SCIENCES

# On the $C^{0}$ compactness of the set of the solutions of the Yamabe equation 

Thierry Aubin<br>Université Pierre et Marie Curie, Place Jussieu, 75005 Paris, France<br>Received 15 November 2007<br>Available online 11 January 2008


#### Abstract

On a compact Riemannian manifold, we talk again on the $C^{0}$ compactness of the set of the solutions of the Yamabe equation. Among other results, we give here a very simple proof of the compactness of this set when the conformal Laplacian $L$ is invertible, except on the standard sphere of course. © 2008 Elsevier Masson SAS. All rights reserved.


Keywords: Yamabe equation; Co-compactness of the set of solutions; Hebey-Vaugon's equality

## 1. Introduction

On a compact $C^{\infty}$ Riemannian manifold of dimension $n$ and scalar curvature $R$, we suppose that the conformal Laplacian $L$ is invertible. The Yamabe equation is [1,9]:

$$
\begin{equation*}
L \varphi=\Delta \varphi+\frac{n-2}{4(n-1)} R \varphi=n(n-2) \varphi^{(n+2) /(n-2)}, \quad \varphi>0 . \tag{*}
\end{equation*}
$$

There are many articles on the study of the $C^{0}$ compactness of $\mathcal{F}$ the set of the solutions of this equation. In particular Y.Y. Li [6,7] (with Zhang), ([8] with Zhu), T. Aubin [2-5] and the references inside.

All proofs begin by considering a sequence $\left\{u_{i}\right\}$ of solutions of $(*)$, such that the sup of $u_{i}=u_{i}\left(P_{i}\right)=M_{i} \rightarrow \infty$ with $P_{i} \rightarrow P$ a point of the manifold. Since the problem is conformally invariant, we consider $g$, in the conformal class of the initial metric, $g$ the Cao-Günther metric at $P$. Let $\left\{x^{j}\right\}$ or $\{r, \theta\}$ be geodesic coordinates in a ball $B_{P}(\delta)$.

[^0]Let $G_{L}$ be the Green function of $L$ at $P$, denote by $G(P, Q)$ the function proportional to $G_{L}$ which has $r^{2-n}$ as leading singular part at $P$.

With the usual notation of Y.Y. Li, the entire number $\omega$ is defined by $\left\|\nabla^{\alpha} W\right\|(P)=0$ for $\alpha<\omega,\left\|\nabla^{\omega} W\right\|(P) \neq 0, W$ being the Weyl tensor. In $B_{P}(\delta)(\delta$ is sufficiently small), let $\bar{R}$ be the leading part in $r$ of $R$, and $\mu$ the order of $\bar{R}$. $\mu$ satisfies $\mu \geqslant \omega$. We suppose in this article $\mu=\omega$, otherwise it is done [2].

We continue the study of the $C^{0}$ compactness of $\mathcal{F}$. We suppose known the essential knowledge of [2] and [4], as well as [3] and [5] on the positive mass.

## 2. First results. Study of the integral $J$

Let $\mathcal{E}$ be the Euclidean metric on $R^{n}, s$ the restriction of $\mathcal{E}$ to $S_{n-1}$ and $\nabla$ the covariant derivative with respect to $s$. In the limited expansion in $r$ of $g$ in $B(\delta)$, we are interested by three terms, $\mathcal{E}$, the terms in $r^{\omega+2}$ and $r^{2(\omega+2)}$, the other terms are in $\tilde{h}$ :

$$
g=\mathcal{E}+r^{\omega+2} \bar{g}+r^{2(\omega+2)} \hat{g}+\tilde{h}
$$

( $\bar{g}$ and $\hat{g}$ are two covariant symmetric 2-tensors on $S_{n-1}$.)
Since $|g|=1, \bar{g}_{i j} s^{i j}=0, \bar{g}_{i j} \bar{g}^{i j}=Q(\theta)=2 \hat{g}_{i j} s^{i j}$ and $\bar{\int}_{\partial B(r)} \tilde{h}_{i j} s^{i j} d \sigma=o\left(r^{2(\omega+2)}\right)$. The indices go up with $\left(\left(s^{i j}\right)\right)$ the inverse matrix of $\left(\left(s_{i j}\right)\right), \bar{\int}$ means the average.

