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Dislocation mobility and stability in inclusions can affect the mechanical behaviors of the composites. In
this paper, the problem of an edge dislocation located within a nanoscale cylindrical inclusion incorpo-
rating interface stress is first considered. The explicit expression for the image force acting on the edge
dislocation is obtained by means of a complex variable method. The influence of the interface effects
and the size of the inclusion on the image force is evaluated. The results indicate that the impact of inter-
face stress on the image force and the equilibrium positions of the edge dislocation inside the inclusion
becomes remarkable when the radius of the inclusion is reduced to nanometer scale. The force acting on
the edge dislocation produced by the interface stress will increase with the decrease of the radius of the
inclusion and depends on the inclusion size which differs from the classical solution. The stability of the
dislocation inside a nanoscale inclusion is also analyzed. The condition of the dislocation stability and the
critical radius of the inclusion are revised for considering interface stresses.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many physical properties of solids, such as plasticity, strength,
and some optical and magnetic characteristics are structure-sen-
sitive. The crystal lattice imperfections (dislocations, disclinations,
pores, etc.) can drastically change the physical characteristics of
materials (Gryaznov and Trusov, 1993). Therefore, the interaction
of inclusions with dislocations of different kinds is of considerable
importance for understanding the physical behavior of crystalline
solids. For example, it can provide important information con-
cerning certain strengthening and hardening mechanism in a
number of materials (Nembach, 1996). Due to its importance, a
number of contributions have been conducted on this topic dur-
ing the last several decades (Dundurs and Mura, 1964; Hirth
and Lothe, 1982; Luo and Chen, 1991; Stagni, 1993; Zhang and
Qian, 1996; Xiao and Chen, 2001; Liu et al., 2004; Ma and Lu,
2006; Wang and Sudak, 2006; Wang et al., 2007; Takahashi and
Ghoniem, 2008).

The mobility and stability of dislocations inside dispersed parti-
cles or second phase inclusions can also significantly affect the
physical behaviors of alloys and composites (Nembach, 1996). On
the other hand, the image stress of the dislocation inside an elastic
cylinder may be important for dislocation dynamics simulations of
the plastic deformation of a cylinder (Weinberger and Cai, 2007).
ll rights reserved.

: +86 731 8822330.
.

Some solutions for the problem of the dislocation inside the inclu-
sion in composites have been obtained and used to discuss the
mobility and the equilibrium points of the dislocation (Dundurs
and Sendeckyj, 1965; Warren, 1983; Qaissaunee and Santare,
1995; Stagni, 1999). These studies did not investigate the stability
of the dislocation inside the inclusion and were restricted to the
case that the size of the inclusion equals to the micron dimension
or larger than it. In general, when the dimensions of solids are
comparable with the correlation length of physical phenomena
(e.g., the Cooper-pair length, an exciton size, a dislocation pileup
length, etc.), a detailed revision of all physical properties of solids
becomes necessary, usually referred to as size effects (Gryaznov
et al., 1991). When the size of the inclusion (second phase) is very
small (of the order of nanometers), an influence of size effects of
the nanoscale inclusion on the behavior of lattice defects in the
inclusion ought to drastically change the physicomechanical char-
acteristic of the composites. Theoretical results concerning the
behavior of dislocations in small particles and nanocrystals have
been reported (Gryaznov et al., 1989, 1991; Gryaznov and Trusov,
1993; Romanov, 1995), where the problem of stability of disloca-
tions in nanovolumes has been considered and the existence of
the critical size of dislocation stability in nanoparticles or nano-
grains has been predicted. Below this size which depends on such
material parameters as elastic modulus and lattice resistance to
the dislocation motion, the dislocations are unstable in the
nanovolume interior. Some other studies on the dislocation stabil-
ity had also been considered (Schoeck, 1997; Wang, 1998; Yoo
et al., 1999; Chen and Biner, 2005).
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The interface condition is an important factor for studying dis-
location mobility and stability inside inclusions. When the size of
the inclusion is of the order of nanometer, the inclusion–matrix
interface energy cannot be neglected because of the increased con-
tribution to the total energy from the interface (Duan et al., 2005).
A generic and mathematical exposition for elastic isotropic solids
with the surface/interface energy (surface/interface stress) has
been presented by Gurtin and his co-workers (Gurtin and
Murdoch, 1975; Gurtin et al., 1998). Utilizing this interface model
(This model is the so-called interface stress model), great effort has
been made recently to understand some unusual phenomena re-
lated to the interface stress in nanocomposites (Sharma et al.,
2003; Sharma and Ganti, 2004; Lim et al., 2006; Chen and Dvorak,
2006; Duan and Karihaloo, 2007; Quang and He, 2007; Chen et al.,
2007; Tian and Rajapakse, 2007). These studies indicate that the
interface effects is a critical factor in the physical behavior of the
materials containing inclusions of a sufficiently small size.

Recently, the interaction between an edge dislocation and a cir-
cular inclusion with interface stress has been considered by Fang
and Liu (2006). In their paper, an edge dislocation is assumed to
be located inside the infinite matrix and the image force acting
on the dislocation is given. In the present work, the problem of
an edge dislocation located within a nanoscale inclusion is first
investigated by using the surface/interface stress model which pro-
posed by Gurtin and Murdoch (1975). The effect of the interface
stress on the mobility and equilibrium positions of the edge dislo-
cation in the inclusion is evaluated. In addition, the stability of
edge dislocations inside a nanoscale inclusion is also studied.

