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ABSTRACT Anomalous subdiffusion has been reported for two-dimensional diffusion in the plasma membrane and three-
dimensional diffusion in the nucleus and cytoplasm. If a particle diffuses in a suitable infinite hierarchy of binding sites, diffusion
is well known to be anomalous at all times. But if the hierarchy is finite, diffusion is anomalous at short times and normal at long
times. For a prescribed set of binding sites, Monte Carlo calculations yield the anomalous diffusion exponent and the average
time over which diffusion is anomalous. If even a single binding site is present, there is a very short, almost artifactual, period of
anomalous subdiffusion, but a hierarchy of binding sites extends the anomalous regime considerably. As is well known, an es-
sential requirement for anomalous subdiffusion due to binding is that the diffusing particle cannot be in thermal equilibrium with
the binding sites; an equilibrated particle diffuses normally at all times. Anomalous subdiffusion due to barriers, however, still
occurs at thermal equilibrium, and anomalous subdiffusion due to a combination of binding sites and barriers is reduced but not
eliminated on equilibration. This physical model is translated directly into a plausible biological model testable by single-particle
tracking.

INTRODUCTION

In normal diffusion, the mean-square displacement of the

diffusing particle is proportional to time, but in anomalous

subdiffusion diffusion is hindered and the mean-square dis-

placement is proportional to some power of time ,1. As is

well known, anomalous diffusion may result from obstruc-

tion (1). If the obstacle concentration is below the percolation

threshold, diffusion is anomalous at short times and normal

at long times. As the obstacle concentration approaches the

percolation threshold, diffusion becomes more anomalous

for longer times (2). At the percolation threshold, diffusion

on the infinite percolation cluster is anomalous over all time-

scales. It is well known that anomalous diffusion may also

result from appropriate distributions of traps. A suitable infi-

nite hierarchy leads to anomalous diffusion at all times; finite

hierarchies lead to anomalous diffusion at short times and

normal diffusion at long times (3). In the physics literature,

anomalous diffusion is often defined to require the diffusion

to be asymptotically anomalous, but the case we consider is

of interest in biophysical applications and chemical kinetics.

We present here a biological interpretation of anomalous

subdiffusion in a finite hierarchy of traps. This interpretation

was suggested by the experiments of Platani et al. (4) on

three-dimensional anomalous subdiffusion of Cajal bodies

in the nucleus, but it is also applicable to two-dimensional

diffusion in the plasma membrane and three-dimensional dif-

fusion in the cytoplasm. We show that anomalous subdif-

fusion in such a system of traps requires the system to be in

a nonequilibrium state, so in the biological case metabolic

energy is required. The model predicts a crossover from

anomalous to normal diffusion. We show that anomalous

subdiffusion due to trapping disappears on thermal equilibra-

tion, but anomalous subdiffusion due to barriers is unaffected.

The initial period of anomalous subdiffusion determines the

time required for the first visit of the diffusing particle to its

target, so the initial period of anomalous subdiffusion may

control reaction kinetics. Quantitative aspects of this model

will be discussed in the sequel (M. J. Saxton, unpublished),

and later work will apply the model to the experimental

data of Platani et al. (4). This work extends previous work (5);

preliminary results were presented earlier (6–8). A similar

biological interpretation of binding and one-dimensional dif-

fusion of a protein along DNA was proposed independently

by Barbi et al. (9,10).

Diffusion is characterized by the time-dependence of the

mean-square displacement Ær2æ. In normal diffusion,

Ær2æ}Dt; (1)

where the diffusion coefficient D is constant and t is time. In

pure anomalous subdiffusion

Ær2æ} t
a
;a, 1 (2)

at all times, where a is the anomalous diffusion exponent.

The diffusion coefficient is therefore time-dependent,

DðtÞ} 1=t
1�a

; (3)

appropriately modified to give the proper limit at t ¼ 0, say

D(t) ¼ D0/(1 1 t1–a). The case of interest here is transient

anomalous subdiffusion, in which there is a crossover from

anomalous subdiffusion at short times to normal diffusion at

long times,
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Ær2æ} ta for t� tCR
t for t� tCR

;

�
(4)

where tCR is the crossover time. A definition of anomalous

subdiffusion sometimes used in the physics literature ex-

cludes this case by requiring that diffusion be anomalous

asymptotically, but instead of defining away the transient

anomalous subdiffusion, we analyze and quantify the initial

period of anomalous diffusion. Fig. 1 a shows Ær2æ as a

function of time for pure normal diffusion, transient anom-

alous subdiffusion, and pure anomalous subdiffusion. The

structure is apparent in Fig. 1 b, a log-log plot of the same

data, and is even clearer in the plots actually used to analyze

the Monte Carlo data. As shown in Fig. 1 c, to emphasize

the crossover we remove the asymptotic time dependence

and plot log Ær2æ/t versus log t, so that anomalous diffusion

gives a straight line of slope a – 1, normal diffusion gives a

horizontal line, and the intersection of these lines gives the

crossover time. Here Ær2æ/t can be considered to be a time-

dependent diffusion coefficient D(t), normalized to 1 for free

diffusion. This approach was used to analyze anomalous

subdiffusion in obstructed systems as the obstacle concen-

tration approached the percolation threshold (2).

Measurements of anomalous subdiffusion in cells and cell

membranes by fluorescence recovery after photobleaching

(FRAP), fluorescence correlation spectroscopy (FCS), and

single-particle tracking (SPT) are reviewed elsewhere (M. J.

Saxton, unpublished).

Fig. 2 shows experimental results from two noteworthy

articles, plotted as in Fig. 1 c. Platani et al. (4,11) measured

the anomalous diffusion of Cajal bodies in the nucleus of

HeLa cells. Cajal bodies are small spherical structures of

diameter ;0.1–2.0 mm, made up of protein and RNA. Fig.

