wi(X1, . . . , Xi+1)+Wi(Y1, . . . , Yi+1) = Wi(S0(X1, Y1), S1(X1, X2, Y1, Y2), . . . , Si(X1, . . . , Xi+1, Y1, . . . Yi+1)).

The indexing of these variables is shifted by one from that of [4, II, Section 6] in order to be more consistent with notation
in this paper. By [4, II, Thm. 6], the Si are well defined and have integer coefficients.
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Lemma 3.2. In Z[X1, . . . , Xi, Y1, . . . , Yi],

Si−1(X1, . . . , Xi, Y1, . . . , Yi) = Xi + Yi +
i−1∑
d=1

1
pi−d

(Xp
i−d

d + Y p
i−d

d − Sp
i−d

d−1 )

and the degree of every monomial of Si−1 is congruent to one modulo p− 1.

Proof. The equation follows from
∑i−1
d=0 p

dSp
i−1−d

d =
∑i−1
d=0 p

d(Xp
i−1−d

d+1 + Y p
i−1−d

d+1 ) (see [1, Footnote 4]) and the statement
about degrees from induction. �

For 1 ≤ i ≤ n, let S̄i−1 ∈ Fp[X1, . . . , Xi, Y1, . . . , Yi] be the reduction of Si−1 modulo p and let fi(Y1, . . . , Yi−1, X1, . . . Xi) =
S̄i−1 − Yi. Then fi = Xi + gi where gi ∈ Fp[X1, . . . , Xi−1, Y1, . . . , Yi−1] is a polynomial whose terms each have degree
congruent to one modulo p − 1. The meaning of (1) is that a Galois extension with group Z/pn has equations ypi − yi =
fi(y1, . . . , yi−1, x1, . . . xi).

Lemma 3.3. Let L/L0 be a Z/pn-Galois extension and σ a generator of Z/pn. There exist xi ∈ L0 and yi ∈ L for 1 ≤ i ≤ n such
that L/L0 is isomorphic to the 〈σ 〉-Galois extension with Witt vector equations and Galois action

(yp1, . . . , y
p
n) = (y1, . . . , yn)+

′(x1, . . . , xn)
σ (y1, . . . , yn) = (y1, . . . , yn)+′(1, 0, . . . , 0).

Furthermore, there is a unique choice for (x1, . . . , xn) in standard form.

Proof. There exist xi ∈ L0 and yi ∈ L and a generator τ of Z/pn such that L/L0 has Witt vector Eq. (1) and Galois action
(2). Now σ = τ b for some b ∈ (Z/pn)∗. Then σ(y1, . . . , yn) = (y1, . . . , yn)+′ b(1, 0, . . . , 0). Since b is invertible in
Z/pn ∼= W n(Z/p) ⊂ W n(L0), one can replace (y1, . . . , yn) and (x1, . . . , xn) with the Witt vectors 1b (y1, . . . , yn) and
1
b (x1, . . . , xn). Since Fr is a ring homomorphism [6, p. 331, Ex. 48], the extension L/L0 still has Witt vector Eq. (1) and now
σ(y1, . . . , yn) = (y1, . . . , yn)+′(1, 0, . . . , 0).
By a generalization of [7, Lemma 2.1.5], there is a unique choice of (x1, . . . , xn) in standard form compatible with the

restriction on the Galois action. �

3.3. Ramification filtrations for cyclic p-group extensions

The ramification filtration of aZ/pn-Galois extension is completely determined by either its lower or upper jumps, which
in turn can be determined by the Witt vector equation.

Lemma 3.4. Let L/L0 be a Z/pn-Galois extension with Witt vector (x1, . . . , xn) in Eq. (1) in standard form. Let u =
max{−pn−iv0(xi)}ni=1. Then u is the last upper jump of L/L0.

Proof. This follows from [8, Thm. 1.1]; see also [9, Prop. 4.2(1)]. �

We retrieve the following classical result.

Lemma 3.5. A sequence of positive integers w1 ≤ · · · ≤ wn occurs as the set of upper jumps of a Z/pn-Galois extension of L0 if
and only if p - w1 and, for 1 < i ≤ n, either wi = pwi−1 or bothwi > pwi−1 and p - wi.

