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Abstract 

This paper examines network design where OD demand is not known a priori, but is the subject of responses in household or 
user itinerary choices to infrastructure improvements. Using simple examples, we show that falsely assuming that household 
itineraries are not elastic can result in a lack in understanding of certain phenomena; e.g., increasing traffic even without 
increasing economic activity due to relaxing of space-time prism constraints, or worsening of utility despite infrastructure 
investments in cases where household objectives may conflict. An activity-based network design problem is proposed using the 
location routing problem (LRP) as inspiration. The bilevel formulation includes an upper level network design and shortest path 
problem while the lower level includes a set of disaggregate household itinerary optimization problems, posed as household 
activity pattern problem (HAPP) (or in the case with location choice, as generalized HAPP) models. As a bilevel problem with an 
NP-hard lower level problem, there is no algorithm for solving the model exactly. Simple numerical examples show optimality 
gaps of as much as 5% for a decomposition heuristic algorithm derived from the LRP. A large numerical case study based on 
Southern California data and setting suggest that even if infrastructure investments do not result in major changes in link 
investment decisions compared to a conventional model, the results provide much higher resolution temporal OD information to 
a decision maker. Whereas a conventional model would output the best set of links to invest given an assumed OD matrix, the 
proposed model can output the same best set of links, the same daily OD matrix, and a detailed temporal distribution of activity 
participation and travel from which changes in peak period OD patterns can be observed. 

© 2013 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Delft University of 
Technology. 
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1. Background 

Network design problems (NDPs) are a class of optimization models related to strategic or 
tactical planning of resources to manage a network [1]. Even for purposes of improving road networks for 
commuters [2] and despite the complexity of traveler choices [3], NDPs generally assume either static 
demand at a node (elastic or not) or trip-based origin-destination demand. While this assumption is 
sufficient in many applications, there is increasing recognition that explicit consideration of travelers’ 
schedules, choices, and temporal decision factors is needed. This need has grown in parallel to three 
related research trends in network design in the past few years: (operational) network design with 
dynamic assignment considerations when considering only peak period effects, (tactical) service network 
design with schedule-based demand under longer periods of activity, and (planning) facility location 
problems that explicitly consider the effects that they have on decisions related to routing and scheduling  
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of vehicles. At the planning level, these NDPs have often been based on private firm decisions, rather 
than on household-based urban transportation planning considerations. 

The rationale behind dynamic network design problems is rooted in bi-level NDPs that feature 
congestion effects. These NDPs operate primarily in civil infrastructure systems, as other types of 
networks do not generally share the same “selfish travelers” assumptions. In this paradigm, the 
performance of infrastructure improvements is assumed to depend primarily on the route choices of 
travelers (the commuter) during peak periods of travel, which in turn depend on the choices of other 
travelers. The dynamic component further allows modelers to assess intelligent transportation systems 
(ITS) that require more realistic modeling of traffic propagation obeying physical queuing constraints and 
information flow. Some examples include the stochastic dynamic NDP from Waller and Ziliaskopoulos 
[4], Heydecker’s [5] NDP with dynamic user equilibrium (DUE), the linear DUE-NDP from Ukkusuri 
and Waller [6], dynamic toll pricing problem with route and departure time choice [7], and the reliability 
maximizing toll pricing problem with dynamic route and departure time choice [8]. Although these NDPs 
are especially useful for ITS evaluation and operational strategies, they focus primarily on choices made 
over a single trip.   

Tactical level NDPs tend to place more emphasis on time use and scheduling over congestion 
effects. Tactical service NDPs [9] are a specific class used to manage fleets of vehicles with such 
temporal decision variables as service frequency. However, most of these NDPs focus on the schedules of 
the service being provided, rather than on incorporating the demand-side schedules of the travelers/users 
as endogenous elements of the design. Despite the incorporation of temporal effects, most service NDPs 
assume trip-based demand. There has been a surge of research in schedule-based transit assignment (as 
opposed to NDP), where travelers’ departure time choices are handled explicitly. Tong and Wong [10] 
formulated such a model with heterogeneous traveler values of time. Poon et al. [11] presented a dynamic 
equilibrium model for schedule based transit assignment. Hamdouch and Lawphongpanich [12] 
developed a schedule-based transit assignment model that accounts for individual vehicle capacities. They 
proposed one of the few schedule-based service network design problems, in the form of a transit 
congestion pricing problem that models passengers’ departure time choices [13]. Their model uses a 
time-expanded network and considers fare pricing to optimize the distribution of travelers within specific 
capacitated transit vehicles. The origin-destination (OD) demand remains as fixed trips, and not as linked 
itineraries. 

Despite having the greatest need for such consideration, there are no NDP models at the planning 
level that consider routing and scheduling choices of travelers. It has long been acknowledged that models 
of traveler activities and time use are much more accurate than statistical trip-based approaches ([3], 
[14]). Activity consideration can bring about a tighter integration of infrastructure investment with land 
use planning and demand management strategies. Activity-based models can capture realistic impacts on 
travelers that are not limited to single trips but rather to chains of trips and activities forming detailed 
daily itineraries. Historically, the bulk of activity-based models have been designed as econometric 
models that do not account for network routing and scheduling mechanisms. The emerging trend in 
seeking to integrate network characteristics has been to force an interaction with a dynamic traffic 
assignment problem (e.g. [15], [16]). However, this approach still ignores the network constraints present 
in scheduling and selection of activities for a household. There have been two primary exceptions to this 
approach. The first is the disaggregate activity route assignment model (HAPP) pioneered by Recker 
[17], with subsequent studies on dynamic rescheduling/rerouting of those itineraries [18] and calibration 
of the activity route assignment models ([19], [20]). The second is the aggregate time-dependent activity-
based traffic assignment model of Lam and Yin [21]. Both modeling frameworks address the issue of 
activity scheduling, although Lam and Yin’s model gives up disaggregate itinerary route choices and trip 
chains in favor of capturing congestion effects. 

Although the transportation planning field has not seen any significant NDP research that models 
traveler routing and scheduling, the private logistics field has. One such model is the location routing 
problem (LRP), formulated and solved by Perl and Daskin [22]. The LRP is a set of inter-related 
problems that includes a facility location problem. What distinguishes LRPs from other facility location 
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problems is that it doesn’t assume that demand to a node is accessed through a single round trip. Instead, 
a lower level vehicle routing problem is embedded in the model to satisfy demand nodes in the most 
efficient manner, subject to where the facilities are located. In essence, it is an integrated NDP that 
accounts for responsive routing and scheduling. Numerous studies have been conducted on variants of the 
problem or on applications in industry. Several literature reviews have been published, including one 
from Min et al. [23] and a more recent contribution by Nagy and Salhi [24]. Problem types developed 
over the years that may be applicable to activity-based network design in transportation planning include: 
stochastic LRP ([25]), where there is more than one planning horizon with time-dependent customer 
locations and demand; LRP with a mixed fleet [26] for multimodal network consideration; location-
routing-inventory [27] for modeling activity types as inventory-based needs that are fulfilled periodically; 
and LRP with nonlinear costs [28] that may provide means to incorporate congestion effects at link or 
activity node level.  Readers are referred to Nagy and Salhi’s paper for further details. One direct 
application of LRP with a truck fleet replaced by household travelers is shown by Kang and Recker [29]. 
They use HAPP as a routing subproblem in a hydrogen vehicle refueling station LRP that allows the 
behavioral impacts of households’ responses to located facilities to reflect siting decisions. 

