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Motivated by the recent work of one of us Setare and Jamil (2010) [1], we generalize this work to the
case where the pressureless dark matter and the holographic dark energy do not conserve separately
but interact with each other. We investigate the cosmological applications of interacting holographic dark
energy in Brans–Dicke theory with chameleon scalar field which is non-minimally coupled to the matter
field. We find out that in this model the phantom crossing can be constructed if the model parameters
are chosen suitably. We also perform the study for the new agegraphic dark energy model and calculate
some relevant cosmological parameters and their evolution.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

Among various scenarios to explain the acceleration of the
universe expansion, the holographic dark energy (HDE) and age-
graphic dark energy (ADE) models have got a lot of enthusiasm
recently. These models are originated from some considerations of
the features of the quantum theory of gravity. That is to say, the
HDE and ADE models possess some significant features of quan-
tum gravity. Although a complete theory of quantum gravity has
not established yet today, we still can make some attempts to in-
vestigate the nature of dark energy according to some principles
of quantum gravity. The former is motivated from the holographic
principle [2,3]. It was shown in [4] that in quantum field theory,
the UV cutoff Λ should be related to the IR cutoff L due to limit set
by forming a black hole. If ρD = Λ4 is the vacuum energy density
caused by UV cutoff, the total energy of size L should not exceed
the mass of the system-size black hole:

E D � E B H → L3ρD � m2
p L. (1)

If the largest cutoff L is taken for saturating this inequality, we get
the energy density of HDE as

ρD = 3c2m2
p

L2
= 3c2

8πGL2
. (2)
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The HDE is thoroughly investigated in the literature in various
ways (see e.g. [5] and references therein). The later (ADE) model
assumes that the observed dark energy comes from the space-
time and matter field fluctuations in the universe. Following the
line of quantum fluctuations of spacetime, Karolyhazy et al. [6]
discussed that the distance t in Minkowski spacetime cannot be
known to a better accuracy than δt = βt2/3

p t1/3 where β is a di-
mensionless constant of order unity. Based on Karolyhazy relation,
Sasakura [7] discussed that the energy density of metric fluctua-
tions of the Minkowski spacetime is given by (see also [8])

ρD ∼ 1

t2
pt2

∼ m2
p

t2
, (3)

where tp is the reduced Planck time and t is a proper time scale.
On these basis, Cai [9] proposed the energy density of the original
ADE in the form

ρD = 3n2m2
p

T 2
, (4)

where T is the age of the universe. Since the original ADE model
suffers from the difficulty to describe the matter-dominated epoch,
the new ADE (NADE) model was proposed by Wei and Cai [10],
while the time scale was chosen to be the conformal time instead
of the age of the universe. The ADE models have arisen a lot of en-
thusiasm recently and have examined and studied in ample detail
[11–14].

It is also of great interest to analyze these models in the frame-
work of Brans–Dicke (BD) gravity. In recent years the BD theory
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of gravity got a new impetus as it arises naturally as the low en-
ergy limit of many theories of quantum gravity such as superstring
theory or Kaluza–Klein theory. The motivation for studying these
models in the BD theory comes from the fact that both HDE and
ADE models belong to a dynamical cosmological constant, there-
fore we need a dynamical frame to accommodate them instead
of Einstein gravity. The investigation on the HDE and ADE mod-
els in the framework of BD cosmology, have been carried out in
[15–18]. In the present work, we consider a BD theory in which
there is a non-minimal coupling between the scalar field and the
matter field. Thus the action and the field equations are modi-
fied due to the coupling of the scalar field with the matter. This
kind of scalar field usually called “chameleon” field in the litera-
ture [19]. This is due to the fact that the physical properties of
the field, such as its mass, depend sensitively on the environment.
Moreover, in regions of high density, the chameleon blends with
its environment and becomes essentially invisible to searches for
Equivalence Principle violation and fifth force [19]. Further more, it
was shown [19,20] that all existing constraints from planetary or-
bits, such as those from lunar laser ranging, are easily satisfied in
the presence of chameleon field. The reason is that the chameleon-
mediated force between two large objects, such as the Earth and
the Sun, is much weaker than one would naively expect. In partic-
ular, it was shown [20] that the deviations from Newtonian gravity
due to the chameleon field of the Earth are suppressed by nine
orders of magnitude by the thin-shell effect. Other studies on the
chameleon gravity have been carried out in [21]. Our work differs
from that of Ref. [17] in that we assume a non-minimal coupling
between the scalar field and the matter field. It also differs from
that of Ref. [1], in that we assume the pressureless dark matter
and dark energy do not conserve separately but interact with each
other, while the author of [1] assumes that the dark components
do not interact with each other.