2 a shows these results. In the untreated cells, diffusion is

anomalous over 1.5 orders of magnitude in time. Treatment

with the transcriptional inhibitor actinomycin D makes diffu-

sion faster and less anomalous. Energy depletion with azide

and 2-deoxyglucose makes diffusion faster and reduces the

duration of the anomalous period. Quantitative analysis shows

that the anomalous subdiffusion exponent a increases from

0.67 for the untreated cells to 0.78 in the azide-treated cells

and 0.90 in the actinomycin-treated cells. The authors con-

clude that both metabolic energy and ongoing transcription

are required to maintain activity of the binding sites and

obstacles responsible for anomalous subdiffusion. Another

noteworthy result is the SPT work of the Kusumi laboratory

on the plasma membrane (12). Fig. 2 b shows anomalous

subdiffusion of gold-labeled dioleoylPE in the plasma

membrane of fetal rat skin keratinocyte cells (13). The con-

trol, diffusion on blebs (upper curve), is normal at all times.

In the lower curve, for intact cells, anomalous subdiffusion

was observed over three orders of magnitude in time. Values

of a are 0.97 for the initial part of the curve, 0.53 for the

anomalous region, and 0.94 for the final part. The authors

interpret the curve in terms of compartmentation of the

FIGURE 1 Types of diffusion considered. Mean-square displacement Ær2æ
as a function of time t for normal diffusion, transient anomalous subdiffusion,

and pure anomalous subdiffusion. (a) Linear plot. (b) Log-log plot. Normal

diffusion is a random walk on an unobstructed triangular lattice. In notation

to be explained later, the transiently anomalous curve is for a hierarchy of

traps 8/4/2/� with total trap concentration 14/1024 ¼ 0.01367 and PESC ¼
0.1. Pure anomalous subdiffusion is from the Weierstrass-Mandelbrot

equation (18) with exponent a ¼ 0.720 to match the slope of the power-law

part of the transiently anomalous curve. The log-periodicity is an artifact of

this function. (c) Method of analysis of transient anomalous subdiffusion.

The Monte Carlo data is plotted as log Ær2æ/t ¼ log D(t) versus log t. The

mean-square displacement is normalized so that D ¼ 1 for a system without

traps. The initial value is log D(0). The slope of the power-law region yields

the anomalous diffusion exponent a; the value in the normal region yields

the limiting normal diffusion coefficient log D(N); and the intersection of the

lines yields the crossover time tCR. The vertical lines mark the power-law

region, defined as the region in which the curve is linear to within a few

percent. In this plot pure normal diffusion gives a horizontal line and pure

anomalous subdiffusion gives a straight line of slope a – 1.
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membrane by actin-based cytoskeletal fences. Their later work

shows structure in the anomalous region for the m-opioid
receptor in normal rat kidney fibroblast cells, attributed to

nested double compartmentation of the membrane by fences

(14). Evidence for the existence of fences from electron to-

mography is given by Morone et al. (15).

In both cases, the experimental results are consistent with

a crossover from anomalous to normal diffusion, although

before one could claim this as experimental proof one ought

to do simulations to see how much averaging is needed to

distinguish a crossover from low-frequency noise.

METHODS

Monte Carlo methods are as described in Saxton (5) except that the ran2

random number generator of Press et al. (16) was used; see also the sequel

and (17). Calculations were done on triangular and square lattices in two

dimensions and a cubic lattice in three dimensions, with periodic boundary

conditions. For each run, at least 50 trap configurations were used, and 200

tracers per trap configuration, except that in Fig. 8, 100 configurations and

500 tracers per configuration were used. The time points were narrowly

spaced at small times and widely spaced at large times to provide high

resolution without an excessively large data set (18). The runs were highly

reproducible. Five independent runs similar to those in the center curve of

Fig. 5 were plotted on the same scale as that figure; the total scatter was

approximately twice the linewidth. Notation: 1 K¼ 1024; 1 M ¼ 10242. All

concentrations are given as number fractions. All energies are in units of kT,
where k is Boltzmann’s constant and T is temperature.

RESULTS

Infinite hierarchy of binding sites

An appropriate infinite hierarchy of traps is known to give

anomalous subdiffusion at all times. If the distribution of es-

cape times te is assumed to be a power lawwith exponent b – 2,

PðteÞdte ¼ ð1� bÞt b�2e dte;b 2 ð0; 1Þ; (5)

then the anomalous diffusion exponent is a ¼ 1 – b, (19),
though in practice correction terms must be included (20).

This distribution is so wide that the mean does not exist. An

example of the analogous discrete distribution is shown in

Table 1. This distribution illustrates the recipe for fractal time

of Shlesinger (21): An order-of-magnitude longer escape

time, an order-of-magnitude less often. Here at each layer the

escape time increases by an order of magnitude in base 3, and

the number of traps decreases by an order of magnitude in

base 2. Very deep traps are present but are very rare. Note that

these infinite hierarchies are inherently nonequilibrium sys-

tems. There is no deepest trap so a diffusing particle cannot

equilibrate with the traps.

This mechanism is based on permanent traps, but the

corresponding distribution of transient traps also gives anom-

alous subdiffusion. This is the continuous-time random walk

(CTRW) model, in which the particle moves at every step

but the time required for each move is generated randomly at

each step from the distribution of Eq. 5. The escape time

from any lattice point thus varies from visit to visit (3). The

CTRW is a mean-field version of the trap model in which

memory effects are neglected (19).

FIGURE 2 Experimental data for the mean-square displacement (MSD)

from SPT. Log-log plots of Ær2æ/t as a function of time t (or equivalently the

lag time Dt). (a) Anomalous subdiffusion of Cajal bodies in the nucleus of

HeLa cells (4). (Blue) Untreated cells. (Green) Cells treated with the

transcriptional inhibitor actinomycin D. (Purple) ATP-depleted cells.

(Adapted by permission fromMacmillan Publishers Ltd., Nature Cell Biology,

4:502–508, copyright 2002.) (b) Anomalous subdiffusion of gold-labeled

dioleoylPE in fetal rat skin keratinocyte cells (13). (Upper curve) Control
showing normal diffusion in blebs. (Lower curve) Data points obtained at

time resolutions of 25 ms, 110 ms, and 33 ms. (Straight lines) Least-squares

fits to the data; (blue and yellow vertical bars) standard deviations. (Adapted

by permission from Biophysical Journal, copyright 2004.)