Given the increasing realization that transportation planning needs to reflect travelers’ preferences 
at the level of the activity, we make a parallel observation to Perl and Daskin—that in the transportation 
planning field there is also a need for integrated NDPs that feature explicit consideration of travelers’ tour 
patterns that include trip chaining, scheduling, time windows and even destination choice. At the activity-
based level, we are concerned more with tactical and planning level policies, and less so with such 
operational technologies as ITS and information flow (hence foregoing congestion effects for now). In 
essence, we propose to change the conventional NDP, with a given OD matrix, to a new class of activity-
based NDPs. This new problem accounts for a population of travelers with demand for activities at 
particular locations and at particular times, which are fulfilled via calibrated activity routing models. Like 
the LRP, the activity-based NDP is a set of integrated models. Unlike the conventional NDP, the OD 
matrix is not given a priori, but rather depends on the scheduling choices of households, which in turn 
depend on travel impedances. The solution of this set of models is a corresponding set of infrastructure 
link investments as well as the resulting optimal itineraries decided by the households in response to 
changes in link travel characteristics. The itineraries can then be aggregated to obtain the final OD matrix 
resulting from the NDP. 

In Section 2, several examples and insightful paradoxes are used to illustrate why an activity-
based approach is necessary at the tactical and planning level NDP. Section 3 introduces the formulation 
as a bi-level structure with shortest path allocation and disaggregated subproblems per household. While 
the inspiration of the formulation is from Perl and Daskin’s LRP, key differences are also noted. An 
alternative model with activity/destination choice is also provided. Since the problem is nonconvex and 
NP-hard, Section 4 presents a heuristic solution method and suggestions for meta-heuristics, using a 
simple test network to demonstrate the method and the sensitivity of underlying assumptions. Section 5 
presents a larger-scale case study of the Orange County, California region as a test network to 
demonstrate the model’s practical application to systematic improvement. 

 
2. Motivating examples 
 

The argument that we provide here, much like Perl and Daskin [22] did for locating warehouses, 
is that the choice of which element of a network to improve can have a significant impact on how 
households set their itineraries each day. Trip-based (even dynamic ones) or fixed schedules ignore such 
changes as departure time, sequence of activities, or routing that each driver/household makes according 
to the changes made in the network. The following three cases demonstrate the influence that network 
designs can have on a household, which would be unaccountable under trip-based circumstances. For 
these examples, the utility maximization framework from Recker [17] is assumed: households are multi-
objective decision makers with their own sets of objectives with respective weights that dictate how they 
choose to schedule and route their activities. This has been demonstrated empirically by Chow and 
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Recker [20], where a population of households were fitted with heterogeneous sets of objective weights
and desired arrival times to activities such that each of their observed itineraries were considered optimal
to them.

2.1. Departure time choice and itinerary re-sequencing

Assume a household has one member and one vehicle, and two activities to perform for the day: a 
work activity and a grocery shopping activity. Specifications of start (au, bu) and completion (an+u, bn+u)
time windows and activity durations (su) are shown in Table 1, in units of hours. Here and throughout, the
notation used in Recker [17] is followed. Assume also that the household objective is solely to minimize
the length of their itinerary, i.e., 2 1 0min ( )2 1 0

v v

v V
(( 2 1 0(( , where TuTT v is the arrival time to node u via 

vehicle v, and node 0 is the home starting point while node 2n+1 is the home ending point.

Table 1. Case 1 household characteristics
Household Location bu u,u u,a b,u u, bn u n uu nu n,n u n ua b,n u nu n,b,u n, us

Home Node 0 6,21b0 000 0a0 0 [10,22]b2 1 2 11n n1 222 12a2 1 221 21 21 2 NA

Work activity Node 3 9,9 10,22 8

Grocery Shopping activity Node 1 5,20 6,22 1

Assume a grid network with four nodes, and network connections as shown in Figure 1-(a). 
Travel time on each link, tij, is 0.5 hours. Figure 1-(b) shows the optimal pattern if no investment is made. 

(a) Current Network (b) Optimal Household Activity Pattern
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(c) 03 0.7t → Time Adjustment (d) 30 0.7t3 → Activity Sequence and Time Adjustment

Fig. 1. The optimal household activity patterns for Case 1

Even in this simplest case, two types of schedule responses can be observed for standard link investments
which would be ignored in conventional NDPs. If link {0,3} is constructed with travel time of 0.7 hours 
as shown in Figure 1-(c), the household member would now be able to delay their departure time from 
8AM to 8:18AM. Alternatively, if link {3,0} is instead constructed with travel time of 0.7 hours as shown 
in Figure 1-(d), the optimal itinerary results in a re-sequence of activities as well as an adjustment in 
departure times.

2.2. Trip chaining tradett -offso

A paradoxical consequence of considering elastic itineraries in network design is that it is
possible to evaluate a link investment that generates traffic without any increase in economic activity. 
Traditionally, the argument made with elastic demand considerations is that improving infrastructure may
result in additional trips made to fulfill latent demand between an OD pair. However, exceptions can also
exist if travel is viewed as a way of achieving objectives while constrained within a space-time prism. By 
relaxing some of those constraints through network improvements, we may observe only increased trips
due to untangling of less desired travel patterns within the tighter constraints. This can result in more trips
made if it improves the overall objective of the household but would not contribute in any way to
economic demand because the household may be reconfiguring the same itinerary without adding new 
destinations to visit. This occurrence can be best illustrated with a household with activities that have very 
strict time windows.

We consider the same activity agenda as in the previous section, but with both activities having
strict start time windows as in Table 2.  Both activities require the household member to be at the
respective locations at a specific time, which is often quite a realistic assumption. Assume also that this
particular household has two potentially conflicting objectives: to minimize the travel time with weight

, and to minimize delay from returning home after an activity, with weight . The delay from the 
returning home objective represents the desire of the household to minimize the duration of any particular 
activity period away from home, as discussed by Recker [17] and calibrated empirically by Chow and 
Recker [20] for a set of households. The higher the weight of this objective relative to travel time, the
more likely it is that a household would not want to trip chain. Then the objective function becomes:
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min ( )T uw uw C u n u(
v V w u u

((T
V wV w

((uw uw Cuw uw Cuw uw
v

N N Nu uuu uu

where XuwXX v is a binary variable representing a route taken between node u and node w with vehicle v, and 
the weights are assumed to be and . The optimal solution on the base network is shown in 
Figure 2-(a), with an objective function travel disutility of 14.25 and a total of three trips made.  Due to
the time windows, the household traveler is constrained to trip chain from the work activity to the social
activity.

Table 2. Case 2 household characteristics
Household Location bu u,u u,a b,u u, bn u n uu nu n,n u n ua b,n u nu n,b,u n, us

Home Node 0 6,21b0 000 0a0 0 [10,22]b2n u n uu n2222a2 22222 NA

Work activity Node 3 9,9 10,22 8

Social activity Node 1 18.25,18.25 18.5,22 1

(a) Optimal Household Activity Pattern (b) 30 0.7t3 → extra trip generation

Fig. 2. The optimal household activity patterns for Case 2

Now consider a link addition {3,0} with travel time of 0.7 hours.  Because the household can now return 
home immediately after work and still make the social activity in time, they do so for an improved travel
disutility of 12.9. The result is not only a change in trip ODs (due to re-sequence in a tour), but one extra 
trip is also created as shown in Figure 2-b (4 trips). Essentially a trip has been added without adding a
new non-home destination to visit, but the household sees an improvement in travel disutility because of 
the relaxation of spatial-temporal constraints that were binding before the network improvement. A 
conventional trip-based approach, or even a fixed schedule approach, would miss such a response
altogether. 
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2.3. Increasing travel disutility 
 

If we consider a continuous link improvement (in which a route travel time is improved), then 
another counterintuitive situation can occur. Consider the household in Table 2 again, but in this case let’s 
assume that the household seeks to minimize idle time. Idle time is defined as the extent of the travel day 
that is not used in performing activities or traveling—such tradeoffs are similar to studies comparing 
values of in-vehicle travel time against out-of-vehicle access or idle/wait time. The potential for conflict 
between the two objectives is not immediately apparent; however, in the presence of strict time windows 
it is possible that improving travel times can result in increasing idle time. Consider the following: 

 

2 1 0min ( ) ( )v v v
T W uw uw W n

v V w u v V
Z t X T T

N N

 

 
where  and . The durations of the activities  are not included because they are constant 
and drop out. In the base case shown in Figure 2-(a), the disutility under this new objective is 16.625 
instead of 14.25.  

