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Abstract

In the context of the abstract interpretation theory, we study the relations among various
abstract domains for groundness analysis of logic programs. We reconstruct the well-known
domain Pos as a logical domain in a fully automatic way and we prove that it is the best
abstract domain which can be set up from the property of groundness by applying logic operators
only. We propose a new notion of optimality which precisely captures the relation between Pos
and its natural concrete domain. This notion enables us to discriminate between the various
abstract domains for groundness analysis from a computational point of view and to compare
their relative precision. Finally, we propose a new domain for groundness analysis which has
the advantage of being independent from the speci.c program and we show its optimality.
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1. Introduction

In the logic programming .eld, groundness is probably the most popular and also
the most studied instance of static analysis. The aim of groundness analysis is to detect
whether a variable is de.nitely ground, i.e., it is bound to a term which contains no
variable. This allows optimizing compilers to signi.cantly speed up uni.cation – the
prime computational step of any logic language. For example, consider the simple logic
program P:

p(X) :− q(X,a):

q(Y,Z) :− Y=Z:
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where a is a constant of the language and capital letters denote variables. Computed
answer solutions for the queries p(X ) and q(Y; Z) are, respectively, the substitutions
{X \a} and {Y\Z}. Therefore, the result of groundness analysis is that every solution
for the predicate p will be de.nitely ground.
In the abstract interpretation framework [7, 8], much work has been devoted to

develop and study abstract domains for groundness analysis of logic programs. The
goal of abstract interpretation is to compute an abstract semantics which is obtained
by replacing concrete values with abstract objects, i.e., elements of the abstract domain.
In the last 10 years, many domains have been proposed, from the simple domain
G by Jones and SDndergaard [21], to more complex ones, like Def [2] and Pos
[23, 4, 2]. The common basic idea is to use substitutions as concrete values and logical
formulas as abstract objects. Basic groundness properties are expressed by variables
and more structured formulas express relations among groundness of diEerent variables.
Intuitively, the abstract formula consisting of a single variable X denotes the set of
all the substitutions which ground the program variable X . For instance, the abstract
domain G [21] considers as abstract objects, conjunctions of variables (plus a top object
denoted by true), where the abstract value X ∧Y denotes that both variables X and
Y are ground. In this domain, concrete values {X \a} and {Y\Z} are approximated,
respectively, by X and true, the latter to denote no groundness information. In this
context, the abstract semantics of the program P showed above returns true for the
query q(Y; Z), getting rid of the relation between the two variables introduced by
the clause q(Y,Z) :− Y = Z. As a consequence, by propagating this information to the
predicate p through the clause p(X) :− q(X,a):, the abstract semantics returns the
answer true also for p(X ). Hence, this simple domain fails to detect that any answer
for the predicate p will be de.nitely ground. A more precise abstract domain can
be constructed by considering relations between groundness of diEerent variables. If
Y ⇔Z is an abstract object which stands for all substitutions where, for all possible
instances, Y is ground if and only if Z is ground, the abstract semantics returns for the
query q(Y; Z) the answer Y ⇔Z and for p(X ) the more precise and expected answer
X , which precisely says that any answer for the predicate p will be ground.
DiEerent abstract domains lead to diEerent precision levels of the abstract semantics.

This is because in the abstract interpretation framework, the (optimal) abstract seman-
tics can always be automatically derived from the concrete semantics. Roughly, such
an abstract semantics is obtained by miming the behavior of the concrete semantics on
the abstract objects. Therefore, the choice of the abstract domain is the main point in
the development of the analysis.