TABLE 1 Infinite hierarchy of traps

Relative escape time Relative number of traps

1 1

3 1/2

9 1/4

27 1/8

81 1/16

243 1/32

729 1/64

. . . . . .
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Finite hierarchy of binding sites

Monte Carlo calculations show that a finite hierarchy of

binding sites is a sufficient condition for anomalous sub-

diffusion at short times crossing over to normal diffusion

at long times. We consider a finite hierarchy obtained by

truncating the infinite hierarchy of Table 1, and we take the

deepest binding site to be the target site for the diffusing

particle. We define traps to be binding sites from which es-

cape is possible, and targets to be reaction sites from which

there is no escape and reaction occurs at the first encounter

with the target. We can depict the finite hierarchy as in Fig. 3.

The binding energy increases by DE at each level in the

hierarchy. The escape time is given by a Boltzmann factor,

so the escape time increases by a factor exp(�DE/kT) at each
level. The energy scale is shown horizontally to emphasize

that the diffusing particle is not funneled systematically to

the lowest-energy state, as in a model of protein folding (22),

but moves randomly among traps and nonbinding sites and

has a nonzero probability of reaching the target at the first

time step. Thermal equilibration is possible, and the model

gives anomalous diffusion at short times and normal diffu-

sion at long times (5). There are no obstacles to diffusion in

the model; the traps simply bind and delay the diffusing

particle. Typically we assume PESC ¼ 0.1 so the escape time

from the shallowest trap is 10 and DE/kT¼ ln 0.1¼�2.303.
The fundamental quantity describing the effect of the traps is

the mean escape time ÆtESCæ. For example, for a single set of

30 traps as in Fig. 3 with PESC ¼ 0.1 and a total of 1024 sites

in the system, we have

ÆtESCæ ¼ ½ð1024� 30Þ3 11 ð163 101 83 10
2

1 43 10
3 1 23 10

4Þ�=1024 ¼ 25:3457: (6)

The limiting diffusion coefficient is then (see Bouchaud and

Georges, page 142) (3)

DðNÞ ¼ 1=ÆtESCæ: (7)

We show here only Monte Carlo results in which the target

site is omitted. These plots give a crossover to normal dif-

fusion at large times, and a clear interpretation of a and the

crossover time. When the target site is included, the final

square displacement for each diffusing particle is equal to the

value when that particle reaches the target. Ultimately, then,

the mean-square displacement approaches a constant and the

slope of log Ær2æ/t becomes�1, making analysis of the curves

less clear.

Fig. 1 c shows that a finite hierarchy is a sufficient con-

dition for transient anomalous subdiffusion. Fig. 4 shows

what factors increase the duration of the anomalous period

and make diffusion more anomalous. In Fig. 4 a, as levels are
added to the hierarchy at constant PESC and approximately

constant total trap concentration, diffusion is more anoma-

lous for a longer time. The period of anomalous diffusion (in

terms of log t) increases from 0.4 to 5.1, and a decreases

from 0.92 to 0.33. In Fig. 4 b, as PESC is reduced for a fixed

hierarchy and concentration, diffusion is again more anom-

alous for a longer time. The period of anomalous diffusion

increases from 1.0 to 1.5 to 1.9, and a decreases from 0.78 to

0.52 to 0.36. Here the decrease in PESC corresponds to

deepening the traps, not lowering the temperature, because

the change in temperature required for a decrease this large

would be unphysiological. In Fig. 4 c, the trap concentra-

tion C is increased for a fixed hierarchy 16/8/4/2/� at fixed

PESC ¼ 0.1. As C increases, diffusion becomes more anom-

alous for a longer time, primarily on account of the change in

ÆtESCæ. Here ÆtESCæ increases from 25.3457 to 390.5, the

period of anomalous subdiffusion increases from 1.6 to 2.6,

and a decreases slightly, from 0.53 to 0.44.

In all three plots, if one observed the shallower curves in

isolation, one would not count them as power-law curves but

simply as curves with an inflection point. But Fig. 4 suggests

that even the shallowest curves ought to be viewed as a

limiting case of families of curves that can show a significant

region of power-law dependence.

The hierarchy of traps is a sufficient condition for transient

anomalous subdiffusion, but it is not a necessary condition.

Transient anomalous subdiffusion occurs if the number of

traps per level is constant, or even if there is only a single

level of traps, but the time in which diffusion is anomalous

differs. Fig. 5 compares the standard hierarchy 16/8/4/2/�
with the uniform distribution 7/7/7/7/� and a single deep

FIGURE 3 Schematic form of a finite hierarchy from truncation of the

infinite hierarchy of Table 1. (Open circles) Nonbinding sites. (Solid circles)

Binding sites. As the traps grow deeper, the escape time increases by a factor

of 1/P at each step, where P is the escape probability per time step from the

shallowest traps. This hierarchy will be written as 16/8/4/2/T, where T is the

target site, or 16/8/4/2/� when the target site is omitted.
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trap �/�/�/1/�. Here the total trap concentrations differ but
PESC is adjusted so that ÆtESCæ and D(N) are the same for the

three distributions of traps. A single trap gives the shortest

period of anomalous subdiffusion and the hierarchy gives the

longest. The period of power-law dependence for the single

deep trap is so short that this case is almost artifactual anom-

alous subdiffusion, but Figs. 4 and 5 show when the anoma-

lous period becomes significant.