If a continuous improvement is made to link {3,1} such that travel time improves from 0.5 hours 
to 0.25 hours (e.g. repaving, lane expansion), then due to time window constraints there are no other 
alternative routes and the household would still have to follow the same schedule. However, this results in 
a direct trade-off between travel time and idle time. If a household values idle time minimization more 
than travel time minimization, then such an improvement can result in a paradoxically higher disutility, 
even without considering congestion effects. The travel time improvement simply results in a decrease in 
the travel time objective of 0.25 but a direct increase in idle time of 0.25. Since , the disutility 
actually increases from 16.625 to 16.75. Effects such as this would be completely ignored if NDPs were 
applied without considering their effect on household scheduling. However, explicitly incorporating 
household scheduling mechanisms into the NDP allow paradoxes such as this to be avoided.  

We have presented three scenarios that can arise from network improvements when realistically 
considering the effects they have on household scheduling and planning. Network changes can cause 
significant reshaping of temporal /spatial constraints for households that result in changes in their trip 
patterns. We argue that these effects should not be ignored when considering NDPs at the tactical or 
planning level.  
 
3. Proposed NDP-HAPP model 
 
3.1. Definitions 
 

The activity-based NDP using HAPP subproblems to address household schedule response to 
network changes is here designated as NDP-HAPP. As a kernel activity-based NDP, the NDP-HAPP is 
formulated using the simplest structure. More complex formulations that explore link capacities, vehicle 
and household member interactions, multimodal networks, or congestion effects will be explored in future 
research. The kernel formulation is first presented as a set of multiple subproblems, and then further 
modified to consider activity choice in cases with non-compulsory activities. There are two distinct types 
of networks in this problem: an infrastructure network where changes can actively be made, and a 
responsive activity network that represents the routing and scheduling decisions made at the household 
level. Assume an infrastructure network layer , and the following parameters for the infrastructure 
network system: 
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N  set of all nodes in the analysis 
E  set of all direct links in the analysis 

ijF  fixed link design costs 

ijc  operational per unit link routing costs 
B  total budget for the network system  
ijt  travel time between the direct link from node i to node j 

,v h
ijc  personal travel cost for vehicle v of household , between the direct link from node i to 

node j 
 
Variables related to the infrastructure network system are:  

ijf  flow on the direct link  

ijz  binary decision variable that indicates whether or not link  is chosen as part of the 
network’s design 

 
Assume also an activity layer , and the following parameters for the activity network system: 
P  set of all activity nodes in the analysis.  It is a subset of the node set from the 

infrastructure network, . 
( , ),      ,u w u w P  route from activity point u to activity point w . Its connectivity is derived 

from .    
H  set of households using on the activity nodes P in the analysis. 

 
Although their physical locations are the same, the two sets of networks operate in a bi-level 

fashion. This bi-level property of NDP-HAPP, together with its unfolding in the time-space dimension, 
can be depicted conceptually in Figure 3. Such separation of networks—a supernetwork approach—has 
been used widely in activity-based transportation networks, mainly concerning various modal choices and 
their specific networks (e.g. [30], [31]). However, an optimization-based routing and scheduling 
procedure, to our knowledge, has never been applied to the activity layer in response to infrastructure 
changes. 

Following the notation of Recker [17], we define the following sets and parameters that are 
specific for each household, h H : 

 
{ , ,...}a b

h h hβ  set of relative weights for different travel disutility terms for household h  

hA  set of out-of-home activities to be completed by travelers in household h  

hV  set of vehicles used by travelers in household  to complete their scheduled 
activities. 

h hn A  number of activities to be performed by household  

hP P  set designating location at which each assigned activity is performed by 
travelers in household ; the set of activities and their physical locations are 
different for each household. 

hP P  set designating the ultimate destination of the “return to home” trip from out-
of-home activities to be completed by travelers in household, . (Note: the 
physical location of each element of A

hP  is “home”.) 
 

N

h

h

h
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Fig. 3. Bi-level interactions between the infrastructure and activity networks

h hh
u u, h
u u,a b,h
u u, time window of available start times for activity u for household h .  
h hh

h hn u n uh h
an u nu n,

h
,u n, h

ua b,h
n nb,u n, time windows for the “return home” arrival from activity u of household h .

(Note: h
ubu must precede

h

h
n uh

bn by an amount equal to or greater than the duration 
of the activity.)

h hh
0 00 0

ha b0 0
h departure window for the beginning of the travel day for household h .
h hh
2 1 2 1h hnh

a2 1 21 21 22 1
ha b2 1 2

h
221 21 2 arrival window by which time all members of the household h must complete 

their travel.
h
us : duration of activity u of household h .
h
uwt travel time from the location of activity u to the location of activity w.

,h
uwc travel cost for household h , from location of activity u to the location of 

activity w  by vehicle v.
h
CB travel cost budget for household h .

,h
TBT travel time budget for the household h ’s member using vehicle v.

h h hP P P=h h h  set of nodes comprising completion of the activities of household h .

,2 1h h h,2,2,2,2,2Q P0h h0,00, set of all nodes for household h , including those associated with the 
initial departure and final return to home.  This is a subset of P .

In the following, are used to refer to nodes in the infrastructure layer, and link refers to 
the direct link connecting those two nodes. Notation are used to refer to activity nodes in the activity 

H1
H2

H
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layer, and it is not necessarily a direct infrastructure link but rather a path between . Such path 
information as travel time and travel cost are passed onto the activity layer from the infrastructure layer, 
but the connectivity data of the path needs to be drawn from the infrastructure layer.   

 
The household-specific decision variables are: 

 
, ,     , , ,v h

uv h hX u w v V hQ H  binary decision variable equal to one if vehicle  v  travels 
from activity  u  to activity  w, and zero otherwise. 

,     ,h
u hT u P h H  time at which participation in activity u of household h  

begins. 
, ,

0 2 1, ,     ,
h

v h v h
n hT T u P h H  times at which vehicle v  from household h  first departs 

from home and last returns to home, respectively  
,     ,h

u hY u P h H  total accumulation of either sojourns or time (depending 
on the selection of  D  and )  of household h  on a 
particular tour immediately following completion of 
activity u. 

 
Variables connecting the infrastructure network, , and the activity network system, , are: 

  

, , ( )uw ij uw ij z  binary indicator variable whether route  in the activity network uses 
link  in . Assuming the shortest cost path is used between two 
activity nodes, the design variables determine the connectivity of nodes in 

. If link  is not constructed, ,  is automatically 0, and 
otherwise, it can be identified by solving a shortest path problem between 
the origin and the destination, . 