Proof. The result, originally found in [1], follows from Lemma 3.4; see also [10, Lemma 19]. �

The following lemma will be used to compare the upper jumps of the G-Galois extension L/K and the Z/pn-Galois
extension L/L0.

Lemma 3.6. Suppose L/K has upper jumps u1 ≤ · · · ≤ un. Then L/L0 has upper jumps w1 ≤ · · · ≤ wn where wi = mui for
1 ≤ i ≤ n.

Proof. By [4, IV, Prop. 2], the lower jumps of L/L0 equal the lower jumps j1 ≤ · · · ≤ jn of L/K . Herbrand’s formula
[4, IV, Section 3] implies that ui − ui−1 = (ji − ji−1)/pi−1m and thatwi − wi−1 = (ji − ji−1)/pi−1 for 1 ≤ i ≤ n. �

4. Tame-by-cyclic extensions

Suppose L/K is a separable G-Galois field extension as in Section 2.2–3.1. In this section, we find necessary conditions on
the ramification filtrations and equations arising from the Z/m-Galois action on L.
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4.1. The case of Galois extensions with group Z/p o Z/m

Lemma 4.1. Consider the J1-Galois extension L1/K with equations xm = 1/t and y
p
1 − y1 = x1 and Galois action c(x) = ζ x and

σ(y1) = y1 + 1.
(i) The lower jump j of L1/L0 satisfies m′ = gcd(m, j).
(ii) Also m|j(p− 1). In particular, j ≡ jpr mod m for any r ∈ N.
(iii) Also c(y1) = α−1y1 = ζ jy1.

Proof. (i) This follows from [4, IV, Prop. 9], see also [7, Lemma 1.4.1(iv)].
(ii) The conjugation action of Z/m on Z/p gives a homomorphism ν : Z/m → Aut(Z/p). By definition, Im(ν) has order
m/m′ and Ker(ν) = 〈cm/m

′

〉. Thusm|m′(p− 1). By part (i),m′ = gcd(m, j), som|j(p− 1).
(iii) [7, Lemma 1.4.1(ii)–(iii)]. �

4.2. A congruence condition on the ramification filtration

Proposition 4.2. (i) The lower jumps in the ramification filtration of the P-Galois extension L/L0 are all congruent modulo m.
(ii) The upper jumps in the ramification filtration of the P-Galois extension L/L0 are all congruent modulo m.

Proof. (i) The ith lower jump of L/L0 is ji by [4, IV, Prop. 2]. Let π be a uniformizer ofΘn and let u = c(π)/π ∈ Θ∗n . In the
notation of [4, IV, Prop. 7], recall that θ0 is a map from I0/I1 to k∗ and θj is a map from Ij/Ij+1 to k for j ≥ 1. Then u equals
θ0(c) ∈ k∗. The order of u is m by [4, IV, Prop. 7]. By the proof of Lemma 2.2, cσi−1c−1 = σ α

′

i−1 for 1 ≤ i ≤ n. Since σi−1
generates Hi−1/Hi = Iji/Iji+1, [4, IV, Prop. 9] shows that θji(σ

α′

i−1) = u
jiθji(σi−1) for 1 ≤ i ≤ n. Thus u

ji = α ∈ k∗ for
1 ≤ i ≤ n and so j1 ≡ · · · ≡ jn mod m.

(ii) Letw1 ≤ · · · ≤ wn be the upper jumps of the P-Galois extension L/L0. Since P is abelian, the Hasse–Arf Theorem implies
thatwi ∈ N. By Herbrand’s formula,wi − wi−1 = (ji − ji−1)/pi−1. Thuswi − wi−1 ≡ 0 mod m by part (i). �

Class field theory approach: If k is instead a finite field, here is a different proof of Proposition 4.2 which uses class field
theory.