2. Statement of the problem

The basic model to be treated is that of an infinite elastic med-
ium with the elastic properties j2 and l2 containing a circular
nanoscale inclusion of a radius R with the elastic properties
j1 and l1, where lj ðj ¼ 1;2Þ is the shear modulus and jj ¼
3� 4v j for plane strain state (v j is the Poisson’s ratio). An edge dis-
location with Burgers vector ðbx; byÞ is assumed to be located inside
the circular inclusion at the point z0 as shown in Fig. 1.

Following the work of Gurtin and Murdoch (1975), the elastic
field within the bulk solid is described by the differential equations
of classical elasticity, while the interface has its own elastic con-
stants and is characterized by an additional constitutive law. Under
the assumption that the interface region adheres to the bulk solid
without slipping and the body forces are vanishes, the equilibrium
and constitutive equations for isotropic case have been given in
Sharma et al. (2003). For the current problem, the boundary condi-
tions at the interface can be obtained from the generalized Young–
Laplace equations.

uþx1ðtÞ � u�x2ðtÞ ¼ 0 uþy1ðtÞ � u�y2ðtÞ ¼ 0 jtj ¼ R ð1Þ
y
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Fig. 1. Schematic diagram of an edge dislocation inside a nanoscale cylindrical
inclusion.
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where ux and uy are displacement components in the Cartesian
coordinates, rrr and rrh are stress components in polar coordinates
system r and h, the superscripts + and � denote the boundary values
of a physical quantity when z approaches the interface from the
inclusion and the matrix, respectively, the subscripts 1 and 2 repre-
sent the inclusion and the matrix regions, the superscript ‘‘0” de-
notes the circular interface. In addition, the constitutive equation
for the interface region is given as (Duan et al., 2005)

r0
hhðtÞ ¼ ð2l0 þ k0Þe0

hhðtÞ ð3Þ
where r0

hh and e0
hh denote interfacial stress and strain, l0 and k0 are

interfacial Lame constants. For a coherent interface, the interfacial
strain e0

hh is equal to the associated tangential strain in the abutting
bulk materials. With semi-coherent or incoherent interfaces, an
additional measure of the interfacial strain is required. In the fol-
lowing, we will study the case for a coherent interface.

Considering the additional constitutive equation for interface
region in Eq. (3) and the constitutive equation for the bulk solid,
the stress discontinuity conditions in Eq. (2) at the interface can
be rewritten as

rþrr1ðtÞ�r�rr2ðtÞ¼�
2l0þk0

4Rl1ðk1þl1Þ
½ðk1þ2l1Þrhh1ðtÞ�k1rrr1ðtÞ� ð4Þ
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2l0 þ k0

4Rl1ðk1 þ l1Þ
ðk1 þ 2l1Þ

orhh1ðtÞ
oh

� k1
orrr1ðtÞ

oh

� �
ð5Þ

where l1 and k1 are Lame constants of the inclusion.

3. General solution of basic model

The stress and displacement components in the bulk solid can
be expressed in terms of two Muskhelishvili’s complex potentials
UðzÞ and WðzÞ (Muskhelishvili, 1975). For the problem under con-
sideration, the complex potentials U1ðzÞ and W1ðzÞ in the inclusion
region can be taken in the following forms (Qaissaunee and
Santare, 1995):

U1ðzÞ ¼
c1

z� z0
þU10ðzÞ jzj < R ð6Þ

W1ðzÞ ¼
c1

z� z0
þ c1�z0

ðz� z0Þ2
þW10ðzÞ jzj < R ð7Þ

where c1 ¼
l1

pð1þj1Þ
ðby � ibxÞ;U10ðzÞ and W10ðzÞ are unknown and

analytical complex functions in the inclusion region.
The complex potentials outside the inclusion are holomorphic

and can be taken in the following forms for a large value of jzj.

U2ðzÞ ¼
c2

z
þ O

1
z2

� �
; W2ðzÞ ¼

c2

z
þ O

1
z2

� �
ð8Þ

where c2 ¼
l2

pð1þj2Þ
ðby � ibxÞ.

To treat the boundary conditions on the interface, it is conve-
nient to introduce the following analytic functions:

X1ðzÞ ¼ �U1
R2

z

 !
þ R2

z
U01

R2

z

 !
þ R2

z2 W1
R2

z

 !
jzj > R ð9Þ

X2ðzÞ ¼ �U2
R2

z

 !
þ R2

z
U02

R2

z
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þ R2

z2 W2
R2

z

 !
jzj < R ð10Þ

Considering Eqs. (6)–(8), Eqs. (9) and (10) have the following forms:

X1ðzÞ ¼ �
c1

z� z�
þ c1z�ðz0 � z�Þ

�z0ðz� z�Þ2
þX10ðzÞ jzj > R ð11Þ

X2ðzÞ ¼
c2

z
þX20ðzÞ jzj < R ð12Þ
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where z� ¼ R2=z0. X10ðzÞ and X20ðzÞ are holomorphic complex
functions.