Other models of diffusion in hierarchies

Other models of random walks on discrete hierarchies have

been discussed in the physics literature. To describe weakly

chaotic motion, Hanson et al. (23) solved a random-walk

model for a nearest-neighbor self-similar Markov chain. Here

as a particle moves in the hierarchy, the transition rate changes

by a constant factor from level to level. Their main result was

that the distribution of first passage times for escape from

the hierarchy decreases as a power law in t. The essential

difference between their model and the model presented in

this article is the nature of the random walks. In the model of

Hanson et al. (23), the particle carries out a random walk re-

stricted to the hierarchy and moves only to nearest-neighbor

levels within the hierarchy. In the trap hierarchy model, the

particle moves only to nearest-neighbor lattice sites, but it

can move arbitrarily within the hierarchy or to a nonbinding

site, depending on what traps happen to be at the nearest-

neighbor sites. The interesting similarity is the behavior of

the first passage time. As will be discussed in detail in the

sequel, we evaluate the first passage time for a particle starting

at a random lattice point and carrying out a random walk

in the presence of the trap hierarchy until it reaches an

FIGURE 4 A finite hierarchy leads to an initial period of anomalous

subdiffusion, followed by a crossover to normal diffusion. Results here are

for two-dimensional random walks on a triangular lattice. The correspond-

ing results for square and cubic lattices are very similar. (a) Effect of in-

creasing the number of levels in the hierarchy: No traps, 2/�, 4/2/�, 8/4/2/�,
16/8/4/2/�, 32/16/8/4/2/�, 64/. . ./2/�, and 128/. . ./2/�, with PESC ¼ 0.1.

One set of traps was used and the system size was varied between 83 8 and

94 3 94 to keep the total trap concentration as constant as possible. The

concentration was 0.029586 0.00096, that is, an SD of 3.26% of the mean.

No targets were present. (b) Effect of PESC for a constant hierarchy 16/8/4/

2/�. Here PESC ¼ 0.2, 0.1, and 0.05, the trap concentration is 30/1024 ¼
0.02930, and the lattice size is 32 3 32. (c) Effect of concentration C for a

constant hierarchy 16/8/4/2/�. Here a single set of 30 traps was used, and the
lattice edge was set to 32, 28, 24, 20, 16, 12, and 8, giving C ¼ 0.02930,

0.03827, 0.05208, 0.07500, 0.1172, 0.2083, and 0.4688, with PESC ¼ 0.1.

FIGURE 5 Comparison of the effects of a single deep trap, �/�/�/1/�, a
four-level set of traps with a fixed number of traps per level, 7/7/7/7/�, and
the standard hierarchy 16/8/4/2/�. Here PESC was set to 0.07958, 0.1364,

and 0.1, respectively, so that the mean escape time ÆtESCæ and therefore

the limiting value D(N) were constant. The lattice size was 323 32. As the

traps are varied from the single deep trap to the uniform distribution to

the standard hierarchy, the width of the anomalous region increases from

0.82 to 1.29 to 1.79 in units of log t but diffusion grows less anomalous, with

a increasing from 0.23 to 0.44 to 0.54.
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immobile target site. At short times the distribution of first

passage times is a power law as in the model of Hanson et al.

(23), but at large times there is a crossover to an exponential

decay as seen in the trap-free case, though the decay is much

slower.

Other work on diffusion in hierarchies examined a regular

one-dimensional hierarchy of waiting times (24) or barrier

crossing rates (25–27) by renormalization group techniques.

Teitel et al. (27) extended the results to random ordering and

to two dimensions. In all cases anomalous subdiffusion was

found for appropriate values of the parameters, with the mean-

square displacement a power of t. But if the well depths or

barrier heights form the hierarchy and the jump probabilities

are given by the Boltzmann distribution, then the hindrance

to diffusion is much more severe. The mean-square displace-

ment is a power of ln t, not t (28). Metzler and Klafter (29)

provide a general theoretical context for anomalous sub-

diffusion due to trapping.

Nonequilibrium state

In a system of traps, a nonequilibrium initial state is a neces-

sary condition for anomalous subdiffusion. Consider the two

limits of the initial distribution of diffusing particles. If the

particle is initially in a random position, it is in a highly

nonequilibrium state because it is at any position with equal

probability, whether that position is a nonbinding site or a

shallow trap or the target site. But if the particle is initially in

thermal equilibrium, it is most likely to be in the deepest trap,

that is, at the target site, and in terms of themodel the reaction is

complete. Table 2 shows an example for a 16/8/4/2/T hier-

archy, 30 traps and one target in 1024 lattice points, with the

escape probability from the shallowest traps PESC ¼ 0.1 per

time step. In this system, for a random state 97% of the dif-

fusing particles are initially at nonbinding sites, but at thermal

equilibrium 79% of the particles are initially at the target.

We can think of the nonequilibrium requirement in terms

of a time-dependent diffusion coefficient (Eq. 3). For pure

anomalous subdiffusion, the diffusion coefficient is initially

at some short-range value D0 and decreases with time, ap-

proaching zero at infinite time. But we know that diffusion-

mediated processes occur in cells. So if there is to be

anomalous diffusion due to a trap mechanism, there must be

some biological event that turns on the interaction with the

traps and defines t ¼ 0, D(0) ¼ D0. There are many pos-

sibilities for such an event: changes in localization, such as

insertion of a receptor into the plasma membrane or entry of

a DNA-binding regulatory protein into the nucleus or assem-

bly of a Cajal body; or conformational change in the dif-

fusing species, such as dimerization of a membrane-bound

receptor or binding of a ligand to a receptor or (de)phos-

phorylation of a protein. Alternatively, the event could turn

on or reset the traps rather than the diffusing species.

Note that all of these processes require metabolic energy at

some stage of the cycle. The analogous mechanism in a

physical system also requires an external energy source to

produce anomalous subdiffusion. An amorphous semiconduc-

tor has a singular hierarchy of traps for conduction electrons.

Anomalous conduction results when a light pulse excites an

electron to the conduction band, and the initial position of this

electron is independent of the traps in the neighborhood (30).

The most quantitative way of looking at this is a theorem

stating that in a random trap model, if the diffusing particle is

initially in thermal equilibrium with the traps, then diffusion

is normal at all times (31,32) (see Haus and Kehr, 1987,

section 7). Diffusion is slow because the mobile particle is

most likely to be in the deeper traps and its diffusion rate is

determined by the escape time from those traps. But dif-

fusion is normal. This result was confirmed by simulations

for the obstruction-binding model, in which some lattice sites

contain sticky obstacles (5).