*, ,
,

0 0
( )

( ) 1
ij

uw ij uw ij
uw ij ij

z
z

z
 

where  is the solution of a shortest path problem for each 
activity link , i.e. 
 

Shortest Path Allocation Problem 
 

,
( , )

min ij uw ij
i j

t
E

 (1) 

 
subject to 

, ,

1
0 ,

1
uw ji uw ij

j j

i u
i u w
i wN N

 (2) 

, (0,1)uw ji  (3) 
 
The problem is defined for all households and their activity routes, , , ,h hu w v V hQ H .  
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( )uw uwt t z  travel time from the location of activity u to the location of activity w. It is a 
function of the decision variable vector z , and the given network ( , )N E  since 
the connectivity decision variables ijz  determine the travel times. 

,( ) ( ),     , ,uw uw ij uw ij h
j i

t t z t u w h
E E

z Q H     (4) 

 
, , ( )v h v h

uw uwc c z  travel cost from the location of activity u to the location of activity w for vehicle v  
of household h . It is a function of the decision variable vector z , and the given 
network ( , )N E  since the connectivity decision variables ijz  determine the travel 
costs. 

, , ,
,( ) ( ),     ,v h v h v h

uw uw ij uw ij h
j i

c c z c u w
E E

z Q                     (5) 

( )ij ijf f X  link flow on direct link ij. It is a function of the household activity decision 

variable vector, X , and connects the path flow on layer AL  to the link flow on 

layer IL . It is a function of the decision variable vector z , and the given network 

( , )N E  since the connectivity decision variables ijz  determine the link flows. 
,

,( ) ( ) ,      ( , )
h

h h

v h
ij uw ij uw

h u w v V

f X X i j
H Q Q

z E            (6) 

 
3.2. Decomposed formulation of NDP-HAPP 
 

Typically, the LRP formulation includes three parts: location, routing, and allocation. This 
property applies to NDP-HAPP as well, where the upper level “location” is the network design variables 
and the lower level routing part is the HAPP model. Allocation refers to assignment of the activity link 
impedance from the shortest path problem in the infrastructure network, shown in Equation (1) – (3). The 
objective function of the upper problem in the LRP is to minimize the overall cost, which is comprised of 
depot cost and vehicle cost.  

Similarly, NDP-HAPP in the most basic form is decomposed into two models solved as a bi-level 
problem: NDP (upper) and HAPP (lower). There are two sets of decision makers, so the solution can be 
classified as a leader/follower Stackelberg equilibrium, as described in Yang and Bell [2]. Instead of a 
traffic equilibrium lower level problem, the NDP-HAPP has a set of household scheduling problems in 
the lower level for each household. Considering the network design problem as the upper level decision 
and the household activity/scheduling/routing decisions (HAPP) as reactions to the network design, we 
can express the problem most generally in Equations (7). 

 
,min ( , ( )) ( , )

subject to 
( , ( )) 0

z f dNDPG z f X z f

H z f X
                                (7a) 

 
where 
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,min ( ( ( , )), ( ( , ))) ( , )
subject to 

( , ( ( , )), ( ( , ))) 0

X T dHAPPg X f z T f z X T

h z X f z T f z
           (7b) 

 
where G  is the objective function, z is the decision vector, and H  is the constraint set of the upper level 
problem. In the lower level problem, g is the objective function, ,X T are the decision vectors, and h  is 
the constraint set. 

The kernel network design problem we present is a modified version of the unconstrained 
multicommodity case of the formulation in Magnanti and Wong [1]. The formulation minimizes the 
design cost while satisfying the given flow demands at origin and destination nodes. The formulation is in 
terms of direct links and link flows only, whereas the integrated NDP-HAPP includes path flows which 
are connected by ,uw ij  to direct link flows, ijf ,. In order for the OD pairs to be assigned to sequences of 
direct links, we treat each OD pair ( , )u w as a commodity as in the case of multicommodity flow 

problems, i.e., we define a single commodity , ( , )uw
ijf u w K  where

( , )

uw
ij ij

u w
f f

K

, and where K is 

the set of all OD ,u w  pairs.   
We formulate this decomposed NDP (dNDP) in terms of direct link flows only, and each OD pair 

is represented as a commodity. The demand values are calculated as shown in Equation (14).  They take 
household sequence decisions and aggregate them into origin-destination pairs.  
 
Upper Level NDP (dNDP) 

( , ) ( , )

min ( , )dNDP ij ij ij ij
i j i j

z f F z c f
E E

 (8) 

subject to: 
 

,     , ( , )uw uw uw
ji il

j l
f f D i u u w

N N
N K  (9) 

,      , ( , ) ,uw uw uw
ij li

j l
f f D i u u w

N N
N K  (10) 

=0,      , , , ( , )uw uw
ji ij

j j
f f i i u i w u w

N N
N K  (11) 

,      ( , ) , ( , )uw uw
ij ijf D z i j u wE K  (12) 

(0,1),      ( , )ijz i j E   (13) 
 
where 

, ,      , ( , )
h

uw v h
uw

h v V

D X w i u w
H

N K   (14) 

 
Equations (9) – (10) require each path ( , )u w K  to satisfy the given OD demand.  Equations (11) 
simply show the conservation of flows for intermediate nodes. Equation (12) constrains flow variables to 
be on the links that are built in a manner that does not exceed the capacity.  Because we do not consider 
cases in which the capacity of links is exceeded in this paper, only the shortest path will be loaded with 
flows.  As such, the shortest path information is provided directly by the uw

ijf  variable. We can implicitly 
obtain the shortest path variables for each OD pair as shown in Equation (15) instead of having to solve 
Equations (1) – (3) separately.  
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,
0 0

,        ( , ) , ( , ) , ,
1 otherwise

uw
ij

uw ij h
f

i j u w v V hE K H  (15) 

 
The decomposed lower-level HAPP (dHAPP) problem is shown in Equations (16) – (19). It is 

composed of the set of constraints in the Appendix which would be equivalent to the original constraints 
from Case 1 in Recker [17] if travel time/cost factors are not functions of the allocated shortest path. 
More complex variations presented in [17] can be substituted if household member interactions and 
carpooling effects are desired. Also, each household can be treated separately since all of the constraints 
and objective functions are separable by household. With constant travel times/costs, i.e., without 
congestion effects, each household’s dHAPP is solved separately.  
 
 
Lower Level HAPP (dHAPP) for Each Household 
 

, , , ,
2 1 0min ( , ) ( )

h
h h

h h

T v h v h C v h v h
dHAPP h n h uw uw

h h u wv V v V

X T T T c X
H H Q Q

 (16) 

Subject to  
 (A1) – (A26) 
 
where  

,
( , )

( ) ,     , ,uw ij uw ij h
i j

t z t u w h
E

Q H  (17) 

, ,
,

( , )
( ) ,     ,v h v h

uw ij uw ij h
i j

c z c u w
E

Q  (18) 

,
0 0

,        ( , ) , ( , ) , ,
1 otherwise

uw
ij

uw ij h
f

i j u w v V hE K H  (19) 

 
As discussed in other HAPP model studies, the objective shown in Equation (16) is just one example of of 
a multi-faceted objective problem. Others can be specified and estimated using the method from Chow 
and Recker (2012). The process of specifying the multiple components of the objectives and calibrating 
their coefficients with desired arrival times can be thought of as a confirmatory modeling process that 
seeks to fit a hypothesis of how household travelers behave onto a data set. Fitness of an objective is 
determined by the significance of its estimated coefficient relative to other objectives. For example, a data 
set might reveal that Equation (16) results in a length of day coefficient (first term) equal to 0.0001 
relative to a weight of 1 for the travel cost objective. In that case, it would suggest that the first objective 
is not very important in the travelers’ scheduling choices, and removing it might result in smaller 
variances in the remaining objectives when re-calibrated.  