With the aid of Eqs. (9) and (10), the displacement continuity
conditions on the entire circular interface in Eq. (1) can be
expressed as

j1

l1
U1ðtÞ �

1
l2

X2ðtÞ
� �þ

¼ j2

l2
U2ðtÞ �

1
l1

X1ðtÞ
� ��

jtj ¼ R ð13Þ

According to the generalized Liouville theorem (Muskhelishvili,
1975) and Eqs. (6)–(12), Eq. (13) leads to

hðzÞ ¼
U1ðzÞðj1=l1Þ �X2ðzÞ=l2 jzj < R

U2ðzÞðj2=l2Þ �X1ðzÞ=l1 jzj > R

�
ð14Þ

where hðzÞ ¼ j1
l1

c1
z�z0
þ 1

l1

c1
z�z� �

c1z�ðz0�z�Þ
�z0ðz�z�Þ2

h i
� 1

l2

c2
z þ D1. With the help

of Eq. (9) and the second equation in Eq. (14), the unknown constant
D1 can be obtained

D1 ¼ U1ð0Þ=l1 ð15Þ
The stress boundary conditions Eqs. (4) and (5) can be expressed as

U1ðtÞþX2ðtÞþðaþbÞU1ðtÞþðaþbÞtU01ðtÞþaX1ðR2=tÞ�aðR2=tÞX01ðR
2=tÞ
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h
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where a ¼ 2l0þk0

4Rl1
and b ¼ 2l1ð2l0þk0Þ

4Rl1ðk1þl1Þ
.

Similarly, by using the generalized Liouville theorem, it leads to

gðzÞ¼

U1ðzÞþX2ðzÞþðaþbÞU1ðzÞþðaþbÞzU01ðzÞþaX1ðR2=zÞ
�aðR2=zÞX01ðR

2=zÞ jzj<R

U2ðzÞþX1ðzÞ�aX1ðzÞ�azX01ðzÞ�ðaþbÞU1ðR2=zÞ
þðaþbÞðR2=zÞU01ðR

2=zÞ jzj>R

8>>>><
>>>>:
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where

gðzÞ ¼ ðaþ b� 1Þ c1

z� z0
� ðaþ bÞ zc1

ðz� z0Þ2
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The unknown constant D2 in Eq. (18) can be determined by Eq. (9)
and the second equation in Eq. (18) as z!1.

D2 ¼ �ð1þ bÞU1ð0Þ � a
c1z0

R2 þ
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� �
� ðaþ bÞ c1
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From Eqs. (14) and (18), we have

l2j1

l1
þ 1þ aþ b
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The substitution of Eqs. (6) and (11) into Eqs. (20) and (21) yields

l2j1
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with
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and

f2ðzÞ ¼ ðaþ bþ 1� l2j1

l1j2
Þ c1
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z
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#
� l2
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D1 � D2:

The two first order differential equations above can be solved by a
power-series method (Muskhelishvili, 1975). Note that the complex
potential U10ðzÞ and X10ðzÞ can be taken in the following series
expansions:

U10ðzÞ ¼ c0 þ
Xþ1
k¼1

ckzk jzj < R ð24Þ

X10ðzÞ ¼ d0 þ
Xþ1
k¼1

d�kz�k jzj > R ð25Þ

From Eqs. (22)–(25) the unknown coefficients in right-hand side of
Eqs. (24) and (25) can be obtained

c0 ¼
mþ e �m
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c1
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�
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" #
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where

e ¼ l2=l1 � 1� b
1þ bþ ðl2j1Þ=l1

;

e1 ¼
aðaþ bÞð1þ kÞð1� kÞ

1þ aðk� 1Þ þ l2=ðl1j2Þ
þ 1þ ðaþ bÞðkþ 1Þ þ ðl2j1Þ=l1;

m ¼ 1� a� l2=l1

l2=l1 � 1� b
c1

z�
þ c1ðz0 � z�Þ

z�z0

� �
� l2=l1 � 1� 2b� a

l2=l1 � 1� b
c1

z0

� a
l2=l1 � 1� b

c1z0

R2 þ
c1z�ðz0 � z�Þz0

R4 þ c1

z0

� �
;

e2 ¼ 1� aðkþ 1Þ þ l2=l1 �
a2ð1þ kÞð1� kÞ

1þ aðk� 1Þ þ l2=ðl1j2Þ
;

e3 ¼ ðaþ bÞðkþ 1Þ þ að1þ kÞ½1þ ðaþ bÞðkþ 1Þ þ ðl2j1Þ=l1�
1þ aðk� 1Þ þ l2=ðl1j2Þ

;

e4 ¼
að1þ kÞ

1þ aðk� 1Þ þ l2=ðl1j2Þ
1þ 1

j2

� �
;

e5 ¼ 1þ aðk� 1Þ þ l2=ðl1j2Þ þ
aðaþ bÞð1þ kÞð1� kÞ

1þ ðaþ bÞðkþ 1Þ þ ðl2j1Þ=l1
;

e6 ¼ aðk� 1Þ þ ½1� aðkþ 1Þ þ l2=l1�ðaþ bÞð1� kÞ
1þ ðaþ bÞðkþ 1Þ þ ðl2j1Þ=l1

;

e7 ¼ 1þ ðaþ bÞð1� kÞ � ðl2j1Þ=ðl1j2Þ

� ðkþ 1Þðaþ bÞ2ð1� kÞ
1þ ðaþ bÞðkþ 1Þ þ ðl2j1Þ=l1

;

and dij is the Kronecker delta.
The expressions of complex potentials U1ðzÞ and X1ðzÞ can be

determined from Eqs. (6), (11), (24) and (25).