Second proof of Proposition 4.2. The G-Galois extension L/K dominates the 〈c〉-Galois extension L0/K where L0 '
k((x−1)), xm = 1/t , and c(x) = ζ x. Let L/L0 be the P-Galois subextension, which has upper jumps w1 ≤ · · · ≤ wn where
wi = mui by Lemma 3.6. Thus the upper ramification group I` of L/L0 equals Hi ifwi < ` ≤ wi+1.
Let Q = (x−1) be the maximal ideal of k[[x−1]]. Consider the unit groups Ud = 1 + Q d of k[[x−1]] [4, IV.2]. By

[4, IV, Prop. 6], Ud/Ud+1 is canonically isomorphic to Q d/Q d+1. Now, Q d carries a natural 〈c〉-module structure where
c((x−1)d) = ζ−dm (x−1)d. Thus Ud/Ud+1 carries a natural structure as a 〈c〉-module, and this structure depends on the
congruence class of dmodulom.
By [4, XV.2, Cor. 3 & pg. 229], there is a reciprocity isomorphism ω : L∗0/NL

∗
→ P and thus there are isomorphisms

ωn : Ud/(Ud+1NU
ψ(d)
L ) → Id/Id+1. Here N : L → L0 is the norm map and ψ is Herbrand’s function. In particular, taking

d = wi, then Uwi/(Uwi+1NU
ψ(wi)
L ) = Hi−1/Hi.

Now Hi−1/Hi has a 〈c〉-module structure and this 〈c〉-module structure is independent of i by Lemma 2.2. After pulling
back by ω, this implies that the 〈c〉-module structure of Uwi/(Uwi+1NUψ(wi)L ) and thus of Uwi is independent of i. Thus ζ−wim
is independent of i and sowi ≡ w1 mod m.
The lower jumps are also congruent modulom by Herbrand’s formula. �

At this point, one can prove that the conditions in Theorem 1.1 are necessary; we will postpone this until Section 5.2.

4.3. Actions and isomorphisms

This section contains two results that will be needed in Section 5.

Proposition 4.3. Suppose L0 ' K [x]/(xm − 1/t) and c(x) = ζ x. Suppose L/L0 is a P-Galois extension with Witt vector Eq. (1),
Galois action (2), and first lower jump j such that ζ j = α−1. Then L/K is a G-Galois extension if and only if c(xi) = ζ jxi and
c(yi) = ζ jyi for 1 ≤ i ≤ n.

Proof. Suppose L/K is a G-Galois extension. Then L1/K is a J1-Galois extension. By Lemma 4.1(iii), c(y1)/y1 = α−1 = ζ j.
Since yp1 − y1 = x1, this implies that c(x1) = ζ

jx1. As an inductive hypothesis, suppose that c(xi) = ζ jxi and c(yi) = ζ jyi for
1 ≤ i ≤ n− 1.
Now Ln/Kn−1 is a Jn-Galois extension of discrete valuation fields and Jn and J1 are canonically isomorphic by Lemma 2.2.

In other words, the value of α for Aut(Ln/Kn−1) is the same as for Aut(L1/K). By Kummer theory, there exists a uniformizer
πn−1 of Ln−1 such that c acts on πn−1 via multiplication by some γ in µm. Then Ln/Kn−1 satisfies the hypotheses of
Lemma 4.1, with 1/πn−1, yn, jn, and γ−1 replacing x, y1, j, and ζ respectively. Applying Lemma 4.1(iii) to Ln/Kn−1 implies
that c(yn)/yn = γ−jn = α−1 = ζ j.
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The equation for Ln/Ln−1 is y
p
n − yn = xn + gn where the terms of the polynomial gn ∈ Fp[x1, . . . , xn−1, y1, . . . , yn−1]

each have degree congruent to one modulo p − 1. By the inductive hypothesis and Lemma 4.1(ii), c scales gn by ζ j. Thus c
scales both ypn − yn − xn and yn by ζ j, which implies c(xn) = ζ jxn.
Conversely, suppose c(xi) = ζ jxi and c(yi) = ζ jyi for 1 ≤ i ≤ n. The proof that L/K is G-Galois proceeds by induction

on n; the case n = 1 can be computed explicitly, see e.g. [7, Lemma 1.4.1]. As an inductive hypothesis, suppose that Ln−1/K
is a G/Hn−1-Galois extension. To finish, it suffices to show that the action of c extends to an automorphism of Ln, i.e., that c
stabilizes the equation ypn − yn = fn for Ln/Ln−1. By Lemmas 3.2 and 4.1(ii), the action of c scales every term of this equation
by ζ j. �

Lemma 4.4. Suppose L/K is a G-Galois extension as in Section 2.3.
(i) There is a Witt vector (x1, . . . , xn) in standard form for the subextension L/L0 and it is uniquely determined up to
multiplication by µm/m′ .