2. HDE in BD theory with Chameleon scalar field

We begin with the BD chameleon theory in which the scalar
field is coupled non-minimally to the matter field via the action
[22]

S =
∫

d4x
√−g

(
φR − ω

φ
gμν∂μφ∂νφ − V (φ) + f (φ)Lm

)
, (5)

where R is the Ricci scalar curvature, φ is the BD scalar field with
a potential V (φ). The chameleon field φ is non-minimally coupled
to gravity, ω is the dimensionless BD parameter. The last term in
the action indicates the interaction between the matter Lagrangian
Lm and some arbitrary function f (φ) of the BD scalar field. In the
limiting case f (φ) = 1, we obtain the standard BD theory.

The gravitational field equations derived from the action (5)
with respect to the metric is

Rμν − 1

2
gμν R = f (φ)

φ
Tμν + ω

φ2

(
φμφν − 1

2
gμνφαφα

)

+ 1

φ
[φμ;ν − gμν�φ] − gμν

V (φ)

2φ
, (6)

where Tμν represents the stress-energy tensor for the fluid filling
the spacetime which is represented by the perfect fluid

Tμν = (ρ + p)uμuν + pgμν, (7)

where ρ and p are the energy density and pressure of the per-
fect fluid which we assume to be a mixture of matter and dark
energy. Also uμ is the four-vector velocity of the fluid satisfying
uμuμ = −1. The Klein–Gordon equation (or the wave equation) for
the scalar field is
�φ = T

2ω + 3

(
f − 1

2
φ f,φ

)
+ 1

2ω + 3
(φV ,φ − 2V ), (8)

where T is the trace of (7). The homogeneous and isotropic
Friedmann–Robertson–Walker (FRW) universe is described by the
metric

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2
+ r2 dΩ2

)
, (9)

where a(t) is the scale factor, and k = −1,0,+1 corresponds to
open, flat, and closed universes, respectively. Variation of action
(5) with respect to metric (9) for a universe filled with dust and
HDE yields the following field equations

H2 + k

a2
− ω

6

φ̇2

φ2
+ H

φ̇

φ
= f (φ)

3φ
(ρM + ρD)+ V (φ)

6φ
, (10)

2
ä

a
+ H2 + k

a2
+ ω

2

φ̇2

φ2
+ 2H

φ̇

φ
+ φ̈

φ
= − pD

φ
+ V (φ)

2φ
, (11)

where H = ȧ/a is the Hubble parameter, ρD , pD and ρM are,
respectively, the dark energy density, dark energy pressure and
energy density of dust (dark matter). Here, a dot indicates differen-
tiation with respect to the cosmic time t . The dynamical equation
for the scalar field is

φ̈ + 3Hφ̇ − ρ − 3p

2ω + 3

(
f − 1

2
φ f,φ

)

+ 2

2ω + 3

(
V − 1

2
φV ,φ

)
= 0. (12)

We assume the HDE in the chameleon BD theory has the following
form

ρD = 3c2φ

L2
. (13)

The motivation idea for taking the energy density of HDE in BD
theory in the form (13) comes from the fact that in BD theory
we have φ ∝ G−1. Here the constant 3c2 is introduced for later
convenience and the radius L is defined as

L = ar(t), (14)

where the function r(t) can be obtained from the following rela-
tion

r(t)∫
0

dr√
1 − kr2

=
∞∫

0

dt

a
= Rh

a
. (15)

