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Abstract

On a compact Riemannian manifold, we talk again on the C0 compactness of the set of the solutions of
the Yamabe equation. Among other results, we give here a very simple proof of the compactness of this set
when the conformal Laplacian L is invertible, except on the standard sphere of course.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

On a compact C∞ Riemannian manifold of dimension n and scalar curvature R, we suppose
that the conformal Laplacian L is invertible. The Yamabe equation is [1,9]:

Lϕ = �ϕ + n − 2

4(n − 1)
Rϕ = n(n − 2)ϕ(n+2)/(n−2), ϕ > 0. (∗)

There are many articles on the study of the C0 compactness of F the set of the solutions of
this equation. In particular Y.Y. Li [6,7] (with Zhang), ([8] with Zhu), T. Aubin [2–5] and the
references inside.

All proofs begin by considering a sequence {ui} of solutions of (∗), such that the sup of
ui = ui(Pi) = Mi → ∞ with Pi → P a point of the manifold. Since the problem is conformally
invariant, we consider g, in the conformal class of the initial metric, g the Cao–Günther metric
at P . Let {xj } or {r, θ} be geodesic coordinates in a ball BP (δ).
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Let GL be the Green function of L at P , denote by G(P,Q) the function proportional to GL

which has r2−n as leading singular part at P .
With the usual notation of Y.Y. Li, the entire number ω is defined by ‖∇αW‖(P ) = 0 for

α < ω, ‖∇ωW‖(P ) �= 0, W being the Weyl tensor. In BP (δ) (δ is sufficiently small), let R̄ be the
leading part in r of R, and μ the order of R̄. μ satisfies μ � ω. We suppose in this article μ = ω,
otherwise it is done [2].

We continue the study of the C0 compactness of F . We suppose known the essential knowl-
edge of [2] and [4], as well as [3] and [5] on the positive mass.

2. First results. Study of the integral J

Let E be the Euclidean metric on Rn, s the restriction of E to Sn−1 and ∇ the covariant
derivative with respect to s. In the limited expansion in r of g in B(δ), we are interested by three
terms, E , the terms in rω+2 and r2(ω+2), the other terms are in h̃:

g = E + rω+2ḡ + r2(ω+2)ĝ + h̃.

(ḡ and ĝ are two covariant symmetric 2-tensors on Sn−1.)
Since |g| = 1, ḡij s

ij = 0, ḡij ḡ
ij = Q(θ) = 2ĝij s

ij and
∫̄

∂B(r)h̃ij s
ij dσ = o(r2(ω+2)). The

indices go up with ((sij )) the inverse matrix of ((sij )),
∫̄

means the average.
In [2] and [4] we saw that we have to compute the integral of R on ∂B(r) when ω � [n/2−3].

Now if 2ω > n − 6, we prove that the set of the solutions of the Yamabe equation is compact in
Ck for any k ∈ N , by using the positive mass theorem [3,5]. In [2] we proved:

Theorem 1.

R̄ = ∇jkḡjk,

r−2(ω+1)
¯∫

∂B(r)

R dσ = B/2 − C/4 − (1 + ω/2)2Q + o(1),

where A = ∫̄
∂B(r)∇i ḡ

ik∇j ḡjk dσ , B = ∫̄
∂B(r)∇ i ḡjk∇j ḡik dσ , C = ∫̄

∂B(r)∇ i ḡjk∇i ḡjk dσ ,

Q = ∫̄
∂B(r)Q(θ) dσ.

It is easy to verify that B = A − (n − 1)Q. As the integral of R̄ on ∂B(r) is zero, there
exists a function ϕ on Sn−1 such that ∇ ij ḡij = �ϕ. Let Ek be the eigenspace of � on Sn−1 of
eigenvalue k(n + k − 2). As R̄ is an homogenous polynome in {xj } of degree ω : R̄ = rωR̄(θ),
R̄(θ) ∈ ⋃ω

k0
Ek , with k0 = 1 or 2 according to ω is odd or not.

Set ḡij = bij + aij with

bij =
ω∑
k0

[
(n − 1)∇ij ϕk + λkϕksij

]
/(n − 2)(λk + 1 − n).

ϕ = ∑
k�ω ϕk with ϕk ∈ Ek .

We have sij bij = 0, ∇ ibij = −∑
k�ω ∇j ϕk and ∇ ij bij = �ϕ. Thus ∇ ij aij = 0. A simple

computation leads to:
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Q = ¯∫
Sn−1

aij aij dσ + (n − 1)
∑
k�ω

[
λ2

k

¯∫
Sn−1

ϕ2
k dσ/(n − 2)(λk + 1 − n)2

]
,

(n − 2)(C − B) =
∑
k�ω

λk

¯∫
Sn−1

ϕ2
k dσ + ¯∫

Sn−1

(∇laij − ∇j ail)
2 dσ.