As the diffusing particle equilibrates with the traps, diffu-

sion becomes more normal. Fig. 6 a shows the effects of the

annealing time on anomalous subdiffusion. If the initial po-

sition is random, diffusion is anomalous for a significant time

and then crosses over to normal. In the other curves, the dif-

fusing particle is annealed for a prescribed number of time

steps before the mean-square displacement is recorded. In

the annealed curves, diffusion is first normal, then anoma-

lous, and then normal. As the annealing time increases, the

initial period of normal diffusion becomes longer and the

period of anomalous diffusion becomes shorter and less anom-

alous. At very large annealing times, or when the initial

position is chosen from an equilibrium distribution, diffusion

is slow but normal at all times. Fig. 6 b shows that the energy
behaves in the same way though the energy crossover times

are systematically smaller.

To make clear the range of applicability of these results, we

examine a variety of systems of traps and barriers (reviewed

briefly in (33–35) and comprehensively in (3,32,36,37); see

Ben-Avraham andHavlin, 2000, pages 114–126; and Haus and

Kehr, 1987, section 7. We consider the one-dimensional case

to examine the results of Barbi et al. (9,10) discussed later. We

use random traps and barriers from a continuous distribution

to show that the random and discrete cases behave similarly.

In the random site (‘‘valley’’) model (38,39) as shown in

Fig. 7 a, each lattice site is assigned a random binding energy

Ei and the diffusing particle must reach E ¼ 0 to escape a

site. The escape probability Pi ¼ exp(– Ei/kT) is independent
of the final state, and the particle does not know how deep

a trap it is entering when it moves to a site. The escape

TABLE 2 Initial position of diffusing particle

Escape time Number of sites Random Equilibrium

Nonbinding 1 993 0.970 0.0079

1/P 16 0.016 0.0013

1/P2 8 0.0078 0.0064

1/P3 4 0.0039 0.032

1/P4 2 0.00195 0.159

Target 1/P5 1 0.00098 0.794
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probability is the same in all directions, and there is no

correlation between jumps.

In the random bond (‘‘mountain’’) model (40–42) shown

in Fig. 7 b, all sites are at E ¼ 0 and random potential energy

barriers of height Eij are placed on the bonds between them.

The transition probability is symmetric, Pij¼ Pji¼ exp(– Eij/

kT), and motion is correlated because a jump over a low

barrier is likely to be followed by the reverse jump. At equi-

librium the concentration at all sites is the same, so anneal-

ing has no effect and transient anomalous diffusion always

occurs for a suitable distribution of barriers. Note that in one

dimension the tracer cannot avoid a high barrier but in higher

dimensions a high barrier has much less effect because the

tracer will most likely take a path of lesser resistance and

bypass the barrier.

In the random site-bond (‘‘mountain-valley’’) model

(43,44) shown in Fig. 7 c, each site is assigned a random

binding energy Ei and each bond is independently assigned a

random barrier height Eij, not necessarily from the same

distribution. The escape probability depends on the initial

site depth and the barrier height, but not the final site depth,

Pij ¼ exp [�(Ei 1 Eij)/kT].
In the random energy model (9,10) shown in Fig. 7 d, each

site is assigned a random energy Ei, and the escape proba-

bility is obtained from the Metropolis algorithm,

Pij ¼ 1 if DEij # 0

expð�DEij=kTÞ if DEij . 0
;

�
(8)

where DEij ¼ Ei – Ej. This is the only model of the four in

which the energy of the final state affects the escape prob-

ability. Some variants of this model are discussed by Barbi

et al. (9,10).

For the random site, site-bond, and energy models, site

energies are in general nonzero so the equilibrium distribu-

tion of tracers is nonuniform. If the initial position is ran-

dom, there is an equilibration period. The Monte Carlo results

show transient anomalous diffusion when the system is out

of thermal equilibrium, and annealing reduces anomalous

diffusion as shown in Fig. 6 for the two-dimensional random

site model and Fig. 8, a, c, d, and e, for the one-dimensional

random site, site-bond, and energy models. On equilibration,

diffusion in the site model is normal at all times (Fig. 8 a) as
required by the theorem (31,32) mentioned earlier. In the

random site-bond model (Fig. 8 c) and the random energy

model (Fig. 8, d and e), anomalous subdiffusion is reduced

by annealing but not abolished.

For the random bond model, however, a random initial

distribution is the equilibrium distribution, and annealing has

no effect, as shown in Fig. 8 b. Even if the initial distribution

FIGURE 7 Potentials defining the different one-dimensional models. See

text for details. Circles represent lattice sites.

FIGURE 6 Effect of annealing time on a two-dimensional random walk

on the triangular lattice. The standard trap hierarchy was used, 16/8/4/2/�
with PESC¼ 0.1, with 1000 sets of traps on a 5123 512 lattice, giving a trap

concentration of 0.1144. The corresponding plots for random walks on the

cubic lattice are very similar. (a) Log-log plots of Ær2æ/t versus time for

various initial conditions. (b) Plots of energy versus log time for the same

initial conditions. The diffusing particle was placed in a random initial

position and annealed for 0, 128, 1 K, 8 K, or 1 M time steps as indicated, or

it was placed in a random initial position determined from a Boltzmann

distribution (exact). Then the mean-square displacement and energy were

recorded. The changes in noise levels are due to changes in the sampling

time.
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is nonuniform, there is no effect. Similarly, in a blind-ant

random walk on a percolation cluster on a lattice, the equi-

librium distribution of tracers is uniform and there is no

annealing effect. In the blind-ant algorithm, at each time

step the tracer tries to move to a randomly chosen nearest-

neighbor site with equal probabilities, whether or not the

sites are blocked. If the site is blocked, the tracer does not

move but the clock is still incremented. Diffusion on an in-

finite percolation cluster is anomalous at all times, with a ¼
0.695 in two and 0.515 in three dimensions (see ben-

Avraham and Havlin, p. 79) (35).