1.1. Motivations

Pos is certainly a well-studied domain for groundness analysis of logic programs
[21, 23, 4, 2]. It is also the most widely used, since it is able to characterize both pure
groundness, i.e., if a variable is instantiated to a ground term, and groundness relations
between diEerent variables, i.e., whether the groundness of a variable depends on the
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groundness of other variables. In standard literature, the domain Pos is built in three
steps: First consider the set of formulas built from a .nite set Var and connectives
∧;∨ and ⇒; then consider the quotient with respect to classic logical equivalence,
.nally select only the positive formulas (which are true when all variables are set to
true). The domain so obtained is then related to the concrete one (sets of substitutions
closed by instantiation) through a suitable concretization function, explicitly proving
that it induces a Galois insertion. This method of constructing domains suEers from
many drawbacks. The most important one is that the domain has to be “invented” in
some way, through a procedure which is usually not formally related to the property
we analyze. After de.ning the abstract domain, it has to be explicitly proved that the
domain is an abstraction of the concrete one and, more importantly, that it is actually
useful for the analysis.
Our idea is that both the construction method and the logic formulas of the abstract

domains should directly reKect the concrete domain and the property to be analyzed.
As logic programs compute substitutions and groundness is a property closed by in-
stantiation, the most natural choice for the concrete domain contains as elements sets
of substitutions closed by instantiation, denoted by ˝↓(Sub). We show that the propo-
sitional formulas used in the de.nition of Pos do not follow this approach, i.e., they
are not explicitly related to the concrete domain. In order to understand this apparent
asymmetry between Pos and its concrete domain, we just need to make the following
observations.
• Pos is de.ned as a Boolean algebra with connectives ∧; ∨ and ⇒. Since ˝↓(Sub)
is not Boolean, Pos cannot inherit its algebraic properties from the concrete domain.
Therefore, the construction process to set up the abstract domain Pos turns out to
be unrelated to the concrete domain ˝↓(Sub).

• Even the basic operations of Pos; ∧; ∨ and ⇒, except for conjunction, do not derive
from corresponding operations in the concrete domain. When we try to compare the
operations on Pos to the corresponding operations on ˝↓(Sub); we .nd out that
only the conjunction (∧) on Pos comes from the meet on ˝↓(Sub), which is set
intersection. In fact, the disjunction (∨) of Pos does not correspond to the concrete
join (set union), as proved in [11]. Moreover, in the concrete domain, we cannot
have a notion of (classic) implication, since it is not a Boolean algebra. So there is
no way to inherit the implication ⇒ from a corresponding operation of ˝↓(Sub).

1.2. The intuition behind our reconstruction of Pos

The main problem in the standard de.nition of Pos is that its natural concrete domain
is not a Boolean algebra. In particular, it does not allow us to de.ne an operation of
classic implication. But ˝↓(Sub) is a rich enough algebra to enable us to de.ne a
notion of intuitionistic implication (or relative pseudocomplement). The intuitionistic
implication is a generalization of the classic one which leads to a weaker notion of
implication. Intuitively, given two formulas a and b, the intuitionistic implication a→ b
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is de.ned as the most abstract formula c such that a∧ c derives b. Moving from the
logic setting to the algebraic one, it is worth noting that not all concrete domains
admit a notion of intuitionistic implication between every pair of objects. In other
words, given two concrete objects a and b, such a most abstract object a→ b may fail
to exist. When intuitionistic implications do exist for every pair of concrete objects,
we say that the concrete domain is a model of intuitionistic logic. We brieKy recall
the main features of intuitionistic logic (see [20, 27, 3]).
• It is the weakest logic where the modus ponens law still holds, that is given two
objects a and b it holds that a∧ (a→ b) derives b, i.e., a∧ (a→ b)6b.

• The negation ¬a is de.ned as a→ false, whose algebraic counterpart is the notion
of pseudocomplement.

• Implication and disjunction become independent operations. For instance, the classic
tautology a→ b=¬a∨ b does not hold anymore.