U1ðzÞ ¼
c1

z� z0
þ c0 þ

Xþ1
k¼1

ckzk jzj < R ð29Þ

X1ðzÞ ¼ �
c1

z� z�
þ c1z�ðz0 � z�Þ

�z0ðz� z�Þ2
þ d0 þ

Xþ1
k¼1

d�kz�k jzj > R ð30Þ

From Eq. (14), the complex potentials U2ðzÞ and X2ðzÞ can be
derived. Taking the complex conjugate of Eqs. (9) and (10) and rear-
ranging, it is seen that

W1ðzÞ ¼
R2

z2 U1ðzÞ þX1
R2

z

 !
� zU01ðzÞ

" #
jzj < R ð31Þ

W2ðzÞ ¼
R2

z2 U2ðzÞ þX2
R2

z

 !
� zU02ðzÞ

" #
jzj > R ð32Þ

The complex potentials W1ðzÞ and W2ðzÞ can be calculated using
Eqs. (31) and (32), respectively.

Referring to the work of Muskhelishvili (1975), the stress com-
ponents in the Cartesian coordinates are related to the complex
potentials through

rxx ¼ Re½2UðzÞ � �zU0ðzÞ �WðzÞ� ð33Þ
ryy ¼ Re½2UðzÞ þ �zU0ðzÞ þWðzÞ� ð34Þ
rxy ¼ Im �zU0ðzÞ þWðzÞ½ � ð35Þ

In view of Eqs. (33)–(35) and the obtained complex potentials
U1ðzÞ; W1ðzÞ; U2ðzÞ and W2ðzÞ, the stress fields in the inclusion
and the matrix regions can be easily derived. Here we omit details
for saving space.

4. Image force on edge dislocation

The image force acting on the edge dislocation can be calculated
through the Peach–Koehler formula (Hirth and Lothe, 1982)
fx � ify ¼ r�xy1ðz0Þbx þ r�yy1ðz0Þby

h i
þ i r�xx1ðz0Þbx þ r�xy1ðz0Þby

h i
ð36Þ

where fx and f y are the components of the image force in the x- and
y-directions, respectively. r�xx1ðz0Þ;r�yy1ðz0Þ and r�xy1ðz0Þ are stress
components at the dislocation point z0 (dislocation inside the inclu-
sion), which can be evaluated by the complex potentials
U10ðz0Þ and W10ðz0Þ in the inclusion.

With the help of Eqs. (33)–(35), the Peach–Koehler formula can
be rewritten as (Stagni, 1993)

fx � ify ¼
l1ðb

2
y þ b2

x Þ
pð1þ j1Þ

U10ðz0Þ þU10ðz0Þ
c1

þ
�z0U

0
10ðz0Þ þW10ðz0Þ

c1

" #

ð37Þ

Considering Eqs. (6) and (7), the complex potentials
U10ðz0Þ;U010ðz0Þ and W10ðz0Þ may be calculated as follows:

U10ðz0Þ ¼ lim
z!z0
½U1ðzÞ �U0ðzÞ� ð38Þ

U010ðz0Þ ¼ lim
z!z0

d½U1ðzÞ �U0ðzÞ�
dz

ð39Þ

W10ðz0Þ ¼ lim
z!z0
½W1ðzÞ �W0ðzÞ� ð40Þ

where U0ðzÞ ¼ c1
z�z0

and W0ðzÞ ¼ c1
z�z0
þ c1�z0

ðz�z0Þ2
.

In order to obtain the detailed expression of the complex poten-
tial W1ðzÞ, the substitution of Eqs. (29) and (30) into Eq. (31) yields

W1ðzÞ ¼
R2

z2

c1

z� z0
þ
Xþ1
k¼0

ckzk þ c1z

ðz� z0Þ2
�
Xþ1
k¼0

kckzk þ
Xþ1
k¼0

d�k
R2

z

 !�k
2
4

þ c1zz0

R2ðz� z0Þ
þ c1ðz0z0 � R2Þz2

R2z0ðz� z0Þ2

#
ð41Þ

From Eqs. (38)–(40), the complex potentials U10ðz0Þ;
U010ðz0Þ and W10ðz0Þ in the inclusion region can be obtained.

U10ðz0Þ ¼ c0 þ
Xþ1
k¼1

ckzk
0 ð42Þ

U010ðz0Þ ¼
Xþ1
k¼1

kckzk�1
0 ð43Þ

W10ðz0Þ¼
R2

z2
0

Xþ1
k¼0

ckzk
0�
Xþ1
k¼1

kckzk
0þ
Xþ1
k¼0

d�k
R2

z0

 !�k

þc1z0

R2 þ
c1ðz0z0�R2Þ

R2z0

2
4

3
5

�2c2

z0
�c2�z0

z2
0

ð44Þ

The expression of the components of the image force fx and f y can
be found by Eq. (37) together with Eqs. (42)–(44).

If we take l2 ¼ 0 and j2 ¼ 0, the associated solution of the
image force for the case of an edge dislocation inside a nanoscale
cylinder with surface stresses can be obtained

If the interface stress vanishes, i.e., l0 ¼ k0 ¼ 0, and the edge
dislocation with the Burgers vector ðbx;0Þ is located at the point
x0ðx0 < RÞ on the x-axis, the image force is reduced to Eq. (15) in
the paper of Dundurs and Sendeckyj (1965). Here we omit details
for saving space.