(ii) There are ϕ(m)/ϕ(m/m′) different non-isomorphic G-Galois structures on the field extension L/K such that the action of σ
on L is as in (2).

Proof. For part (i), by Lemma 3.3, for fixed x, there is a uniquely determined Witt vector (x1, . . . , xn) in standard form for
the subextension L/L0. Now x is determined up to multiplication by ζ d, for d ∈ Z. By Proposition 4.3, every monomial
in xi has degree congruent to j mod m. Replacing x with ζ dx scales xi by ζ dj. The values of ζ dj range over µm/m′ by
Lemma 4.1(i).
For part (ii), a G-Galois structure on L/K satisfying the requirement for σ is determined by an isomorphism ι : G →

Aut(L/K) such that ι(σ )(y1, . . . , yn) = (y1, . . . , yn)+′(1, 0, . . . , 0). If h ∈ Aut(L/K), then the map h : L → L yields
an isomorphism of G-Galois extensions L/K → L/K , the first with structure morphism ι and the second with structure
morphismhιh−1. Thus,modifying ιby an inner automorphismyields an isomorphicG-Galois structure on L/K . So the number
of isomorphism classes ofG-Galois structureswith this requirement onσ is given by the number of elements of Aut(G) fixing
σ , divided by the number of Inn(G) fixing σ .
An automorphism γ of G which fixes σ is determined by γ (c). Also γ (c) must have order m and have the same

conjugation action as c on σ , as determined by Lemma 2.1(ii). When G is abelian, then α′ = 1 and there are ϕ(m) choices
for γ (c). This yields the count ϕ(m)/ϕ(m/m′) since m′ = m and since Inn(G) is trivial. If G is non-abelian, then the image
of γ (c) in M must have order m and be congruent to c modulo 〈cm/m

′

〉 = ker(ν). There are pnϕ(m)/ϕ(m/m′) choices for
γ (c). This yields the desired count, since there are pn inner automorphisms of Gwhich fix σ , namely conjugation by powers
of σ . �

5. Main results

Let G be a semi-direct product of the form Z/pn o Z/m. This section contains three results: first we prove that one can
dominate a given Galois extension having groupZ/pn−1oZ/m by a Galois extension having groupZ/pnoZ/m, with control
over the last upper jump; second, we give necessary and sufficient conditions for the ramification filtration of a G-Galois
extension; third, we define a parameter space for G-Galois extensions of K with given ramification filtration η and calculate
its dimension in terms of the upper jumps.

5.1. A wild embedding problem

We prove that one can embed a given Galois extension having group Z/pn−1 o Z/m by a Galois extension having group
Z/pn o Z/m, with control over the last upper jump. See [11, 24.42] for an earlier version of this result, in whichm = 1 and
there is no control over the upper jump. Recall that G/Hn−1 is a semi-direct product of the form Z/pn−1 o Z/m.

Proposition 5.1. Suppose Ln−1/K is a G/Hn−1-Galois extension with upper jumps u1 ≤ · · · ≤ un−1. Let un ∈ 1
mN be such that

either un = pun−1 or both un > pun−1 and p - mun. Suppose also that mun ≡ mu1 mod m. Then there exists a G-Galois extension
Ln/K with upper jumps u1 ≤ · · · ≤ un that dominates Ln−1/K.

Proof. Without loss of generality, one can suppose L0 ' K [x]/(xm − 1/t) and c(x) = ζ x. The Z/pn−1-Galois extension
Ln−1/L0 has upper jumps mu1 ≤ · · · ≤ mun−1 by Lemma 3.6. By Section 3.2, Ln−1/L0 is given by a Witt vector equation
(yp1, . . . , y

p
n−1) = (y1, . . . , yn−1)+

′(x1, . . . , xn−1) for some xi ∈ L0, such that x1 is not a ℘th power in L0. Furthermore, one
can choose (x1, . . . , xn−1) to be in standard form. In particular, if xi 6= 0, then p - v0(xi).
By Proposition 4.3, if 1 ≤ i ≤ n − 1, then c(xi) = ζ jxi and c(yi) = ζ jyi where j = mu1. By Lemma 3.4, mun−1 =

max{−pn−iv0(xi)}n−1i=1 .
If un 6= pun−1, let xn = xmun . In this case, −v0(xn) = mun. If un = pun−1, let xn = 0. In this case, −v0(xn) =