It is important to note that in the non-flat universe the character-
istic length which plays the role of the IR-cutoff is the radius L of
the event horizon measured on the sphere of the horizon and not
the radial size Rh of the horizon. Solving Eq. (15) for the general
case of the non-flat FRW universe, we get

r(t) = 1√
k

sin y, (16)

where y = √
kRh/a. Now we define the critical energy density, ρcr,

and the energy density of the curvature, ρk , as

ρcr = 3φH2, ρk = 3kφ

a2
. (17)

As usual, the fractional energy densities are defined as
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ΩM = ρM

ρcr
= ρM

3φH2
, (18)

Ωk = ρk

ρcr
= k

H2a2
, (19)

ΩD = ρD

ρcr
= c2

H2L2
. (20)

For latter convenience we rewrite Eq. (20) in the form

H L = c√
ΩD

. (21)

Taking derivative with respect to the cosmic time t from Eq. (14)
and using Eqs. (16) and (21) we obtain

L̇ = H L + aṙ(t) = c√
ΩD

− cos y. (22)

Consider the FRW universe filled with dark energy and pressure-
less matter which evolves according to their conservation laws

ρ̇D + 3HρD(1 + w D) = 0, (23)

ρ̇M + 3HρM = 0, (24)

where w D is the equation of state parameter of dark energy. At
this point our system of equations is not closed and we still have
freedom to choose one. We shall assume that BD field can be de-
scribed as a power law of the scale factor, φ ∝ aα . In principle
there is no compelling reason for this choice. However, it has been
shown that for small α it leads to consistent results [15]. A case
of particular interest is that when α is small whereas ω is high so
that the product αω results of order unity [15]. This is interest-
ing because local astronomical experiments set a very high lower
bound on ω [23]; in particular, the Cassini experiment implies that
ω > 104 [24,25]. Taking the derivative with respect to time of re-
lation φ ∝ aα we get

φ̇ = αHφ, (25)

φ̈ = α2 H2φ + αφ Ḣ . (26)

Taking the derivative of Eq. (13) with respect to time and using
Eqs. (22) and (25) we reach

ρ̇D = HρD

(
α − 2 + 2

√
ΩD

c
cos y

)
. (27)

Substituting this equation in Eq. (23), we obtain the equation of
state parameter

w D = −1

3
(α + 1) − 2

√
ΩD

3c
cos y. (28)

It is important to note that in the limiting case α = 0 (ω → ∞),
the Brans–Dicke scalar field becomes trivial and Eq. (28) reduces
to its respective expression in Einstein gravity [3]

w D = −1

3
− 2

√
ΩD

3c
cos y. (29)

We will see that the combination of the Brans–Dicke field and HDE
brings rich physics. For α � 0, w D is bounded from below by

w D = −1

3
(α + 1) − 2

√
ΩD

3c
. (30)

Assuming ΩD = 0.73 for the present time and choosing c = 1,1

the lower bound becomes w D = −α
3 − 0.9. Thus for α � 0.3 we

1 Since ω � 104 we find that α ≈ 1/ω = 10−4, thus Eq. (27) reduces practically

to w D = − 1
3 (1 + α) − 2

√

D

3c ≈ − 1
3 − 2

√

D

3c which is exactly Li’s result. Thus, Li’s
argument [2] in favor of c = 1 holds here.
have w D � −1. This implies that the phantom crossing can be con-
structed in the BD framework. We can also obtain the deceleration
parameter

q = − ä

aH2
= −1 − Ḣ

H2
, (31)

which combined with the Hubble parameter and the dimension-
less density parameters form a set of useful parameters for the de-
scription of the astrophysical observations. Dividing Eq. (11) by H2,
and using Eqs. (13), (21), (25) and (26), we find

q = 1

α + 2

[
(α + 1)2 + α

(
αω

2
− 1

)
+ Ωk + 3ΩD w D−3

2
ΩV

]
,

(32)

where the last term can be understood as a contribution of the
potential energy in the total energy density i.e.