NDP-HAPP as presented in Section 3.2 differs conceptually from the LRP in two primary ways. 
First, the LRP has a single decision maker involved in both planning and tactical strategic design, whereas 
the NDP-HAPP has a single decision maker involved in planning and multiple household decision makers 
responding to the plan at a tactical level. Second, the node demand for the upper level problem in the LRP 
is known a priori, but the cost of delivering service to the demand node is not known. Instead, it is 
derived from the output of the VRP. Alternatively, the NDP-HAPP does not have OD demand known a 
priori, but costs between nodes are given; the OD demand is derived from the output of the HAPP.  
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3.3. Generalized NDP-HAPP (NDP-GHAPP) 
 

The NDP-HAPP model is extended to include the capability for households to choose locations 
for such non-primary activities as grocery shopping and refueling. This is done by relaxing the condition 
in the HAPP that requires each household to visit every location, determined exogenously; rather in NDP-
HAPP each household visits one candidate location from a cluster of such activity types. This is similar to 
the generalized traveling salesman problem (e.g., the E-GTSP in [32]) and generalized vehicle routing 
problem [33] in the logistics literature, where visits to nodes are modified to visits to single nodes from 
each cluster. The generalized HAPP (GHAPP) has been formulated and applied ([29], [34]), and a 
“profitable tour” variation of this approach was developed for activity-based traveler information systems 
[35] and for testing algorithms in scenario analysis [36].  

In GHAPP, the constraints in Equation (A1) are modified to Equation (A1-1). Instead of requiring 
each node to have a flow, the generalized formulation instead requires one node from a cluster of nodes to 
be visited. Compulsory activity types would have only one node in the cluster, whereas such non-primary 
activities as grocery shopping or refueling could have multiple candidate nodes from which to choose.  
 

, 1,     ,
h hAa

v h
uw a

v wu

X A h
V QP

A H  (A1-1) 

 
where  

1 2{ , ,..., ,..., }a mA A A AA  set of  different activity types with unspecified locations  

aAP   set designating “potential” locations at which activity aA  may be performed 
 
When integrated with NDP, GHAPP becomes infeasible if one or more candidate nodes are not 

connected to the network; constraints in (A7), (A11) also need to be modified to be conditional such that 
the temporal constraints are imposed only when there is a visit to that candidate location.  This allows 
having one or more of unconnected candidate nodes, which have infinite travel times.  

 
, 1 ( ) ,     ,

h h

v h h h h h
wu u u uw n u h

v V w
X T s t T u P h

Q
z H  (A7-1) 

, 1 ,     ,
h h

v h h h h
wu u u u h

v V w
X a T b u P h

Q
H  (A11-1) 

 
 Similarly, when the objective function involves time variables, those of the unvisited activity 
nodes need to be constrained. For example: 
 

, 0 0,     ,
h h

v h h
wu u h

v V w
X T u P h

Q
H   (A7-2) 

 
3.4. Decomposition solution algorithm 
 

There are many different types of solution algorithms developed for LRPs [24], and they can 
potentially be adopted for NDP-HAPP. However, the iterative method proposed here decomposes the 
problem into several blocks that actually represent each decision maker’s rationale in this complex 
problem. Additionally, this kind of decomposition does not necessarily require the problem to be 
formulated in the structure of mathematical optimization as long as the drivers’ response to the network 
design is captured and updated. This means that different types of integrated activity-based approaches 
can be used to model individuals’ routing/scheduling behavior. Because the majority of these activity-



171 Jee Eun Kang et al.  /  Procedia - Social and Behavioral Sciences   80  ( 2013 )  157 – 185 

based models are based on discrete-choice or simulation-based models (e.g., [37] – [39]), the suggested 
decomposition method is highly adaptable to different types of activity-based models.  

The decomposed problems remain computationally challenging, particularly the NP-hard ([17]) 
HAPP. Because these problems are widely studied, there are various methods available. Geoffrion and 
Graves [40] are referred for network design problems, and Cordeau and Laporte [41] are referred for a 
survey of algorithms for the Pickup and Delivery Problem with Time Windows (PDPTW), on which the 
simplest HAPP is based. The decomposition proposed here is comparable to Perl and Daskin [22] in the 
context of Location Routing Problems and the Iterative Optimization Assignment (IOA) algorithm in 
Yang and Bell [2] in the context of bi-level Network Design Problems. Perl and Daskin [22] used three 
decomposed models to tackle the warehouse location routing problem: the complete multi-depot vehicle-
dispatch problem (MDVDP), the warehouse location-allocation problem (WLAP), and the multi-depot 
routing-allocation problem (MDRAP).  The location-allocation and muti-depot routing allocation blocks 
are in parallel with dNDP and dHAPP.  For NDP, the iterative optimization-equilibrium in Friesz and 
Harker [42] includes similar blocks of Equilibrium Assignment Program and Design Optimization, in line 
with dHAPP and dNDP. Since there is no congestion in the dHAPP model, the issue of having IOA 
converge to a Cournot-Nash equilibrium is not relevant here. For the examples and case studies presented 
in this paper, the overall processes are coded in Java calling a CPLEX library for dHAPP and dNDP 
problems. 

An iterative solution algorithm for the NDP-HAPP is depicted in Figure 4. First, the initial 
network decision solution is assumed to use all links, 0 1, ( , )ijz i j E .  Then, 0

,uw ij  can be derived from 
0
ijz  using the standard shortest path problem—for example, Floyd’s Algorithm can be used to efficiently 

update the travel time matrix.  Based on the updated travel times, dHAPP is solved independently for 
each household since no congestion effect is present. Hypothetically, if congestion is incorporated in 
future research (perhaps through integration with Lam and Yin’s [21] framework to provide feedback on 
the skim table in a fashion similar to how the Trip Distribution step can be updated with Trip Assignment 
results in the Four Step Model), this framework should still be feasible. After the travel decisions are 
made by each household, supply and demand are updated from Equations (15), and dNDP can then be 
solved as the conventional NDP.  The proposed iterative process continues until there is no improvement 
in the objective function. The implicit shortest path allocation from the upper level problem and the path-
link conversion conditions in Equations (4) – (6) are maintained throughout this iterative process. The 
same algorithm can be applied to NDP-GHAPP.  
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Fig. 4. A decomposition solution method for NDP-HAPP

4. Numerical examples

4.1. Simple example withee knownkk optimal o solution

Assume a grid network with nine nodes, with possible link construction as shown in Figure 5. 
When constructed, travel time for each link is 0.5.  Construction cost for each link is 3, and operating cost 
per link flow is 0.5, i.e.,
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Assume two households, 1 2{ , }1 2,,1 21 2H , with one vehicle each, 1 2{1},  {1},2V1 {1} 2{1} and their 

activities 1 {work, grocery shopping}A11 , 2 {work, general shopping}A22 to perform. These
activities’ locations in the infrastructure layer are shown in Figure 5, and their activity start/end time
windows, activity durations are all shown in Table 3.  Except for the activity start time windows of work 
activities, time windows are not necessarily constraining, leaving some room to explore different path
sequences.  Both households’ objective functions are assumed to be minimizing total travel cost only 
(households consider the travel costs for all direct links), ,min (

h
h h

h v h v h,( )dHAPP uw uw( )
u v V

c X,v h,
uw uuw))) c ,

Q Qhh wh

. 