In [2] and [4] we saw that we have to compute the integral of $R$ on $\partial B(r)$ when $\omega \leqslant[n / 2-3]$. Now if $2 \omega>n-6$, we prove that the set of the solutions of the Yamabe equation is compact in $C^{k}$ for any $k \in \mathcal{N}$, by using the positive mass theorem [3,5]. In [2] we proved:

## Theorem 1.

$$
\begin{aligned}
& \bar{R}=\nabla^{j k} \bar{g}_{j k}, \\
& r^{-2(\omega+1)} \int_{\partial B(r)}^{\bar{c}} R d \sigma=B / 2-C / 4-(1+\omega / 2)^{2} Q+o(1),
\end{aligned}
$$

where_A $=\bar{\int}_{\partial B(r)} \nabla_{i} \bar{g}^{i k} \nabla^{j} \bar{g}_{j k} d \sigma, \quad B=\bar{\int}_{\partial B(r)} \nabla^{i} \bar{g}^{j k} \nabla_{j} \bar{g}_{i k} d \sigma, \quad C=\bar{\int}_{\partial B(r)} \nabla^{i} \bar{g}^{j k} \nabla_{i} \bar{g}_{j k} d \sigma$, $Q=\bar{\int}_{\partial B(r)} Q(\theta) d \sigma$.

It is easy to verify that $B=A-(n-1) Q$. As the integral of $\bar{R}$ on $\partial B(r)$ is zero, there exists a function $\varphi$ on $S_{n-1}$ such that $\nabla^{i j} \bar{g}_{i j}=\Delta \varphi$. Let $E_{k}$ be the eigenspace of $\Delta$ on $S_{n-1}$ of eigenvalue $k(n+k-2)$. As $\bar{R}$ is an homogenous polynome in $\left\{x^{j}\right\}$ of degree $\omega: \bar{R}=r^{\omega} \bar{R}(\theta)$, $\bar{R}(\theta) \in \bigcup_{k_{0}}^{\omega} E_{k}$, with $k_{0}=1$ or 2 according to $\omega$ is odd or not.

Set $\bar{g}_{i j}=b_{i j}+a_{i j}$ with

$$
b_{i j}=\sum_{k_{0}}^{\omega}\left[(n-1) \nabla_{i j} \varphi_{k}+\lambda_{k} \varphi_{k} s_{i j}\right] /(n-2)\left(\lambda_{k}+1-n\right) .
$$

$\varphi=\sum_{k \leqslant \omega} \varphi_{k}$ with $\varphi_{k} \in E_{k}$.
We have $s^{i j} b_{i j}=0, \nabla^{i} b_{i j}=-\sum_{k \leqslant \omega} \nabla_{j} \varphi_{k}$ and $\nabla^{i j} b_{i j}=\Delta \varphi$. Thus $\nabla^{i j} a_{i j}=0$. A simple computation leads to:

$$
\begin{aligned}
& Q=\int_{S_{n-1}}^{\overline{2}} a^{i j} a_{i j} d \sigma+(n-1) \sum_{k \leqslant \omega}\left[\lambda_{k}^{2} \int_{S_{n-1}}^{\bar{u}} \varphi_{k}^{2} d \sigma /(n-2)\left(\lambda_{k}+1-n\right)^{2}\right] \\
& (n-2)(C-B)=\sum_{k \leqslant \omega} \lambda_{k} \int_{S_{n-1}} \varphi_{k}^{2} d \sigma+\int_{S_{n-1}}\left(\nabla_{l} a_{i j}-\nabla_{j} a_{i l}\right)^{2} d \sigma
\end{aligned}
$$