In all four models, Gaussian distributions of energies are

used with mean 2.5 and SD 1.5 for the random site, bond,

and energy models, and mean 1.25, SD 1.5 for the random

site-bond model. All energies are in units of kT. The Gaussian
distributions are truncated to exclude negative values; well

depths are then taken to be negative and barrier heights are

taken to be positive. Other versions of these models in the

literature restrict energies to positive values by using half-

Gaussian, narrow full Gaussian, or exponential distributions.

The system size is 1000. The Barbi model (9,10) of Fig. 8 e is
a random energy model without truncation. Here the energies

are Gaussian with mean �1 and SD 1.5, though the behavior

is independent of the mean. The system size is 3000 and the

initial position is chosen to be in [1000,1999] so there is a

significant time in which the periodic boundary conditions

have no effect. For easy comparison, the panels of Fig. 8 have

the same interval on the y-axes, shifted as required.

Biological interpretation

A biological interpretation of a finite hierarchy of binding

sites was inspired by experimental results of Platani et al.

(4,11) on single-particle tracking of Cajal bodies in the

FIGURE 8 Effect of annealing time on

a one-dimensional random walk for the

different models. Annealing times are 0,

32, 1 K, 32 K, and 1 M; exact, from the

equilibrium Boltzmann distribution. In

panels a–d, 1000 lattice points were used,
and in panel e, 3000 points. All sites or

bonds were assigned random energies.

The y axis is 1.5 units in all panels but

shifted as required. (a) Random site model

with a truncated Gaussian distribution of

binding energies, mean 2.5, SD 1.5. (b)

Random bond model, with the barrier

heights from the same distribution. (c)

Random site-bond model, with truncated

Gaussian distributions of site energies

and barrier heights, with mean 1.25 and

SD 1.50. (d) Random energy model, with

the same distribution of energies as the

random site model. (e) Barbi random

energy model with a nontruncated Gaus-

sian distribution of site energies, mean

�1.0 and SD 1.5. Barbi et al. (9,10) used

the same mean and an SD ;2.5.
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nucleus. In their experiments chromatin was labeled with a

YFP-histone and the Cajal body marker protein coilin was

labeled with GFP. The Cajal bodies alternated between

association with chromatin and diffusion in the interchro-

matin space. Diffusion of Cajal bodies was anomalous, with

a ¼ 0.67. ATP depletion and inhibition of transcription by

actinomycin D increased the mobility and made diffusion

less anomalous, as shown in Fig. 2 a. At the resolution of the
measurements ATP depletion had no effect on chromatin

structure. The authors’ interpretation (4,11) is that Cajal

bodies can be tethered to chromatin, and that tethering

requires ATP and active transcription; an alternative inter-

pretation is discussed later.

Consider the simplest picture of the results of Platani et al.

(4). A Cajal body diffuses in the nucleus, interacts with

various DNA sequences, and binds to some. It is plausible

that there are many weak binding sites, corresponding to

nonspecific binding sites. There is a single strongest binding

site, corresponding to the target site for the Cajal body. There

are a variety of intermediate binding sites, binding the Cajal

body more or less strongly depending on how similar they

are to the target site. So there is a hierarchy of binding en-

ergies resulting in a hierarchy of escape times. The simplest

way to imagine this is in terms of a protein on the Cajal body

looking for a particular sequence of basepairs, but the Cajal

body could be examining higher-order structure in the DNA.

Fig. 9 shows this interpretation in terms of Fig. 3.

In the cell the distribution of binding sites is presumably

continuous, not discrete. But the transient anomalous sub-

diffusion found here for a discrete distribution in two dimen-

sions (Fig. 4) and three dimensions (not shown) is similar

to that found for continuous distributions in one dimension

(Fig. 8, a, c, and d) and in two dimensions (5).

Other assumptions

The model assumes that the traps are immobile; if they are

not, their mobility must be taken into account. The model

also assumes that reaction occurs when the diffusing species

first reaches the target site. The target is assumed to be the

deepest trap; in the example of Fig. 3, PESC ¼ 0.1, so the

escape time from the target is 105 time steps. The assumption

is plausible but needs to be examined in applications.

Timescale

What is the timescale of the crossover? The timescale for a

random walk on a lattice is arbitrary; one can choose any

lattice constant ‘ and any time constant t satisfying ‘2 ¼ 2d
D0t, where d is the dimensionality and D0 is the diffusion

coefficient in a system without traps. Escape times from traps

are then expressed in terms of t, and PESC is the probability

of escape per time step t. We must choose t small enough to

resolve the distribution of escape times.

The best choice for analyzing SPT data is probably to use

the SPT resolution element (‘‘resel’’) as the length scale.

(We call this an ‘‘SPT resel’’ to distinguish it from the

‘‘confocal microscopy resel’’, which is set by the Rayleigh

length.) The SPT resel depends on the signal/noise ratio and

other experimental details. Kubitscheck et al. (45) found a

value of 30 nm for GTP in solution; values for membrane

applications were 20–60 nm (46). For three-dimensional data

the SPT resel has the complication that the resolution along

the z axis is lower than that in the x,y plane.
So in the two-dimensional case one might choose ‘ to be a

lipid diameter or a membrane protein diameter or an SPT

resel size and find t, or choose t based on the video rate and

find ‘. For three-dimensional diffusion in the nucleus, one

might choose ‘ to be the diameter of a protein or a chromatin

fiber or a Cajal body or an SPT resel, or choose t based on

the video rate. For example, in the two-dimensional case,

using the parameters from Saxton (2), we can take a lattice

point to be a protein of diameter 4 nm with D0 ¼ 3.75 mm2/s

and obtain t ¼ 1.1 ms. A Monte Carlo crossover time of

50,000 as in Fig. 1 c would then yield a physical crossover

time of 55 ms. Alternatively, we can use an SPT resel of, for

example, ‘ ¼ 20 nm and D ¼ D(lipid) ¼ 5 mm2/s, giving

t ¼ 20 ms and a crossover time of 1 s.