• As a consequence, also the tautology a∨¬a= true does not hold.
In this paper, we show a diEerent and automatic way of building the abstract do-
main Pos, which directly comes from the de.nition of groundness and the concrete
domain properties. The simplest domain de.ning the property of groundness is the
most abstract domain containing Var, which is G=˝(Var) by Jones and SDndergaard
[21], where each variable v denotes the set of substitutions which ground v. It is well
known that ˝↓(Sub) is a model of intuitionistic logic. Thus we can look at the op-
erations ∩ and ∪ of ˝↓(Sub) as logical connectives which precisely correspond to
the ∧ and ∨ of intuitionistic logic and, more importantly, we can de.ne a notion
of intuitionistic implication → for every pair of concrete objects. Let us denote by
A f→B the space of all intuitionistic implications between two abstract domains A and
B. In the .rst part of the paper, we show that Pos is exactly the most abstract do-
main which contains all the (double) intuitionistic implications between elements in G,
i.e., Pos=(G f→G) f→G. This result generalizes a similar one for the abstract domain
Def in [17] which proves that Def contains all the intuitionistic implications between
elements in G; i.e., Def =G

f→G.
Our construction allows us to study in detail the relations between all these domains

and to compare their expressive power and precision in a very simple way. We derive
many useful properties, such as a normal form for its elements and a new result of
optimality which precisely discriminates between the two domains Def and Pos. This
allows us to answer some open questions such as “why Pos is considered optimal”
from a computational point of view. Our formalization of Pos enjoys the following
properties.
• Pos is built by using only the de.nition of groundness (the domain G) and the
properties of the concrete domain. We need not use quotient, Boolean algebra, nor
positive formulas. The construction of the abstract domains G; Def and Pos now
follows a unique, precise logic: The algebraic structure of the concrete domain.
Moreover, we no longer need to prove that these domains are indeed abstractions
of the concrete one, since it holds by construction. Also the relations among all the
domains are now automatically derivable.
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• The operations which characterize Pos are now exactly the same of the concrete
one: ∧ and → in Pos precisely correspond to ∩ and → in ˝↓(Sub) and no other
operation is considered in the construction process.

• We immediately obtain a theorem of representation for Pos which states that every
element in Pos is an implication between two elements in Def or, by using the
characterization of Def , that every element in Pos is an implication of implications
between elements in G, independently from the cardinality of Var.

• We answer to some open questions on Pos. The join on Pos diEers from the join
on ˝↓(Sub) but, in some cases, they coincide.
Why Pos contains exactly those concrete joins?

Our representation theorem states that the abstract join on Pos coincides with the
concrete one (set union) if and only if it can be written as an intuitionistic implica-
tion.

• Since Pos is now a subalgebra of ˝↓(Sub) with respect to the operations ∧ and → ,
all the properties of Pos are directly derivable from the properties of the concrete
domain. In particular, since ˝↓(Sub) is a model of intuitionistic propositional logic,
it follows that also Pos is. Therefore we gain from the logic an axiomatization for
Pos.

In the second part of the paper, we use our formalization of Pos in order to understand
why Pos can be considered a “good” domain. To this end, we try to re.ne Pos.
We wonder which is the domain which contains the implications between formulas
in Pos and .nd out an important closure property: Pos f→Pos=Pos. This implies
that Pos cannot be further re.ned with respect to intuitionistic implication. Therefore
Pos is the most abstract domain which contains G and is closed with respect to
concrete ∧ and → . We then consider the disjunctive completion of Pos, denoted by
g(Pos), which includes all unions of formulas in Pos. FilOe and Ranzato proved in
[11] that Pos is strictly contained in g(Pos). We try to re.ne g(Pos) by allowing
implications between disjunctive formulas and we prove that it cannot be further re.ned,
i.e., g(Pos) f→ g(Pos)= g(Pos).
In the last part, we propose a new, program-independent domain for groundness

analysis, which is able to describe groundness relations for in.nite sets of variables.
Finally, we show that the new domain still enjoys the closure property of Pos.