Table 3. Simple example household characteristics
Location on 

ILI

h hh
u u, h
u u,a b,h
u u, h hh

h hn u n uh h
an u nu n,

h
,u n, h

ua b,h
n nb,u n, h

us

1h11 home Node 0 6,21h hh
0 000 0a0 0
h [10,24]h hh

2 1 2 11h hnh
a2 1 21 221 22 1a2 1 2

h
221 21 2 NA

1h11 work activity Node 2 9,9.5 10,22 8

grocery shopping activity Node 5 5,22 10,22 1

2h home Node 5 6,21h hh
0 000 0a0 0
h [10,22]h hh

2 1 2 11h hnh
a2 1 21 221 22 1a2 1 2

h
221 21 2 NA

2h work activity Node 6 8.5,9 10,22 8

general shopping activity Node 8 5,21 10,22 1

Fig. 5. Supernetwork depiction.

Because the NDP-HAPP is not a simple problem to check for optimality, all possible
combinations of household decisions are enumerated and given to dNDP, and its objective value
combined with the objective value of corresponding household decision combination is used to derive the
true optimal solution value. Figure 6 shows the solution from the proposed method (6-(a), 6-(b)) and the 
actual optimal solution (6-(c), 6-(d)). The decomposition solution converged after one iteration and is 5%
worse than the actual optimal solution, 40, for this simple example. Detailed illustration of the
computational process is available in Table 4. 

1h1

2h

AAL

ILLI
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(a)  Decomposition dNDP Solution (b) Decomposition dHAPP Solution

      
(c)  Optimal dNDP Solution   (d) Optimal dHAPP Solution

Fig. 6. NDP-HAPP decomposition solution comparison to enumerated exact solution
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Table 4. Detailed computational illustration of the basic NDP-HAPP example 

 Iteration 1 Iteration 2 

dHAPP1 
Path1: Home (0) → work (2) → grocery shopping (5) 
→ home (0) 
Objective Value: 3 

Path: Home (0) → work (2) → grocery 
shopping (5) → home (0) 
Objective Value: 3 

dHAPP2 
Path2: Home (5) → work (6) → general shopping  (8) 
→ home (5) 
Objective Value: 3 

Path: Home (5) → work (6) → general 
shopping  (8) → home (5) 
Objective Value: 3 

dNDP 

Network Design Decisions: Z01, Z12, Z25, Z30, Z36, 
Z43, Z54, Z36, Z78, Z85 

dNDP objective value: 36 
 
HH1 Paths link Flows:  
 Home (0) → (1) → Work (2) 
 Work (2) → Grocery Shopping (5)  
 Grocery Shopping (5) → (4) → (3) → Home (0)  
 

HH2 Paths link Flows:  
 Home (5) → (4) → (3) → Work (6)  
 Work (6) → (7) → General Shopping (8)  
 General Shopping (8) → Home (5) 
 
 

Update each dHAPP objective values: 
HH1: 3 
HH2: 3 

NA3 

Final 
Objective 42 42 

1These paths are based on the assumption that all links are available. 
2These paths are based on the assumption that all links are available. 
3No changes in variables and objective function value. Therefore the algorithm stopped after this iteration. 
 
 
4.2. Simple example: generalized HAPP 

Using the generalized model allows us to include behavioral changes in destination choice as well 
as routing/scheduling of activities with respect to network design decisions. Following the example in 
Section 4.1, assume that there are two grocery shopping locations, node 1 and node 5, 

{1,5}
aA GroceryShoppingP , and two general shopping locations, node 3 and node 8, {3,8}

aA GeneralShoppingP
—each household is required to visit one, and only one, of the candidate locations to perform the shop 
activity.   

Here, NDP-GHAPP optimality is checked in the same way as in the previous example, i.e., by 
comparing to the results of dNDP for all possible combinations of household decisions, including the 
destination choice as well as path sequence decisions and arrival time decisions to return.  The solution 
from the iterative method reached the true optimal value after three iterations, shown in Figure 7. The 
intuition is that the flexibility introduced by NDP-GHAPP allows the method to search for many different 
options. Detailed illustration of the computational process of the proposed algorithm is shown in Table 5.  
In this simple example, changes in activity sequence, link level flow in dNDP, and dNDP network design 
decisions are shown, resulting in a joint output of infrastructure link investments, destination choices for 
each household, and schedule choices for each household.  
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Table 5. Detailed computational illustration of the NDP-SHAPP example 
 Iteration 1 Iteration 2 Iteration 3 Iteration 4 

dHAPP1 

Path1: Home (0) → 
grocery shopping (1) → 
work (2) → home (0) 
Objective Value: 2 

Path: Home (0) → work 
(2) → grocery shopping 
(1) → home (0) 
Objective Value: 2 

Path: Home (0) → 
grocery shopping (5)  → 
work (2) → home (0) 
Objective Value: 4 

Path: Home (0) → 
grocery shopping 
(5)  → work (2) → 
home (0) 
Objective Value: 3 

dHAPP2 

Path2: Home (5) → work 
(6) → general shopping  
(8) → home (5) 
Objective Value: 3 

Path: Home (5) → work 
(6) → general shopping  
(8) → home (5) 
Objective Value: 3 

Path: Home (5) → work 
(6) → general shopping  
(3) → home (5) 
Objective Value: 4 

Path: Home (5) → 
work (6) → general 
shopping  (3) → 
home (5) 
Objective Value: 4 

dNDP 

Network Design 
Decisions: 

 Z01, Z10, Z12, Z21, 
Z58, Z67, Z76, Z78, 
Z85, Z87 

dNDP objective value: 
35 
 
HH1 Paths link Flows:  
 Home (0) → Grocery 
Shopping  (1) 

 Grocery Shopping (1) 
→ Work (2)  

 Work (2) → (1) → 
Home (0)  
 

HH2 Paths link Flows:  
 Home (5) → (8) → (7) 
→ Work (6)  

 Work (6) → (7) → 
General Shopping (8)  

 General Shopping (8) 
→ Home (5) 

 
 
 

Update each dHAPP 
objective values: 
HH1: 2 
HH2: 3 

Network Design 
Decisions: 

Z03, Z10, Z21, Z36, 
Z52, Z67, Z78, Z85 

dNDP objective value: 
32 

 
 

HH1 Paths link Flows:  
 Home (0) → (3) → (6) 
→ (7) → (8) → (5) →  
Work (2) 

 Work (2) →Grocery 
Shopping (1)  

 Grocery Shopping (1) 
→ Home (0)  
 

HH2 Paths link Flows:  
 Home (5) → (2) → (1) 
→ (0) → (3) → Work 
(6)  

 Work (6) → (7) → 
General Shopping (8)  

 General Shopping (8) 
→ Home (5) 

 
Update each dHAPP 
objective values: 
HH1: 4 
HH2: 4 

Network Design 
Decisions: 

Z03, Z10, Z21, Z34, 
Z36, Z45, Z52, Z63 

dNDP objective value: 
31 

 
 

HH1 Paths link Flows:  
 Home (0) → (3) → (4) 
→ Grocery Shopping 
(5)  

 Grocery Shopping (5) 
→ Work (2)  

 Work (2) → (1) → 
Home (0)  
 

HH2 Paths link Flows:  
 Home (5) → (2) → (1) 
→ (0) → (3) → Work 
(6)  

 Work (6) → General 
Shopping (3)  