ΩV = V

ρcr
. (33)

Substituting w D from Eq. (28) in (32), we get

q = 1

α + 2

[
(α + 1)2 + α

(
αω

2
− 1

)
+ Ωk − (α + 1)ΩD

− 2

c
Ω

3/2
D cos y−3

2
ΩV

]
. (34)

If we take ΩD = 0.73 and Ωk ≈ 0.01 for the present time and
choosing c = 1, αω ≈ 1, ω = 104 and cos y 	 1, we obtain q =
−0.48 for the present value of the deceleration parameter which
is in good agreement with recent observational results [26].

From Eq. (12), we can also estimate the mass of the chameleon
field. This can be done by calculating the second derivative of the
potential function with respect to scalar field [27]. We get

m2
φ ≡ V ,φφ = 1

φ

[
V ,φ − ρ − 3p

2
( f,φ − φ f,φφ)

]
. (35)

Following previous studies [22,27], we choose

V (φ) = M4+n

φn
, f (φ) = f0eb0φ. (36)

Here M , f0 and b0 are finite parameters whose values are model
dependent. Making use of Eq. (36) in (35), we obtain

m2
φ = − 1

φ

[
n

M4+n

φn+1
+ b0 f0eb0φ

2
(ρ − 3p)(1 − b0φ)

]
. (37)

Clearly when n → 0 (which corresponds to a constant potential),
the mass of the scalar field will be dependent on the properties of
f (φ). Moreover if only φ = 1/b0, the mass is determined by the
scalar potential function alone.

3. Interacting HDE in BD theory with Chameleon scalar field

In this section we would like to construct a cosmological model
based on the BD chameleon field theory of gravity and on the as-
sumption that the dark energy and dark matter do not conserve
separately but interact with each other. Taking the interaction into
account the continuity equations becomes

ρ̇D + 3HρD(1 + w D) = −Q , (38)

ρ̇M + 3HρM = Q , (39)

where Q is an interaction term which can be an arbitrary function
of cosmological parameters like the Hubble parameter and energy
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densities. The dynamics of interacting dark energy models with
different interaction terms have been investigated in [28]. It should
be noted that the ideal interaction term must be motivated from
the theory of quantum gravity. In the absence of such a theory,
we rely on pure dimensional basis for choosing an interaction Q .
Hence following [29], we assume Q = Γ ρD with Γ = 3b2(1 + r)H
where r = ρM/ρD is the ratio of energy densities and b2 is a cou-
pling constant. Note that Γ > 0 shows that there is an energy
transfer from the dark energy to dark matter. Combining Eqs. (17)
and (25) with the first Friedmann equation (10), we can rewrite
this equation as

1 + Ωk = f (φ)(ΩM + ΩD) + Ωφ+1

2
ΩV , (40)

where

Ωφ = α

(
αω

6
− 1

)
. (41)

Combining Eqs. (27), (40) and (41) with Eq. (38) we find the equa-
tion of state parameter of the interacting HDE

w D = −1

3
(α + 1) − 2

√
ΩD

3c
cos y

− b2

f (φ)ΩD

[
1 + Ωk + α

(
1 − αω

6

)
−1

2
ΩV

]
. (42)

In the absence of the BD field (α = 0, f (φ) = 1, V (φ) = 0), Eq. (42)
restores its respective expression in non-flat standard cosmology
[30]

w D = −1

3
− 2

√
ΩD

3c
cos y − b2

ΩD
(1 + Ωk). (43)

Next, we examine the deceleration parameter, q = −ä/(aH2). Sub-
stituting w D from Eq. (42) in Eq. (32), one can easily show

q = 1

α + 2

[
(α + 1)2 + α

(
αω

2
− 1

)
+ Ωk − (α + 1)ΩD

− 2

c
Ω

3/2
D cos y−3

2
ΩV

− 3b2

f (φ)

(
1 + Ωk + α

(
1 − αω

6

)
−1

2
ΩV

)]
. (44)

Comparing Eq. (44) with (34) shows that in the presence of inter-
action the chameleon function f (φ) enters explicitly in q expres-
sion. This is in contrast to the usual BD theory where q of the
interacting HDE model does not depend on the scalar field [17].