Observability of traps

Can the trapping events responsible for anomalous sub-

diffusion be observed? FRAP is used extensively to detect

binding (47–51), particularly of proteins in the nucleus. A

limitation of FRAP is that it is at optical resolution, so,

FIGURE 9 The biological interpretation of the hierarchy (see text). (Open

circles) Nonbinding sites. (Solid circles) Binding sites with the binding

growing stronger to the right.
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depending on the density of traps in the particular system

studied, it may be more suitable for measuring global anom-

alous subdiffusion than for resolving individual traps. The

form of the recovery curve is known for normal diffusion

(52) and for pure anomalous subdiffusion (18,53) but not for

transient anomalous subdiffusion.

If the traps are far enough apart, FCS is promising.

Jankevics et al. (54) used FCS to resolve classes of binding

sites in the nucleus of living cells. In their diffusion-time

distribution analysis, the maximum entropy method (55) was

used to construct a histogram of the diffusion times of the

estrogen receptor labeled with YFP. The diffusion times

were in the range of 2–20 ms and were sensitive to agonists

and antagonists. The histogram showed structure. The fastest

motion was attributed to receptor dimers and receptors as-

sociated with chaperones; intermediate motion, to complexes

of receptors with several cofactors; and the slowest motion,

to receptors transiently interacting with chromatin or other

nuclear structures. A new FCS technique measures the dis-

tance dependence of the diffusion coefficient by varying the

laser spot size continuously. It has been applied to protein

diffusion in hyaluronan solutions (56,57) and to corralled

two-dimensional motion in membranes (58). This method

could be useful in characterizing trapping sites; the radius of

the smallest detectable corral was estimated to be 60 nm (58).

If the identity of the binding site is known or suspected,

useful approaches include cross correlation or image corre-

lation FCS (59–62), fluorescence resonance energy transfer

(63), and fluorescence brightness analysis using photon

counting histograms (64).

If two requirements are met, single-particle tracking can

resolve trapping events and permit measurement of escape

times. First, the resolution of the SPT measurements must be

sufficient. The resolution of two-color SPT is discussed in

detail by Koyama-Honda et al. (65). Second, it is necessary

to distinguish trapping events from the random periods of

localized motion that are an inherent part of a pure random

walk with no trapping or obstruction (66). Fig. 10 shows the

square displacement r2 as a function of time for random

walks with and without trapping. The periods of trapping are

clear in Fig. 10 a. Fig. 10 b shows random periods of lo-

calized motion in pure random walks. The difference is

obvious here but noise in experimental trajectories could

obscure the difference.

Individual trapping events did not appear in the plots of

log Ær2æ/t versus log t shown earlier. If PESC is small enough,

say 0.01–0.02, discrete energy levels begin to appear. But for

larger values of PESC they do not, for two reasons. First, the

distribution of escape times is wide. If P is the escape

probability for one time step and Q ¼ 1 – P, then the

probability of escape at the nth time step is fn ¼ PQn–1, a

modified geometric distribution. The mean escape time is

Ænæ ¼ 1/P, and the SD is
ffiffiffiffiffiffiffiffiffiffiffiffi
1� P

p
=P, so the ratio of the SD to

the mean is
ffiffiffiffiffiffiffiffiffiffiffiffi
1� P

p � 1. Second, the structure disappears

quickly on averaging, as shown in Fig. 10 c.

DISCUSSION

We have proposed a model in which anomalous subdiffusion

is inherently linked to metabolism. Some initial, energy-

dependent biological event turns on the interaction of the

diffusing species with a hierarchy of traps. The mobile species

FIGURE 10 Observability of trapping. (a) Square displacement r2 versus
time t for a single randomwalkwith trapping, assuming the standard hierarchy

16/8/4/2/� with PESC ¼ 0.1 and total trap concentration 0.02930. (b) The

corresponding plot for a single pure random walk with no trapping or con-

finement. The curves in panels a and b were selected to make the point about

the problemof apparent trapping, but theywere selected fromonly five curves

of each kind, and the problem is real. (c) Mean-square displacement Ær2æ
averaged over 10, 100, and 1000 tracers for the same traps as in panel a.
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diffuses and eventually reaches its target site, where it reacts

or binds or signals. We interpret the abundant shallow traps

of the hierarchy as nonspecific binding sites, the intermediate

traps as traps with conformations more or less similar to the

target site, and the deepest trap as the target site of the dif-

fusing species. Intermediate traps are deeper the closer their

conformation is to the conformation of the target site. The

hierarchy is a sufficient condition for anomalous subdiffu-

sion but not a necessary one. Diffusion can be briefly anom-

alous even with a single trap; the intermediate traps of a

hierarchy lengthen the time during which anomalous sub-

diffusion occurs (Fig. 5). Diffusion becomes less anomalous

as the diffusing particle equilibrates with the traps, and be-

comes purely normal at equilibrium. The equilibration shown

in the Monte Carlo results of Figs. 6 and 8 a corresponds to

the effect of ATP depletion in biological systems provided

that ATP depletion does not also alter the structure of the

system.

This picture holds for a pure binding site model. In a pure

barrier model, anomalous subdiffusion may occur even at

thermal equilibrium (Fig. 8 b). But in cells both binding sites
and barriers are likely to be present, and the barriers are

likely to be gates due to fluctuating macromolecules, not

simply potential energy barriers. For example, in the Kusumi

membrane skeleton picket fence model (12), the membrane

skeleton acts as a barrier and transmembrane proteins may

bind transiently to the membrane skeleton to form the fence

pickets. In the nucleus, Cajal bodies are known to associate

transiently with chromatin (67) and chromatin acts as a bar-

rier to motion of Cajal bodies (4,68). When barriers and

binding sites are present, the anomalous subdiffusion due

to binding sites is removed by thermal equilibration but

that due to barriers is not (Fig. 8 c). Indeed, Platani et al. (4)
find that ATP depletion reduces but does not eliminate

anomalous diffusion. This result is consistent with a binding

site-barrier model, though it would be premature to claim

agreement.