 General Shopping (3) 
→ (4) → Home (5) 

 
Update each dHAPP 
objective values: 
HH1: 3 
HH2: 4 

NA3 

Final 
Objective 40 40 38 38 

1These paths are based on the assumption that all links are available.  
2These paths are based on the assumption that all links are available.  
3No changes in variables and objective function value. Therefore aborted after this iteration. 
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(a)  Optimal Solution   (b) Optimal Solution

Fig. 7. NDP-SHAPP example enumerated optimal solution

4.3. Large network example: NDPee -HAPP

This case study illustrates the performance of the NDP-HAPP solution algorithm for a major 
roadway system located in Orange County, California, a subsystem of the Los Angeles metropolitan 
roadway network. The base network with household locations and their activities throughout the day are
shown in Figure 8-(a). We assume that the network design decision maker is a public agency from Orange
County, and its goal is to provide the best mobility for Orange County residents, where the mobility is
expressed in terms of total travel times.  Hypothetically suggested candidate improvements on the
network system are extensions of SR 39, SR 57, SR 55, SR 22, SR 261, and SR 241 as seen in dashed red 
lines in Figure 8-(b).   

Specifications of each candidate link are in Appendix B. Speeds are drawn from the average
speed for all links on the same facility, and construction cost for each link is assumed to be proportional
to both average speed and distance. 

A sample of 60 single-member, single-vehicle households residing in Orange County drawn from 
the 2001 California Household Travel Survey [43]3 is used to reflect fairly realistic trip patterns of this
class of households. The objective function for dNDP is to minimize the total travel time for the system, 

( , )

min ( , )dNDP ij ji(
j,,

t f) ij jij, ), t
E

, and the objective function for each dHAPP is to minimize its own travel 

disutility. For this example, individual household’s travel disutility is defined by the linear combination of 
the total extent of the day, the travel times, and the delay of return home caused by trip chaining multiple
out-of-ff home activities using weights E T D

h h h
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(a) Sample households and their activity locations   (b)   Extracted network 

Fig. 8. Large-scale case study area 

The weights of these 60 households are individually estimated from the inverse optimization calibration 
process in Chow and Recker [20].   For the households in the sample, the estimated results have average 
values of 0.84, 0.74, 3.45E D T

h h h , which means that on average these household decision 
makers value a minute of travel time savings about 4 times more than a minute of total extent of the day 
savings, and about 5 times more than a minute delay in returning home caused by trip chaining from out-
of-home activities. The values were based on having the same set of arrival time penalties for all activity 
types, with 0.613 early penalty and 2.396 late penalty, similar to Chow and Recker [20]. The correlations 
from the 60 samples were close to zero for ,E T  and ,D T , although the correlation between extent of day 

savings and return home delay was , 0.248E D . Time windows of activities are separately estimated 
using the methodology from Kang and Recker [34], which adopted the method from Recker and Parimi 
[44] with slight modifications. 

In Table 6, results of NDP-HAPP are compared to conventional NDP solutions that take the O/D 
matrix derived from the optimal HAPP results with current network as an input. Six different budget 
limits are tested. The results indicate that both dNDP and dHAPP objective function values improved 
with increasing budget limits, together with more households benefiting from the improvements. These 
households experience shorter travel times, but given the coarse geographic network and the limited 
activity participation from the 60 single-member households sampled, these improvements are not 
sufficiently large for the sample households to change their activity sequences For example, 38% of the 
total trips are intrazonal trips; although we have assigned a nominal travel time for intrazonal trips, it is 
highly unlikely that one would change the sequence of trips in a way that shifts intrazonal trips to 
interzonal trips. Another explanation can be the activity participation. More than 70% of households in 
the sample performed only one out-of-home activity: these cases can never change activity sequences 
regardless of network level-of-service. The O/D table stays the same, and therefore the conventional NDP 
delivers what appears to be the same results as NDP-HAPP. However, a view of the time of day 
distribution of all activity participation reveals changes that can be captured as a result of the NDP-HAPP, 
as shown in Figure 9.  
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Fig. 9. Comparison of activity arrival time histograms 
 
As shown in Figure 9, the schedules of most households did not change much towards the evening, but 
shifts in arrival times can be seen as a consequence of changes in the network. There is a noticeable shift, 
particularly in the morning periods, as a result of the network improvements and the structure of the time 
windows defined for the households’ activities. In other words, even though the total daily OD patterns 
did not change, the morning peak period OD patterns shifted in this simplest of examples drawn from a 
small sample of households. We can expect that as we evaluate larger samples of households with more 
members and interactions among them, and joint destination and schedule choices, the differences 
between NDP and NDP-HAPP would only be greater. 
 
5. Conclusion 
 

Given the arguments for considering activity behavior in transportation planning, it is logical to 
consider the applicability of activity scheduling in network design problems. Conventional NDPs studied 
previously focused on congestion issues, such as Braess’ Paradox, and at best considered only supply side 
schedules. This research takes a step in advancing NDP theory where OD demand is not known a priori, 
but rather is the subject of responses in household itinerary choices that depend on the infrastructure 
improvements. Using simple examples, we show that falsely assuming that household itineraries are not 
elastic can result in a lack of understanding in certain phenomena; e.g., increasing traffic even without 
increasing economic activity due to relaxing of space-time prism constraints, or worsening of utility 
despite infrastructure investments in cases where household objectives may conflict.  
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Table 6. Large-scale NDP-HAPP results 

Budget 
NDP-HAPP Conventional NDP 

# 
iterations 

Link Construction 
Decision 

dNDP 
objective 

dHAPP 
objective 

# total trips 
(# intrazonal) 

# HHs 
affected 

Computation time 
(seconds)1 

Link Construction 
Decision 

NDP 
objective 

Before 
Improvement NA NA 27.02 616.49 199 

(76) NA NA NA 27.02 

1000 2 8988, 7875, 7578 25.99 609.58 199 
(76) 5/60 306 8988, 7875, 7578 25.99 

2000 2 
8988, 7875, 7578, 
7937, 8660, 6786, 

8887 
25.30 606.51 199 

(76) 13/60 294 
8988, 7875, 7578, 
7937, 8660, 6786, 

8887 
25.30 

3000 2 

8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 

8889 

24.88 604.49 199 
(76) 14/60 326 

8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 

8889 

24.88 

4000 1 

8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 
8889, 6162, 6589, 

8765, 8788 

24.79 604.12 199 
(76) 17/60 196 

8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 
8889, 6162, 6589, 

8765, 8788 

24.79 

5000 1 

8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 
8889, 6162, 6589, 
8765, 8788, 6261 

24.79 604.11 199 
(76) 17/60 191 

8988, 7875, 7578, 
7937, 8660, 6786, 
8887, 6086, 8667, 
8889, 6162, 6589, 
8765, 8788, 6261 

24.79 

No Limit 1 All 24.79 604.11 199 
(76) 17/60 215 All 24.79 

 

 