−∞ < pmun−1. In both cases, (x1, . . . , xn) is a Witt vector in standard form. Then the Witt vector equation (y
p
1, . . . , y

p
n) =

(y1, . . . , yn)+′(x1, . . . , xn) yields a P-Galois extension Ln/L0 dominating Ln−1/L0, with upper jumps mu1 ≤ · · · ≤ mun by
Lemma 3.4 (i.e., [8, Thm. 1.1]).
By the definition of xn, then c(xn) = ζ jxn. Let c(yn) = ζ jyn. By Proposition 4.3, Ln/K is a G-Galois extension dominating

Ln−1/K , and it has upper jumps u1 ≤ · · · ≤ un by Lemma 3.6. �
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5.2. Conditions on the ramification filtration

The ramification filtration of a Galois extension with group G of the form Z/pnoZ/m is completely determined by either
its lower or upper jumps. Here are the statement and proof of Theorem 1.1, giving necessary and sufficient conditions on
the ramification filtrations of G-Galois extensions of K .

Theorem 5.2. Let G be a semi-direct product of the form Z/pn o Z/m where p - m. Let σ ∈ G have order pn and let m′
= |CentG(σ )|/pn. A sequence u1 ≤ · · · ≤ un of rational numbers occurs as the set of positive breaks in the upper numbering of
the ramification filtration of a G-Galois extension of k((t)) if and only if:
(a) ui ∈ 1

mN for 1 ≤ i ≤ n;
(b) gcd(m,mu1) = m′;
(c) p - mu1 and, for 1 < i ≤ n, either ui = pui−1 or both ui > pui−1 and p - mui;
(d) and mui ≡ mu1 mod m for 1 ≤ i ≤ n.
Proof. Conditions (a)–(d) are necessary: let u1 ≤ · · · ≤ un be the set of upper jumps of a G-Galois extension of k((t)). The
upper jumps of the Z/pn-subextension L/L0 arew1 ≤ · · · ≤ wn wherewi = mui by Lemma 3.6. Condition (a) follows since
wi ∈ N by the Hasse–Arf Theorem. Condition (b) follows from Lemma 4.1(i). Condition (c) is due to [1], see Lemma 3.5.
Condition (d) follows from Proposition 4.2(ii).
Conditions (a)–(d) are sufficient: recall that G has generators σ (of order pn) and c (of orderm) and cσ c−1 = σ α

′

for some
integer α′ such that 1 ≤ α′ < pn and p - α′. Let α ∈ F∗p ' (Z/p)

∗ be such that α ≡ α′ mod p. Let j = mu1. By condition (b),
ζ j has orderm/m′ in k∗. Likewise, α−1 has orderm/m′ in k∗. Thus there exists an integer β such that ζ βj = α−1.
Consider the 〈c〉-Galois extension L0/K with equation xm = 1/t and Galois action c(x) = ζ βx. Let x1 ∈ xjk[[x−m ]]∗.

Consider the Z/p-Galois extension L1/Lwith equation y
p
1 − y1 = x1 and Galois action σ(y1) = y1 + 1. By [7, Lemma 1.4.1],

L1/K is a J1-Galois extension. It has lower jump j and thus upper jump u1. By conditions (a), (c), (d), and Proposition 5.1,
there exists a G-Galois extension L/K dominating L1/K with upper jumps u1 ≤ · · · ≤ un. �

Corollary 5.3. Let G be a semi-direct product of the form Z/pn o Z/m where p - m. Suppose η is a ramification filtration of G
satisfying conditions (a)–(d). Let f be the order of p modulo m/m′ and let q = pf . Then there exists a G-Galois extension L/K with
ramification filtration η which is defined over Fq.
Proof. It suffices to produce a G-Galois extension L/K whose equations and Galois action have coefficients in Fq. Note that
ζ j1 has orderm/m′ in k∗. By the definition of f , the field Fpf contains the (m/m′)th roots of unity, and thus contains ζ j1 . The
case n = 1 follows by direct computation with the equation yp1 − y1 = x

mu1
1 , see [7, Lemma 1.4.1]. The result then proceeds

by induction on n. For the inductive step, one produces an equation for the extension L/Ln−1 using Proposition 5.1. In the
proof of that result, recall that xn ∈ Fp[x] by definition. Thus the equation has coefficients in Fp by Lemma 3.2. The Galois
action is defined over Fq by (2) and Proposition 4.3. �

5.3. Parameter space for G-Galois extensions

Given a sequence u1 ≤ · · · ≤ un satisfying conditions (a)–(d), let η be the ramification filtration of G having upper jumps
u1 ≤ · · · ≤ un. By Theorem 5.2, there exists a G-Galois extension of k((t))with ramification filtration η. We prove there is a
schemeMη such that there is a natural bijection between the k-points ofMη and isomorphism classes ofG-Galois extensions
of k((t))with ramification filtration η. We calculate the dimension ofMη in terms of the sequence u1 ≤ · · · ≤ un.

Notation 5.4. Given positive integersw andm, let

εp(w,m) = #{e ∈ Z | 1 ≤ e ≤ w, e ≡ w mod m, p - e}.

Lemma 5.5. Let δp(w,m) = 1 if w ≡ ap mod m for some 1 ≤ a ≤ r, where r is the remainder when bw/pc is divided by m,
and δp(w,m) = 0 otherwise. Then εp(w,m) = dw/me − bw/mpc − δp(w,m).
Proof. The number of integers e such that 1 ≤ e ≤ w and e ≡ w mod m is dw/me. To count the number of these which
are divisible by p, consider the set A = {p, 2p, . . . , bw/pcp}. Then A contains at least bbw/pc/mc = bw/mpc elements
e such that e ≡ w mod m. Let r be the remainder when bw/pc is divided by m. Then A contains one additional element
e ≡ w mod m if and only if an element of {p, 2p, . . . , rp} is congruent towmodulom. The formula holds since δp(w,m) = 1
precisely in this case. �

Given a positive integer N , the root of unity ζm/m′ acts on the affine variety AN via multiplication on each coordinate. Let
AN/µm/m′ denote the quotient.

Theorem 5.6. Let G be a semi-direct product of the form Z/pn o Z/m where p - m. Let u1 ≤ · · · ≤ un be a sequence satisfying
conditions (a)–(d) and η be the ramification filtration of G with upper jumps u1 ≤ · · · ≤ un. Let Nη =

∑n
i=1 εp(mui,m). Then

there is an open subscheme Uη ⊂ ANη/µm/m′ and a finite étale map π : Mη → Uη of degree ϕ(m)/ϕ(m/m′) such that the
k-points of Mη are in natural bijection with isomorphism classes of G-Galois extensions of k((t)) with ramification filtration η.
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It is clear that dim(Mη) = Nη depends only on p,m, u1, . . . , un.
Proof. By Lemma 4.4, it suffices to show that the collection of Witt vectors (x1, . . . , xn) in standard form, which, as in
Proposition 4.3, yield G-Galois extensions L/K with ramification invariants u1 ≤ · · · ≤ un, is in natural bijection with the
k-points of an open subscheme of ANη .
The proof is by induction on n. For the case n = 1, Lemma 3.4 shows that x1 ∈ k[x] must have degree mu1. By

Proposition 4.3, the extension L1/K is J1-Galois if and only if c(x1) = ζmu1x1, in other words, if and only if all exponents
of x1 are congruent tomu1 modulom. Since x1 is in standard form, it has no exponents with degree divisible by p. Thus the
number of possible exponents is ε = εp(mu1,m). Since the leading coefficient of x1 is non-zero, the choice of xn is equivalent
to the choice of a k-point in an open subscheme of Aε . (See also [7, Proposition 2.2.6]).
Now, suppose that (x1, . . . , xn−1) is a Witt vector in standard form, which yields a G/Hn−1-Galois extension Ln−1/K with

upper jumps u1 ≤ · · · ≤ un−1. Let ε = εp(mun,m). It suffices to show that Witt vectors (x1, . . . , xn) in standard formwhich
yield an extension L/K dominating Ln−1/K with upper jumps u1 ≤ · · · ≤ un are in natural bijection with the k-points of an
open subscheme Ũn ⊂ Aε .
The Witt vector (x1, . . . , xn) for the extension L/K is determined by the choice of xn ∈ k[x] in standard form. By