The components of the image force along the Burgers vector
direction (glide force) and the component perpendicular to the
Burgers vector (climb force) are given by (Stagni, 1993)
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fg ¼ fx cos hþ fy sin h ð45Þ
fc ¼ fx sin h� fy cos h ð46Þ

where h ¼ arctanðby=bxÞ.

5. Condition of dislocation stability in inclusion

Consider that a straight-line edge dislocation with Burgers
vector br (along dislocation glide direction) is assumed to be
located inside the inclusion at arbitrary point z0 ¼ r0eih and par-
allel to the axis of cylindrical nanoscale inclusion. From the
above analysis (Sections 2–4), the image force fr acting on the
edge dislocation along the Burgers vector direction (dislocation
glide direction) can be derived from the obtained stress fields,
which is given by

fr ¼
l1b2

r

pð1þ j1Þ
r0U

0
10ðr0Þ þW10ðr0Þ

c1

� �
ð47Þ

where

U010ðz0Þ ¼
Xþ1
k¼1

kckrk�1
0

W10ðr0Þ ¼
R2

r2
0

Xþ1
k¼0

ckrk
0 �

Xþ1
k¼1

kckrk
0 þ

Xþ1
k¼0

d�k
R2

r0

 !�k
2
4

þ c1r0

R2 þ
c1ðr2

0 � R2Þ
R2r0

#
� 2c2

r0
� c2

r0

with c1 ¼
�il1br
pð1þj2Þ

and c2 ¼
�il2br
pð1þj2Þ

.

To analyze the stability of the dislocation in the inclusion, the
obtained force fr should be compared with the friction force acting
on an edge dislocation in the crystal lattice. As a role, the Peierls
stress rf gives a dominant contribution in dislocation friction pro-
cesses (Gryaznov et al., 1991). According to the work of Gryaznov
et al. (1991), two parameters are introduced to characterize the
dislocation stability in the nanoscale inclusion. The first one,
C ¼ Ve=V , is the relative volume of edge dislocation stability,
where V is the volume of the inclusion and Ve is the volume of
the region of the edge dislocation stability in the inclusion. The sec-
ond parameter is the critical radius of the cylindrical inclusion R0

satisfying condition C ¼ 1=2. A comparison of the force fr and with
the friction force gives the condition of edge dislocation stability in
the nanoscale inclusion. Here let us introduce the parameter Df
denoting the difference between the image force fr and the friction
force (lattice resistance to the dislocation motion) acting on the
edge dislocation

Df ¼ jfrðz0Þj � brrf : ð48Þ

In the above equation, if the value of Df is negative ðDf < 0Þ, the
edge dislocation is stable in the inclusion because the driving
force acting on the dislocation is smaller than the friction force.
If the value of Df is positive ðDf > 0Þ, the edge dislocation is
unstable in the inclusion. When we take Df ¼ 0, the radius of
the cylindrical inclusion R is equal to the critical radius R0

(Gryaznov et al., 1991).
From the condition in Eq. (48), we can study the critical radius

of the cylindrical inclusion R0 of the edge dislocation stability in
the nanoscale inclusion as well as the influence of the interface
stress and elastic mismatch on the critical radius. According to
the character of the image force fr acting on the edge dislocation
located inside the inclusion and the condition in Eq. (48), the edge
dislocation is stable in the inclusion when the following equation is
satisfied:

Df ¼ l1b2
r

pRð1þ j1Þ
ðP1 þP2Þ � brrf < 0 ð49Þ

with

P1 ¼
1
C
ðP3 �P2Þ �

C0

C
� 1ffiffiffiffi

C
p þ 1

e5
1þ 1

j2

� �
l2ð1þ j1Þ
l1ð1þ j2Þ

1ffiffiffiffi
C
p

þ
Xþ1
k¼1

e6

e5
½ð1þ kÞðC� 1ÞCk�1:5 � Ck�0:5�

� �
þ
Xþ1
k¼1

e7

e5
Ck�1:5

� �

P2 ¼
Xþ1
k¼1

e2

e1
k½ð1þ kÞðC� 1ÞCk�0:5 � Ckþ0:5�

� �
�
Xþ1
k¼1

e3

e1
kCk�0:5

� �

þ e4

e1

l2ð1þ j1Þ
l1ð1þ j2Þ

ffiffiffiffi
C
p

P3 ¼ C0 þ
Xþ1
k¼1

e2

e1
½ð1þ kÞðC� 1ÞCk�0:5 � Ckþ0:5�

� �
�
Xþ1
k¼1

e3

e1
Ck�0:5

� �

þ e4

e1

l2ð1þ j1Þ
l1ð1þ j2Þ

ffiffiffiffi
C
p

1 aþ 2b 1 a ffiffiffiffip� �

C0 ¼ 1þ e 1þ bþ ðl2j1Þ=l1

ffiffiffiffi
C
p þ

1þ bþ ðl2j1Þ=l1
C

where parameter C should be satisfied the condition of the disloca-
tion stability (C ¼ 1=2 in Gryaznov et al., 1991) for studying the
critical value of the radius of the inclusion.
6. Numerical examples and discussion

In this section, numerical examples are given to discuss the im-
age force acting on the edge dislocation and the equilibrium posi-
tion of the dislocation inside the inclusion through Eqs. (45) and
(46). Additionally, the critical radius of the cylindrical inclusion
R0 for edge dislocation stability in the inclusion and the influence
of the interface stress and elastic mismatch on it can be investi-
gated through Eq. (49). In subsequent numerical calculation, we
define the relative shear modulus e ¼ l2=l1 and the intrinsic
lengths a ¼ l0=l1 and b ¼ k0=l1 (Lim et al., 2006). According to
the results in Miller and Shenoy (2000), the absolute values of
the intrinsic lengths a and b are about 0.1 nm.