                                                           
1 For calculating this computation time, we did not use any decomposition or heuristic method. All calculations are done by calling a CPLEX library directly 
from proposed formulations.  
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 An activity-based network design problem is proposed using the location routing problem as 
inspiration. The kernel problem is a bilevel formulation that includes an upper level network design 
and shortest path problem while the lower level includes a set of disaggregate household itinerary 
optimization problems, posed as HAPP (or in the case with location choice, as generalized HAPP) 
models. By using the simplest case HAPP model to represent the kernel problem, conclusions made 
with it can be extended to more complex variations. As a bilevel problem with an NP-hard lower level 
problem, there is no algorithm for solving the NDP-HAPP exactly. Nonetheless, the simple numerical 
examples demonstrate the sufficient accuracy of the decomposition heuristic algorithm derived from 
the LRP. The large numerical example based on Southern California data shows that the solution 
algorithm can handle medium-sized applications. The computation times were found to be reasonable 
considering the complexity of the problem posed. The setting also suggests that even if infrastructure 
investments do not result in major changes in itineraries (or any, in this particular example due to the 
small sample of simple 1-member households that do not have many activities in their itineraries), the 
results provide much higher resolution information to a decision maker. Whereas a conventional NDP 
would output the best set of links in which to invest given an assumed daily OD matrix, the NDP-
HAPP can output the same best set of links, the same daily OD matrix, plus a detailed time-of-day 
temporal distribution of activity participation and travel that shows changes in OD patterns for peak 
periods of interest. 
 Beyond the most obvious extensions and future research applicable to this work (improved 
heuristics, adding uncertainty, dynamic policies, etc.), there are a number of important issues that need 
further study. Congestion effects certainly fall among the top of that list, and the interplay between 
congestion effects and schedule effects will be an interesting challenge to tackle. The kernel NDP-
HAPP currently handles planning and tactical considerations, but expansions of the problem are 
needed to include such operational network design strategies as optimal toll pricing, ramp metering, or 
signal timing. There are actually two levels of congestion for consideration. The first is the effect on 
the infrastructure layer, which is what Lam and Yin [21] or a dynamic traffic assignment integration 
could achieve. Congested links in the upper level problem would result in multiple paths between each 
pair of nodes, which means some weighting of travel times is needed to translate over a single 
perceived travel time matrix for the lower level household scheduling problems. We suspect that 
although incorporating congestion effects in HAPP should be straightforward by using feedback loops 
with a connected DTA model, the consideration of congestion along with demand scheduling within 
an NDP framework will be not be so simple. Recent advances in activity-based travel simulations can 
at least provide a convenient platform to generate synthetic data for a whole population, which is 
required for integration of network design problems with both congestion and demand.  

The other congestion effect is at the activity layer, and more generally speaking refers to both 
negative (congestion) and positive (bandwagon) effects. For example, the time-dependent utility of 
some activities may depend heavily on how popular they are with multiple individuals. Another effect 
that can be incorporated is the link/node capacity in the upper level problem. Since only the shortest 
path between all nodes is being allocated to the households, adding capacity would require some 
weighted average path travel times similar to the link congestion effect. Also, by adding node 
capacity, we can impose upper limits of each facility location which ultimately leads to utility changes 
of activity participation at a given time segment.   
 We believe that there is a tremendous opportunity to apply activity-based NDPs to networks 
where demand scheduling is a more important consideration than congestion effects: one obvious 
application is multimodal transport system network design. Because there are only supply-side 
scheduling considerations in the state-of-the-art NDPs for multimodal systems, each system can only 
be evaluated on its own. However, a unified demand scheduling platform is needed so that alternative 
systems and their effects on households’ schedules can be evaluated in a NDP framework. Due to the 
lack of such a unified treatment using demand scheduling, many modern multimodal transport systems 
(park-and-ride, carsharing, demand responsive transit, parking pricing, etc.) cannot be evaluated by 
public planning agencies—the historical attention on only congestion has left out the importance of 
demand scheduling which is more critical for developing these modern systems.  

Another important consideration is the number of new types of NDPs that can benefit from 
having activity or itinerary response, not just from transportation planning perspective. For example, 
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private firms can integrate supply chain demand networks with their facility networks in a similar 
fashion so that supply chain patterns (modeled as activity schedules) can be output along with facility 
investment decisions in an integrated fashion.  
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Appendix A: dHAPP Constraints (same as original HAPP constraints in Recker, 1995) 
 

, 1,     ,
h h

v h
uw h

v V w
X u P h

Q
H         (A1) 

, , 0,     , ,
h h

v h v h
uw wu h h

w w
X X u P v V h

Q Q
H       (A2) 

,
0 1,     ,

h

v h
w h

w P

X v V h H          (A3) 

, ,
,2 1 0, 0,     ,

h h

v h v h
u n u h

u P u P

X X v V h H        (A4) 

, ,
, 0,     , ,

h h

v h v h
wu w n u h h

w w
X X u P v V h

Q Q
H       (A5) 

,     , ,h h h h
u u uw n u hT s t T u w P h H        (A6) 

, 1 ,     , , ,v h h h h h
uw u u uw w h hX T s t T u w P v V h H      (A7) 

, ,
0 0 01 ,     , ,v h v h h h h

w u w w h hX T s t T w P v V h H      (A8) 
,
,2 1 ,2 1 2 11 ,     , ,v h h h h h

u n u u u n n h hX T s t T u P v V h H      (A9) 

,     ,h h h
u u u ha T b u P h H          (A10) 

,
0 0 0 ,     ,h v h h

ha T b v V h H         (A11) 
,

2 1 2 1 2 1,     ,h v h h
n n n ha T b v V h H         (A12) 

, 1 ,     , , ,v h h h
uw u w w h h hX Y d Y u P w P v V h H      (A13) 

, 1 0,     ,w , ,v h h
uw w h h hX Y u P P v V h H       (A14)

,
0 01 ,     , ,v h h h

w w w h hX Y d Y w P v V h H       (A15) 

0 00,     0 ,     ,h h
hY Y D u P h H        (A16) 

, , , ,     
h h h

v h v h v h
uw uw C

v V u w
c X B h

Q Q
H         (A17) 

, , ,     ,
h h h

h v h v h
uw uw T h

v V u w
t X B v V h

Q Q
H        (A18) 

, (0,1),     , , ,v h
uv h hX u w v V h HQ        (A19) 

  



185 Jee Eun Kang et al.  /  Procedia - Social and Behavioral Sciences   80  ( 2013 )  157 – 185 

 
Appendix B: Case Study Link Improvement  
 

ID A node B node Facility Distance 
(miles) 

Travel Time 
(minutes) 

Avg Speed 
(MPH) Cost 

3779 37 79 SR 39 6.03 13.13 27.56 166.19 
7937 79 37 SR 39 6.03 13.13 27.56 166.19 
7917 79 17 SR 39 5.5 11.98 27.56 151.58 
1779 17 79 SR 39 5.5 11.98 27.56 151.58 
6086 60 86 SR 57 6.36 6.50 58.75 373.65 
8660 86 60 SR 57 6.36 6.50 58.75 373.65 
8667 86 67 SR 57 4.77 4.87 58.75 280.24 
6786 67 86 SR 57 4.77 4.87 58.75 280.24 
4839 48 39 SR 55 12.27 15.68 46.96 576.20 
3948 39 48 SR 55 12.27 15.68 46.96 576.20 
6162 61 62 SR 22 5.29 6.71 47.28 250.11 
6261 62 61 SR 22 5.29 6.71 47.28 250.11 
6587 65 87 SR 261 4.6 4.30 64.20 295.32 
8765 87 65 SR 261 4.6 4.30 64.20 295.32 
8788 87 88 SR 261 2.53 2.36 64.20 162.43 
8887 88 87 SR 261 2.53 2.36 64.20 162.43 
8889 88 89 SR 261 4.07 3.80 64.20 261.29 
8988 89 88 SR 261 4.07 3.80 64.20 261.29 
7875 78 75 SR 241 5.65 5.21 65.09 367.76 
7578 75 78 SR 241 5.65 5.21 65.09 367.76 

 

 