Proposition 4.3, the extension L/K is G-Galois if and only if c(xn) = ζmu1xn, in other words, if and only if all exponents
of xn are congruent tomu1 modulom. Recall thatmu1 ≡ mun mod m by Proposition 4.2.
By Lemma 3.4, the extension L/K has upper jump un if and only if deg(xn) = −v0(xn) ≤ mun, where equality must hold

if un > pun−1. Thus, an exponent e appearing in xn satisfies 0 ≤ e ≤ mun, and e ≡ mun mod m, and p - e. The number of
these exponents is ε = εp(mun,m). The leading coefficient of xn must be non-zero when un > pun−1. The choice of xn is
thus equivalent to the choice of a k-point in an open subscheme of Aε . �

Remark 5.7. Consider the contravariant functor Fη from the category of schemes to sets, which associates to a scheme B
the set of G-Galois extensions of OB((t)) whose geometric fibres have ramification filtration η. The schemeMη does not
represent Fη on the category of k-schemes because there are non-constant G-Galois covers defined over a base scheme B,
which become constant after pullback by a finite morphism B′ → B. The scheme Mη is a fine moduli space for Fη on a
category where such morphisms are trivialized; see [7, Thm. 2.2.10] for the case n = 1.

Remark 5.8. In [12, Prop. 4.1.1], the authors calculate the dimension of the tangent space of the versal deformation space
of a Z/pn-Galois extension in terms of its ramification filtration. Theorem 5.6 is less technical than their result and it is not
clear how to compare them directly.

6. Equations for Z/p3-Galois extensions

It is well known that themethods of Section 3.2 can be used to find equations forZ/pn-extensions [13], but the equations
themselves are difficult to find in the literature. Here are formulae for the general Z/p3-Galois extension of K .

Example 6.1. Suppose L/K is aZ/p3-Galois extension of K ∼= k((t)). Then there exist x1, x2, x3 ∈ K so that L/K is isomorphic
to the following extension:

yp1 − y1 = x1;

yp2 − y2 =
xp1 + y

p
1 − (x1 + y1)

p

p
+ x2;

yp3 − y3 =
xp
2

1 + y
p2
1 − (x1 + y1)

p2

p2
+
xp2 + y

p
2 − (x2 + y2 +

xp1+y
p
1−(x1+y1)

p

p )p

p
+ x3.

A generator σ of the Galois group can be chosen so that its action is given by:

σ(y1) = y1 + 1;

σ(y2) = y2 +
yp1 + 1− (y1 + 1)

p

p
;

σ(y3) = y3 +
yp
2

1 + 1− (y1 + 1)
p2

p2
+
yp2 − (y2 +

yp1+1−(y1+1)
p

p )p

p
.

The integral coefficients in Example 6.1 can be considered to be in Fp ⊂ k.

Proof. For the equations, it suffices to recursively compute fi = S i−1 − yi for 1 ≤ i ≤ 3, starting with S0(x1, y1) = x1 + y1
and S1(x1, x2, y1, y2) = x2 + y2 + (x

p
1 + y

p
1 − (x1 + y1)

p)/p. The Galois action is given by σ(yi) = yi + f̃i, where
f̃i = fi(y1, . . . , yi−1, 1, 0, . . . , 0). To see this, note that y

p
i = yi + fi and (1) imply that (y1 + f1, . . . , yn + fn) =

(y1, . . . , yn)+′(x1, . . . , xn). Substituting (1, 0, . . . , 0) for (x1, . . . , xn) yields (y1 + f̃1, . . . , yn + f̃n) = (y1, . . . , yn)+′
(1, 0, . . . , 0), which equals σ(y1, . . . , yn) by Lemma 3.3. �
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Example 6.2. When p = 2 and x = t−j, here are equations for a Z/8-Galois extension of k((t)), which is defined over F2
and has upper jumps j, 2j, and 4j:

y2 − y = x; z2 − z = xy; w2 − w = x3y+ y3x+ xyz.

The Galois action is given by y 7→ y+ 1, z 7→ z + y, andw 7→ w + y3 + y+ yz.
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