If we had $\bar{g}_{i j}=a_{i j}$, the scalar curvature $R_{a}$ would satisfy $\bar{R}_{a}=0$, and we know that in this case, $\bar{\int}_{S_{n-1}} R_{a} d \sigma<0$. Thus we have to study $\bar{\int}_{S_{n-1}} R_{b} d \sigma$ only, with $R_{b}$ the scalar curvature in case $\bar{g}_{i j}=b_{i j}$. We have $\bar{\int}_{S_{n-1}} R d \sigma=\bar{\int}_{S_{n-1}}\left(R_{a}+R_{b}\right) d \sigma+o\left(r^{2(\omega+1)}\right), A=\sum_{k \leqslant \omega} \lambda_{k} \bar{\int}_{S_{n-1}} \varphi_{k}^{2} d \sigma=$ $(n-2)(C-B)$ and $Q=Q_{a}+Q_{b}$ with $Q_{b}=(n-1) \sum_{k \leqslant \omega}\left[\lambda_{k} /(n-2)\left(\lambda_{k}-n+1\right)\right]$. Let us define,

$$
J=\int_{\partial B(r)}^{\bar{R}}\left[R+\bar{R}\left(G r^{n-2}-1\right)\right] d \sigma
$$

$J=J_{a}+J_{b}+o\left(r^{2(\omega+1)}\right)$. We know that $J_{a}<0$. Thus if $J_{b}<0$, we are in condition to apply Theorem 8 of [2], and we get the conclusion of Theorem 3. Moreover $G-r^{2-n}=$ $-f(\theta) r^{\omega+4-n}+o\left(r^{\omega+4-n}\right.$ ) with $f(\theta)$ satisfying (see [2]): $f(\theta)=\sum_{k \leqslant \omega} a_{k} \psi_{k}$ with

$$
a_{k}=(n-2) / 4(n-1)\left[\lambda_{k}+(n-4-\omega)(\omega+2)\right]
$$

if $\bar{R}(\theta)=\sum_{k \leqslant \omega} \psi_{k}$. Thus $\bar{\int}_{S_{n-1}} f(\theta) \bar{R}(\theta) d \sigma=\sum_{k \leqslant \omega}\left[\lambda_{k}^{2} a_{k} \bar{\int}_{S_{n-1}} \psi_{k}^{2} d \sigma\right]$.
Summarizing, all these inequalities must be satisfied for $k \leqslant \omega$ :

$$
\frac{n-3}{n-2}-\frac{(n-1)\left[n-1+(\omega+2)^{2}\right]}{(n-2)\left(\lambda_{k}+1-n\right)} \leqslant \frac{(n-2) \lambda_{k}}{(n-1)\left[\lambda_{k}+(\omega+2)(n-4-\omega)\right]}
$$

The worst case is for $k=\omega$. To conclude we have to check for which pair $(\omega, n)$, with $\omega \leqslant$ [ $n / 2-3$ ] of course, the following inequality is satisfied:

$$
\frac{(n-2)^{2}(n-4-\omega)(\omega+2)}{2(n-4)(\omega+1)}-\frac{(n-1)^{2}\left[n-1+(2+\omega)^{2}\right]}{(n-1+\omega)(\omega-1)}<1 .
$$

We can verify that this inequality is satisfied for any $n$ when $\omega=2$ or if $\omega=[n / 2-3]$. We can see also for which n this inequality is satisfied for any $\omega \leqslant[n / 2-3]$.

Theorem 2. For $r$ small, $J$ is negative for $n<38$, and for any $n$ if $\omega=2$ or $\omega=[n / 2-3]$. When $J<0, \mathcal{F}$ is compact in $C^{k}$ for any $k \in \mathcal{N}$.

In $B_{P}(\delta) \backslash P, M_{i} u_{i} \rightarrow G$ in $C_{\text {loc }}^{k}(k \geqslant 0)$, and the limited expansion in $r$ of $G$ is $G=r^{2-n}-$ $f(r, \theta) r^{4-n}+o\left(r^{\omega-n+4}\right)$. As we proved this result in [2], we verify, since $u_{i}$ satisfies ( $*$ ), that

$$
M_{i} u_{i}=\left(r^{2}+\epsilon^{2}\right)^{1-n / 2}+\gamma_{i}+o\left(r^{\omega-n+4}\right)+O\left(\epsilon^{2}\right)
$$

here $\epsilon^{2}=M_{i}^{-4 /(n-2)}$, with $\gamma_{i}$ the solution of $L \gamma_{i}=(n-2) R \phi_{\epsilon} / 4(n-1) . \gamma_{i}$ tends to $-f(r, \theta) r^{4-n}$ with $\epsilon \rightarrow 0$.