If we had ḡij = aij , the scalar curvature Ra would satisfy R̄a = 0, and we know that in this case,∫̄
Sn−1Ra dσ < 0. Thus we have to study

∫̄
Sn−1Rb dσ only, with Rb the scalar curvature in case

ḡij = bij . We have
∫̄

Sn−1R dσ = ∫̄
Sn−1(Ra + Rb)dσ + o(r2(ω+1)), A = ∑

k�ω λk

∫̄
Sn−1ϕ

2
k dσ =

(n − 2)(C − B) and Q = Qa + Qb with Qb = (n − 1)
∑

k�ω[λk/(n − 2)(λk − n + 1)]. Let us
define,

J = ¯∫
∂B(r)

[
R + R̄

(
Grn−2 − 1

)]
dσ.

J = Ja + Jb + o(r2(ω+1)). We know that Ja < 0. Thus if Jb < 0, we are in condition to
apply Theorem 8 of [2], and we get the conclusion of Theorem 3. Moreover G − r2−n =
−f (θ)rω+4−n + o(rω+4−n) with f (θ) satisfying (see [2]): f (θ) = ∑

k�ω akψk with

ak = (n − 2)/4(n − 1)
[
λk + (n − 4 − ω)(ω + 2)

]
if R̄(θ) = ∑

k�ω ψk . Thus
∫̄

Sn−1f (θ)R̄(θ) dσ = ∑
k�ω[λ2

kak

∫̄
Sn−1ψ

2
k dσ ].

Summarizing, all these inequalities must be satisfied for k � ω:

n − 3

n − 2
− (n − 1)[n − 1 + (ω + 2)2]

(n − 2)(λk + 1 − n)
� (n − 2)λk

(n − 1)[λk + (ω + 2)(n − 4 − ω)] .

The worst case is for k = ω. To conclude we have to check for which pair (ω,n), with ω �
[n/2 − 3] of course, the following inequality is satisfied:

(n − 2)2(n − 4 − ω)(ω + 2)

2(n − 4)(ω + 1)
− (n − 1)2[n − 1 + (2 + ω)2]

(n − 1 + ω)(ω − 1)
< 1.

We can verify that this inequality is satisfied for any n when ω = 2 or if ω = [n/2 − 3]. We
can see also for which n this inequality is satisfied for any ω � [n/2 − 3].

Theorem 2. For r small, J is negative for n < 38, and for any n if ω = 2 or ω = [n/2−3]. When
J < 0, F is compact in Ck for any k ∈ N .

In BP (δ)\P , Miui → G in Ck
loc (k � 0), and the limited expansion in r of G is G = r2−n −

f (r, θ)r4−n + o(rω−n+4). As we proved this result in [2], we verify, since ui satisfies (∗), that

Miui = (
r2 + ε2)1−n/2 + γi + o

(
rω−n+4) + O

(
ε2)

here ε2 = M
−4/(n−2)
i , with γi the solution of Lγi = (n − 2)Rφε/4(n − 1). γi tends to

−f (r, θ)r4−n with ε → 0.
With this method we get only partial results.
Below we give a short proof of the C0 compactness, without the inequality on J .
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3. Proof of the C0 compactness

Considering a unbounded sequence of solutions of the Yamabe equation, after using the Po-
hozahev identity (see [2,6,7]), we get an equality denoted B = E in [2]. B is an integral on B(r),
and E an integral on the boundary ∂B(r). B is infinite or negligible (O(r)), E is finite (O(1)).
Two very different cases arise.

If n < 2ω + 6, B is negligible and according to Proposition 4 of [2],

E � −(n − 2)2
¯∫

∂B(r)

(
G − r2−n

)
dσ.

As we have proved in all generality the positive mass theorem (under a necessary and suf-
ficient condition) (Aubin [3,5]), E is negative. Thus we arrive to a contradiction, E cannot be
finite with B = O(r).

When n � 2ω + 6 we have to consider two cases. If J is of order 2(ω + 1) in r , B is infinite
according to Theorem 8 of [2]. We get a contradiction, B cannot be equal to E finite.

Otherwise B = O(r). But in this case, we will see that E = O(rk) with k � 0. So E �= B ,
a contradiction.

Henceforth we suppose that J is of order 2(ω + 2) in r . Let us study one more time the
integral E, as in the proof of Proposition 4 in [2].

If n > 2ω + 6, define H = G − r2−n. We have
∫̄

∂B(r)H dσ = O(1), r6−n
∫̄

∂B(r)f
2 dσ =

O(rk) with k < 0 and (1/r)
∫

∂B(r)
|∇θG|2 dσ = O(rk), with k < 0. These two last terms cannot

be O(1), otherwise R̄ vanishes, and we know that in this case J < 0 is of order 2(ω + 1) in r .
We have the wished for contradiction. We get the same result when n = 2(ω + 3), but now the
three terms are O(1) and positive (here

∫̄
∂B(r)R dσ = O(r2ω+4) with 2ω + 4 > n − 4).

Theorem 3. When the conformal Laplacian is invertible on a compact Riemannian manifold, not
conformal to the canonical sphere, the set of solutions of the Yamabe equation is compact in Ck

for any k ∈ N .
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