6.1. Analysis of image force on edge dislocation

From Eqs. (45) and (46), the influence of the material elastic dis-
similarity and interface stress as well as Burgers vector direction
upon the glide/climb force acting on the edge dislocation can be
evaluated in detail when a single edge dislocation is located in
the inclusion. Here, we will mainly focus on the impact of the
interface stress on the glide/climb force. Suppose that the edge dis-
location lies at the point x0 on the x-axis in the inclusion. The rel-
ative location of the dislocation is defined as q ¼ x0=R and the
normalized glide force and climb force are defined as
fgo¼pRð1þj1Þfg=½l1ðb

2
x þb2

yÞ� and f co¼pRð1þj1Þfc=½l1ðb
2
x þb2

yÞ�.
The variation of the normalized glide force fgo versus the radius

R is depicted in Fig. 2 with different values of the relative shear
modulus e and two different sets of intrinsic lengths a and b for
v1 ¼ v2 ¼ 0:25; q ¼ 0:9 and by ¼ 0. Note that the climb force
equals to zero in this case. It can be found that, if interface con-
stants are positive ða > 0 and b > 0Þ, the edge dislocation in the
inclusion will be repelled by the interface; if interface constants
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are negative ða < 0 and b < 0Þ, the edge dislocation will be at-
tracted by the interface. An additional repulsive force or attractive
force will act on the edge dislocation along glide direction due to
consider the interface effects, which causes the total glide force
to increase or decrease. The phenomenon cannot be predicted by
the classical elasticity without considering the effect of interface
stress ða ¼ 0 and b ¼ 0Þ. This result indicates that the local hard-
ening and softening at the interface can be produced for consider-
ing the interface stresses, which is similar to the imperfect soft or
stiff interface studied by Benveniste and Miloh (2001).

The additional force (repulsive force or attractive force) in-
creases with the decrease of the inclusion radius, and the size
dependence becomes significant when the inclusion radius is very
small. An interesting result is that, for the case of
a ¼ �0:1 nm; b ¼ �0:1 nm and e ¼ l2=l1 ¼ 1:1, the direction of
the normalized image force may be changed when the radius of
the inclusion reduces to a small value (about 10 nm in Fig. 2).
The reason of this phenomenon is that the attractive force acting
on the edge dislocation produced by the interface
ða ¼ �0:1 nm and b ¼ �0:1 nmÞ will increase with the decrease
of the radius of the inclusion and the attractive force will be larger
than the repulsive force produced by the stiff matrix
ðe ¼ l2=l1 ¼ 1:1Þ leading to the change of the direction of the
image force when the value of the radius is smaller than 10 nm.
The effect of interface stress becomes negligible when the radius
of the inclusion is relatively large. The classical case (without inter-
face stress) is, as expected, independent of the inclusion size and
cannot change the orientation of the glide force.

The variation of the normalized climb force fco versus the radius
R is depicted in Fig. 3 with different values of the relative shear
modulus e and two different sets of intrinsic lengths a and b for
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Fig. 3. The normalized climb force fco versus the radius R with different values of
the relative shear modulus e and two different sets of intrinsic lengths a and b for
v1 ¼ v2 ¼ 0:25; q ¼ 0:9 and bx ¼ 0.
v1 ¼ v2 ¼ 0:25; q ¼ 0:9 and bx ¼ 0. In this case the glide force
equals to zero. The parallel results can be obtained from this figure
for climb force. However, the impact of the interface stress on the
climb force is clearly larger than that on glide force. The size
dependence becomes important if the inclusion radius is below a
small value (about 60 nm in Fig. 3). The climb force will change
the original direction, when the radius of the inclusion equals to
20 nm, for certain intrinsic lengths and the ratio of the shear mod-
uli of two bulk solids.

The normalized glide force fgo as a function of the relative
location q with different values of e is plotted in Fig. 4 for
a ¼ �0:1 nm and b ¼ �0:1 nm ðv1 ¼ v2 ¼ 0:25; R ¼ 10 nm and
by ¼ 0Þ. It is seen from Fig. 4 that, when the edge dislocation ap-

proaches the interface from the origin, the stiff matrix
ðe ¼ l2=l1 ¼ 1:1Þ first repels the edge dislocation and then attracts
it due to consider negative interface stress. There is an unstable
equilibrium position on the x-axis and the glide force equals to
zero at that point. To our knowledge, the stiff matrix will always
repel the edge dislocation located within the inclusion in the clas-
sical elasticity (the associated plot has been given in Fig. 4). The
soft matrix and the negative interface stress always attract the
edge dislocation when it is near to the interface.