With this method we get only partial results.
Below we give a short proof of the $C^{0}$ compactness, without the inequality on $J$.

## 3. Proof of the $C^{0}$ compactness

Considering a unbounded sequence of solutions of the Yamabe equation, after using the Pohozahev identity (see [2,6,7]), we get an equality denoted $B=E$ in [2]. $B$ is an integral on $B(r)$, and $E$ an integral on the boundary $\partial B(r) . B$ is infinite or negligible $(O(r)), E$ is finite $(O(1))$. Two very different cases arise.

If $n<2 \omega+6, B$ is negligible and according to Proposition 4 of [2],

$$
E \leqslant-(n-2)^{2} \int_{\partial B(r)}^{\bar{u}}\left(G-r^{2-n}\right) d \sigma .
$$

As we have proved in all generality the positive mass theorem (under a necessary and sufficient condition) (Aubin [3,5]), $E$ is negative. Thus we arrive to a contradiction, $E$ cannot be finite with $B=O(r)$.

When $n \geqslant 2 \omega+6$ we have to consider two cases. If $J$ is of order $2(\omega+1)$ in $r, B$ is infinite according to Theorem 8 of [2]. We get a contradiction, $B$ cannot be equal to $E$ finite.

Otherwise $B=O(r)$. But in this case, we will see that $E=O\left(r^{k}\right)$ with $k \leqslant 0$. So $E \neq B$, a contradiction.

Henceforth we suppose that $J$ is of order $2(\omega+2)$ in $r$. Let us study one more time the integral $E$, as in the proof of Proposition 4 in [2].

If $n>2 \omega+6$, define $H=G-r^{2-n}$. We have $\bar{\int}_{\partial B(r)} H d \sigma=O(1), r^{6-n} \bar{\int}_{\partial B(r)} f^{2} d \sigma=$ $O\left(r^{k}\right)$ with $k<0$ and $(1 / r) \int_{\partial B(r)}\left|\nabla_{\theta} G\right|^{2} d \sigma=O\left(r^{k}\right)$, with $k<0$. These two last terms cannot be $O(1)$, otherwise $\bar{R}$ vanishes, and we know that in this case $J<0$ is of order 2( $\omega+1$ ) in $r$. We have the wished for contradiction. We get the same result when $n=2(\omega+3)$, but now the three terms are $O(1)$ and positive (here $\bar{\int}{ }_{\partial B(r)} R d \sigma=O\left(r^{2 \omega+4}\right)$ with $2 \omega+4>n-4$ ).

Theorem 3. When the conformal Laplacian is invertible on a compact Riemannian manifold, not conformal to the canonical sphere, the set of solutions of the Yamabe equation is compact in $C^{k}$ for any $k \in \mathcal{N}$.

## References

[1] T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, New York, 1998.
[2] T. Aubin, Sur quelques problèmes de courbure scalaire, J. Func. Anal. 240 (2006) 269-289.
[3] T. Aubin, Démonstration de la Conjecture de la Masse positive, J. Func. Anal. 242 (2007) 78-85.
[4] T. Aubin, Solution complète de la $C^{0}$ compacité de l'ensemble des solutions de l'équation de Yamabe, J. Func. Anal. 244 (2007) 579-589.
[5] T. Aubin, The Mass according to Arnowitt, Deser and Misner, C. R. Acad. Sci. 345 (2007) 87-91.
[6] Y.Y. Li, Prescribing scalar curvature on $S_{n}$ and related problems, part I, J. Differ. Eq. 120 (1995) 319-410.
[7] Y.Y. Li, L. Zhang, Compactness of solutions to the Yamabe Problem II, C. R. Acad. Sci. Paris 338 (2004) 693-695, Calculus of Variations 24 (2005) 185-237.
[8] Y.Y. Li, M. Zhu, Yamabe type equations on three dimensional Riemannian manifolds, Comm. Contemp. Math. 1 (1999) 1-50.
[9] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. (1960) 21-37.


[^0]:    E-mail address: aubin@math.jussieu.fr.