Understanding these results for the nucleus will require

further work on chromatin dynamics, an active area of re-

search (69–71). Platani et al. (4) found that at the resolution

of their measurements ATP depletion had no effect on chro-

matin structure. Actinomycin D treatment, however, affected

chromatin structure (see also (72)), suggesting that the

increase in Cajal body mobility resulted from either disrup-

tion of chromatin structure or inhibition of transcription.

Görisch et al. (68) proposed that nuclear bodies may dif-

fuse rapidly within slowly mobile chromatin corrals. This

idea was based on SPT measurements on Cajal bodies,

promyelocytic leukemia (PML) bodies, and an artificial protein

body. In this view ATP inhibition changes diffusion by

changing the mobility and density of chromatin. The effect

of actinomycin D was not examined.

The trap hierarchy model is potentially applicable to three-

dimensional diffusion in the nucleus and cytoplasm, and to

two-dimensional diffusion in membranes. All the mecha-

nism requires is a stable particle small enough to undergo

Brownian motion, a suitable distribution of traps, and a non-

equilibrium state. Much work is being done on ways to

characterize protein-protein and protein-nucleic acid inter-

actions, both to study specific sets of interacting molecules

and to identify the ‘‘interactome,’’ a genome-scale interac-

tion map for the proteins in a cell (73). Among the methods

are FRAP, FCS, SPT, two-hybrid measurements (74),

molecular simulation (75), and data mining (76). It is impor-

tant to recognize that the false positives found in these ap-

proaches are candidate intermediate binding sites in the

hierarchy.

Interestingly, in one view of cell signaling, intermediate

binding sites do not exist. Zarrinpar et al. (77,78) found that

in one class of signaling proteins in yeast, selective pressure

against cross talk has eliminated nonspecific binding sites for

signaling proteins. Observations of diffusion in such a sys-

tem would test this hypothesis, unfortunately not cleanly.

The occurrence of anomalous subdiffusion would contradict

the hypothesis but one would have to exclude crowding-

induced anomalous subdiffusion (79,80) and anomalous

subdiffusion due to barriers. The absence of anomalous sub-

diffusion could be the result of thermal equilibration or of the

absence of intermediate binding sites.

A long-standing problem in membrane dynamics is the

observation that diffusion in the plasma membrane is one or

two orders of magnitude slower than diffusion of similar

species reconstituted in vesicles (12,81). The reduction in

diffusion coefficients due to high concentrations of mobile

particles does not seem sufficient to account for this (81–84).

Percolation, which is caused by immobile obstacles, seems

unlikely to be the explanation because the obstacle concen-

tration would have to be near the percolation threshold. But

the threshold is defined as the excluded area fraction for each

diffusing species, not as an area fraction of obstacles, so if

the obstacles were at the threshold for small membrane pro-

teins, they would be far from the threshold for either lipids or

large membrane proteins. Transient binding seems an un-

likely explanation because it would require universally sticky

binding sites. A less specific mechanism is more plausible,

combining obstruction and the hydrodynamic interaction of

mobile particles with immobile obstacles, as proposed by

Hammer, Koch, and collaborators (82–84). They found that

the hydrodynamic effect is long-range and slightly greater

than the obstruction effect. Immobile species have a much

greater hydrodynamic effect than mobile species do; the

same is true for the obstruction effect (85). The immobile

obstacles would likely be transmembrane proteins bound to

the cytoskeleton and forming the pickets of the Kusumi

membrane skeleton fence model (12).

The traps in the hierarchy are more generic than in the

simple examples given here. The mechanism is easiest to

visualize and simulate in terms of protein-protein binding

sites represented as point binding sites with a fixed escape

probability per unit time. But what the mechanism actually
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requires is an appropriate set of time delays. For example,

in the nucleus one might have binding followed by one-

dimensional diffusion along DNA to a release site, or me-

chanical trapping of a Cajal body in flexible chromatin fibers.

In the plasma membrane the traps could involve partition

into lipid domains or binding to domain interfaces. The

binding of polystyrene beads to condensed lipid domains in

monolayers and the diffusion of the beads along the interface

was characterized by Selle et al. (86).

Barbi et al. (9,10) independently proposed a similar model

for one-dimensional diffusion of a protein bound to DNA

and searching for its target in an energy landscape. The

interaction energy was modeled in terms of the differences

in hydrogen bonding between the protein and the different

DNA bases. The distribution of interaction energies was

based on an actual DNA sequence or was assumed to be

Gaussian. Their work suggests the intriguing possibility that

their one-dimensional anomalous subdiffusion mechanism

might provide a hierarchy of traps underlying larger-scale

three-dimensional anomalous subdiffusion as described here.

The main differences in the assumptions of the two models

are that their model is one-dimensional and the simplest form

of it is a random site/bond model. The results are somewhat

different. Barbi et al. found no equilibration effect of the sort

seen in Figs. 6 and 8, perhaps because the effect is difficult to

see in log-log plots of mean-square displacement versus

time. It is puzzling how they found a speedup of diffusion

due to anomalous subdiffusion.

If the diffusing species is in equilibrium with the traps,

diffusion is slow but normal at all times. Anomalous sub-

diffusion is thus probing the thermal equilibration of the cell.

Obviously the cell and its membranes are at ambient or body

temperature, and the internal degrees of freedom of the

molecules are equilibrated. But a newly inserted protein in

the plasma membrane or nucleus may be in a nonequilibrium

state with respect to binding sites there. Nonequilibrium

states could also result from conformational changes in the

mobile species that changes its interaction with the traps. A

trap-based nonequilibrium state results if the time delays are

constantly changing, fast enough that the diffusing species

cannot equilibrate with them. This would be a biological

realization of the CTRW (87). Membrane corral fluctuations

and ATP-dependent chromatin remodeling ought to be ex-

amined for this.

The model predicts that anomalous subdiffusion in cells

requires metabolic energy. Experimental results are divided.

For LDL receptors in fibroblasts (88) and Cajal bodies in the

nucleus (4), yes. For IgE receptors in RBL cells (89), no. All

three experiments used single-particle tracking. Further

experiments would be of considerable interest.
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