The normalized climb force fco as a function of the relative loca-
tion q with different values of e is plotted in Fig. 5 for
a ¼ 0:1 nm and b ¼ 0:1 nm ðv1¼v2¼0:25; R¼10 nm and bx¼0Þ.
It is found from Fig. 5 that the soft matrix ðe ¼ l2=l1 ¼ 0:9Þ and
the positive interface stress first attracts then repels the edge dis-
location inside the inclusion. There is a stable equilibrium position
on the x-axis and the climb force equals to zero at that point. The
hard matrix and the positive interface stress always repel the edge
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different values of e for a ¼ �0:1 nm and b ¼ �0:1 nm ðv1 ¼ v2 ¼ 0:25; R ¼
10 nm and bx ¼ 0Þ.
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dislocation inside the inclusion. The results from Figs. 4 and 5 show
that there is a significant local softening or hardening at the inter-
face of the nanoscale inclusion. Comparing with the classical solu-
tion, the mobility of the edge dislocation in the nanoscale inclusion
with interface stress becomes more complex under the same
conditions.

The glide force fgo as a function of a with different values of R is
shown in Fig. 6 for q ¼ 0:9; e ¼ 1:1; b ¼ �0:1 nm and v1 ¼ v2 ¼
0:25ðby ¼ 0Þ. It is seen that the larger the absolute value of intrinsic
lengths a, the larger effect of the interface stress upon the glide
force. At the same time, the smaller radius of the inclusion, the lar-
ger effect of the interface stress. On the contrary, the interface
effect becomes negligible when the radius of the inclusion is rela-
tively large. The glide force fgo as a function of b with different val-
ues of R is shown in Fig. 7 for q ¼ 0:9; e ¼ 1:1; a ¼
�0:1 nm and v1 ¼ v2 ¼ 0:25 ðby ¼ 0Þ. Conclusions parallel to the
results in Fig. 6 can be derived.

Figs. 8 and 9 illustrate the variation of the glide force fgo and the
climb force fco versus the direction of the Burgers vector for
q ¼ 0:9; e ¼ 1:1; v1 ¼ v2 ¼ 0:25 and R ¼ 10 nm. It is seen that
the glide force fgo is always negative for classical solution. How-
ever, if the negative interface constants are considered, the glide
force is negative first, and then becomes positive with the incre-
ment of the angle h (the direction of the Burgers vector relative
to the x-axis). The special case is that the glide force along the
direction of the Burgers vector equals to zero around h ¼ 48� which
differs from the classical solution. The absolute value of the glide
force for considering positive interface constants is always larger
than that for classical solution. The effect of the interface stress
on the glide force is largest around h ¼ 48�. It is found from
Fig. 9 that the climb force fco is also negative for classical solution.
It will be negative first, and then becomes positive with the incre-
ment of the angle h if the negative interface effect is added. Simi-
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larly, the climb force perpendicular to the direction of the
Burgers vector equals to zero around h ¼ 65�. The effect of the
interface stress on the climb force is largest for h ¼ 90�. The results
show that, when the direction of the Burgers vector of the edge dis-
location is various, the influence of the interface stress on the glide
force and climb force is significant.

6.2. Analysis of dislocation stability

Here, we utilize Eq. (49) to study the edge dislocation stability
in the inclusion and the influence of the interface stress and elastic
mismatch on it. In subsequent numerical calculation, we define
Df0 ¼ Df=ðbrrf Þ. The material constants of the inclusion is taken
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Fig. 10. The value of Df0 as a function of the relative shear modulus e ¼ l2=l1 with
different values of the radius of the inclusion R for a ¼ b ¼ 0 and v1 ¼ v2 ¼ 0:34.
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from Gryaznov and Trusov (1993) ðl1 ¼ 33 GPa; v1 ¼ 0:34; br ¼
0:256 nm and rf ¼ 1:67� 10�2 GPaÞ.

The value of Df0 is plotted as a function of the relative shear
modulus e ¼ l2=l1 in Fig. 10 with different values of the radius
of the inclusion for a ¼ b ¼ 0 and v1 ¼ v2 ¼ 0:34. In this case, it
can be seen that, if e P 1 (the shear modulus of the matrix is larger
than that of the inclusion), the edge dislocations in the inclusion
are absolutely stable ðDf0 < 0Þ. The relative shear modulus e to
keep dislocation stabilization inside the inclusion will decrease
with the increment of the radius of inclusion. The result also shows
that, if the radius of the inclusion is changeless, there is a critical
value of the relative shear modulus e to change the edge disloca-
tion stability in the inclusion. If the value of e is larger than the crit-
ical value, the edge dislocation is stable in the inclusion.

The value of Df0 is plotted as a function of v2 in Fig. 11 with dif-
ferent values of the radius of the inclusion for a ¼ b ¼ 0; v1 ¼
0:34 and e ¼ l2=l1 ¼ 1. It is found that, if the radius of the inclu-
sion is changeless, there also exists a critical value of v2 to alter
the edge dislocation stability in the inclusion. When the value of
v2 is less than the critical value, the edge dislocation is unstable
in the inclusion.

The variation of the value of Df0 with respect to the relative
shear modulus e ¼ l2=l1 is depicted in Fig. 12 with different val-
ues of intrinsic lengths a and b for R ¼ 6 nm and v1 ¼ v2 ¼ 0:34.
It is seen that, if a ¼ b ¼ 0 (the interface stress vanishes) and
a ¼ b ¼ 0:15 nm, the edge dislocations in the inclusion are stable
for e ¼ 1. However, if we take a ¼ b ¼ �0:15 nm, the edge disloca-
tions in the inclusion are unstable ðDf0 > 0Þ for e ¼ 1. The phenom-
enon cannot be predicted by the classical elasticity solution
ða ¼ b ¼ 0Þ without considering the effect of interface stress.
Fig. 12 also shows that, if the positive interface stress is considered,
the critical value of the relative shear modulus to keep the disloca-
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tion stabilization in the inclusion will decrease; if the negative
interface stress is considered, it will increase. These results indicate
that, when the radius of the inclusion is fixed, the effect of the
interface stress on the critical value of the relative shear modulus
is significant.