Finally we present the equation of motion of the dark energy.
Taking the derivative of Eq. (20) and using Eq. (22) and relation
Ω̇D = HΩ ′

D , we find

Ω ′
D = 2ΩD

(
− Ḣ

H2
− 1 +

√
ΩD

c
cos y

)
, (45)

where the dot is the derivative with respect to time and the prime
denotes the derivative with respect to x = ln a. Using relation q =
−1 − Ḣ

H2 , we have

Ω ′
D = 2ΩD

(
q +

√
ΩD

c
cos y

)
, (46)

where q is given by Eq. (44). This equation describes the evolution
behavior of the interacting HDE in BD cosmology with chameleon
field.
4. Interacting NADE with Chameleon scalar field

The above study can also be performed for the new agegraphic
dark energy (NADE) model. In NADE, the infrared cut-off is the
conformal time which is defined as

η =
∫

dt

a
=

a∫
0

da

Ha2
. (47)

In the framework of BD chameleon scalar field, we assume the
following form for the energy density of the NADE

ρD = 3n2φ

η2
, (48)

where the numerical factor 3n2 is introduced to parameterize
some uncertainties, such as the species of quantum fields in the
universe, the effect of curved spacetime and so on. The respective
fractional energy densities can be written as

ΩD = ρD

ρcr
= n2

H2η2
. (49)

Differentiating Eq. (48) and using Eqs. (25) and (49) we have

ρ̇D = HρD

(
α − 2

na

√
ΩD

)
. (50)

Substituting this relation in Eq. (38) and using relations (40) and
(41), we obtain the equation of state parameter of the interacting
NADE

w D = −1 − 1

3
α + 2

3na

√
ΩD

− b2

f (φ)ΩD

[
1 + Ωk + α

(
1 − αω

6

)
−1

2
ΩV

]
. (51)

When α = 0, f = 1 and V = 0, the BD scalar field becomes trivial
and Eq. (51) reduces to its respective expression in NADE in Ein-
stein gravity [12]. From Eq. (51), we see that even in the absence
of interaction (b = 0), the phantom crossing will take place in the
framework of BD theory provided the model parameters are cho-
sen suitably. Indeed in this case (b = 0), w D can cross the phantom
divide provided naα > 2

√
ΩD . If we take ΩD = 0.73 and a = 1 for

the present time, the phantom-like equation of state can be ac-
counted if nα > 1.7. For instance, for n = 4 and α = 0.5, we get
w D = −1.02. When the interaction is taken into account the phan-
tom crossing for w D can be more easily achieved for than when
resort to the Einstein field equations is made.

In the context of BD chameleon scalar field the deceleration
parameter of interacting NADE is obtained as

q = 1

α + 2

[
(α + 1)2 + α

(
αω

2
− 1

)
+ Ωk − (α + 3)ΩD

+ 2

na
Ω

3/2
D −3

2
ΩV

− 3b2

f (φ)

(
1 + Ωk + α

(
1 − αω

6

)
−1

2
ΩV

)]
. (52)

While the equation of motion for ΩD takes the form

Ω ′
D = 2ΩD

(
1 + q −

√
ΩD

na

)
. (53)
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5. Conclusions

In this Letter, we have considered interacting HDE model in
the framework of BD cosmology where the HDE density ρD =
3c2/(8πGL2) is replaced with ρD = 3c2φ/L2. With this replace-
ment in BD theory, we found that the cosmic acceleration will be
more easily achieved for than when the standard HDE is consid-
ered. Following the work of [1], we assumed that the scalar field is
non-minimally coupled with the matter field via an arbitrary cou-
pling function f (φ). In principle, the coupling between BD scalar
field and matter field should be derived from a theory of quantum
gravity. In the absence of such a theory, we have kept our analy-
sis general regardless of the specification of f (φ). In the present
Letter, we have extended the work [1] by incorporating the inter-
action term in the HDE model. An interesting consequence of the
present model is that it allows the phantom crossing of the equa-
tion of state of dark energy due to the presence of several free
parameters. We have also performed the analysis for the NADE
model and calculate some relevant cosmological parameters such
as the equation of state, deceleration parameter and energy den-
sity parameter.
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