If we take a ¼ b ¼ 0, the value of Df0 is plotted as a function of
the radius of inclusion R in Fig. 13 with different values of the rel-
ative shear modulus eðv1 ¼ v2 ¼ 0:34Þ and in Fig. 14 with different
values of v2ðe ¼ 1Þ. It can be found from two Fig. that, if e < 1 (the
shear modulus of the matrix is less than that of the inclusion) or
v2 < v1 (the Poisson’s ratio of the matrix is less than that of the
inclusion), there always exists a critical value of the radius of the
inclusion to alter the edge dislocations stability in the inclusion.
If the radius of the inclusion is larger than the critical value, the
edge dislocations are stable in the inclusion. When the value of
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the shear modulus (or the Poisson’s ratio) of the inclusion is
changeless, the critical value of the radius of the inclusion will
increase with the decrease of the shear modulus or the Poisson’s
ratio of the matrix.

The variation of the value of Df0 as a function of the radius R
with different values of intrinsic lengths a and b is depicted in
Fig. 15 for e ¼ 1 and in Fig. 16 for e ¼ 0:8. It is found from Fig. 15
that, if a ¼ b ¼ 0 (the interface stress vanishes) or
a ¼ b ¼ 0:15 nm, the edge dislocations in the inclusion are abso-
lutely stable. An interesting result is that, if
a ¼ b ¼ �0:15 nm and e ¼ 1, the edge dislocations in the inclusion
are unstable when the radius of inclusion is taken a very small va-
lue. Fig. 15 shows that, the positive interface stress can consolidate
the edge dislocation stability in the inclusion and the negative
interface stress can destroy the dislocation stability. It is seen from
Fig. 16 that, if a ¼ b ¼ 0 and a ¼ b ¼ �0:15 nm, the edge disloca-
tions in the inclusion are unstable when the radius of inclusion is
very small. The critical radius of the dislocation stability in the
nanoscale inclusion for a ¼ b ¼ �0:15 nm is larger than that for
a ¼ b ¼ 0. However, the edge dislocations are always stable for
a ¼ b ¼ 0:15 nm which differs from the classical elasticity solution
ða ¼ b ¼ 0Þ. The results show that the interface stress can change
not only the property of the edge dislocation stability in the nano-
scale inclusion, but also the value of the critical radius of the inclu-
sion under certain conditions.

7. Conclusions

The problem of an edge dislocation located within a circular
nanoscale cylindrical inclusion in an unbounded matrix is first stud-
ied by using the interface stress model. The explicit solutions of
stress fields and the image force on the edge dislocation are given
explicitly by using the complex variable method. The influence of
the interface stress on the image force acting on the edge dislocation
is evaluated in detail. In addition, the stability of straight-line edge
dislocations inside a nanoscale inclusion is also investigated theoret-
ically. Some conclusions drawn from Section 6 are summarized as:

(1) An additional repulsive force or attractive force acting on the
edge dislocation (inside the inclusion) can be produced due
to consider the interface stress, which causes the total glide/
climb force to increase or decrease. This additional force will
increase with the decrease of the inclusion radius, and the
original direction of the glide/climb force may be changed
when the radius of the inclusion reduces to a small value.

(2) When the shear modulus of the inclusion is less than that of
the matrix (the Poisson’s ratio v1 ¼ v2), there is an unstable
equilibrium position of the edge dislocation inside the inclu-
sion if the negative interface stress is considered; and no
equilibrium position is available if the positive interface
stress is considered. When the shear modulus of the inclu-
sion is larger than that of the matrix (the Poisson’s ratio
v1 ¼ v2), there is a stable equilibrium position of the edge
dislocation inside the inclusion if the positive interface
stress is considered; and no equilibrium position is available
if the negative interface stress is considered.

(3) When the direction of the Burgers vector of the edge disloca-
tion is various, the influence of the interface stress on the
glide force and climb force is significant. Comparing with
the classical solution, the mobility of the edge dislocation
in the nanoscale inclusion with interface stress becomes
more complex under the same external conditions.

(4) If the material constants of the inclusion are fixed, a critical
value of the shear modulus or the Poisson’s ratio of the
matrix may exist to change the edge dislocation stability
in the inclusion. When the value of the shear modulus or
the Poisson’s ratio of the matrix is larger than the critical
value, the dislocation is stable in the inclusion. On the other
hand, if the positive interface stress is considered, the critical
value to keep the dislocation stabilization in the inclusion
will decrease; if the negative interface stress is considered,
it will increase.

(5) When the shear modulus of the matrix is less than that of
the inclusion or v2 < v1 (the Poisson’s ratio of the matrix
is less than that of the inclusion), there always exists a crit-
ical value of the radius of the inclusion to alter the edge dis-
locations stability in the inclusion. If the value of the radius
of the inclusion is larger than the critical value, the disloca-
tion is stable in the inclusion. The critical radius of the inclu-
sion increases with the decrease of the shear modulus or the
Poisson’s ratio of the matrix. In addition, the critical radius
will increase for considering the negative interface stress
and will decrease for considering the positive interface
stress.
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