1.3. Related work

Much work has been devoted to the study of abstract domains for groundness anal-
ysis. The .rst ones concentrated on the de.nition of groundness and basic properties
[21, 9], while the last ones studied diEerent characterizations of various abstract do-
mains. Marriott and SHndergaard proposed propositional formulas to represent ground-
ness relations. Many authors followed this approach [5, 2] and contributed to develop
and study the domains Def and Pos, while others focused on the abstract operations
or slightly diEerent characterizations [24, 22].
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All these authors share the same approach: They construct abstract domains inde-
pendently from the property to be analyzed and then prove some properties of the
abstraction. Their attention is entirely focused on the representation of formulas in the
abstract domains. This always forces to work up to isomorphism.
Our idea is to concentrate exclusively on the property of groundness. We reconstruct

the domain Pos in a systematic way and show that it is possible to avoid ad hoc char-
acterizations in the construction process of domains. A .rst example in this direction
is shown in [14], where the abstract domain Def has been reconstructed as the space
of monotone functions between elements in G. Our work is based on the Heyting
completion re.nement operator [17]. The .rst use of this operator has been presented
in [17], where Heyting completion is used to construct the abstract domain Def , by
exploiting the characterization given in [14]. An attempt of building the domain Pos
starting from the disjunctive completion of G is shown in [17]. Even in this case, the
construction does not directly come from the basic property of groundness, but from
a domain more complex than G. Moreover, no property of optimality has been taken
into account in this construction.

2. Preliminaries

Throughout the paper we assume familiarity with lattice theory [3, 19], abstract in-
terpretation [6, 7, 25] and logic programming [1].

2.1. Notation and basic notions

Let A; B and C be sets. A\B denotes the set-theoretic diEerence, A⊂B the proper
inclusion and, if X ⊆A; PX is the set-theoretic complement of X . X ⊆f A denotes that
X is a .nite subset of A. The powerset of A is denoted by ˝(A) and the set of all .nite
subsets of A by f̋(A). If A is a poset, we usually denote the corresponding partial
order by 6A and, for I ⊆A; ↓ I = {x∈A | ∃y∈ I: x6A y} is the downward closure of
I . ˝↓(A) denotes the set of downward closed elements of A, where I ⊆A is downward
closed if I = ↓ I . A complete lattice A with partial ordering 6A , least upper bound ∨A

(join), greatest lower bound ∧A (meet), greatest element �A and least element ⊥A, is
denoted by 〈A; 6A ; ∨A ;∧A;�A;⊥A〉. ˝(A) and ˝↓(A) are complete lattice with respect
to set-theoretic inclusion, where the join is set union and the meet is set intersection.
We write f :A �→B to mean that f is a total function from A to B. In the follow-
ing, we sometimes use Church’s lambda notation for functions, so that a function f
will be denoted by �x:f(x). If C ⊆A then f(C)= {f(x) | x∈C}. By g ◦f we denote
the composition �x:g(f(x)). Let 〈A; 6A ; ∨A ;∧A;�A;⊥A〉 and 〈B; 6B ;∨B;∧B;�B;⊥B〉
be complete lattices. A function f :A �→B is additive if for any C ⊆A; f(∨A C)=
∨B f(C).
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2.2. Abstract interpretation and Galois connections

The standard Cousot and Cousot theory of abstract interpretation is based on the
notion of Galois connection [6]. If C and A are posets and � :C �→A, � :A �→C are
monotone functions, such that ∀c∈C: c6C �(�(c)) and ∀a∈A: �(�(a))6A a, then we
call the quadruple 〈C; �; A; �〉 a Galois connection between C and A. If in addition
∀a∈A: �(�(a))= a, then 〈C; �; A; �〉 is a Galois insertion of A in C. In the setting of
abstract interpretation, C and A are called, respectively, concrete and abstract domain,
and they are assumed to be complete lattices. Any Galois connection 〈C; �; A; �〉 can
be lifted to a Galois insertion by identifying in an equivalence class those objects in
A having the same image (meaning) in C.
Let L be a complete lattice 〈L; 6L ;∨L;∧L;�L;⊥L〉 playing the role of the concrete

domain. An (upper) closure operator on L is a function � :L �→L monotone, idempo-
tent and extensive (i.e., ∀x∈L: x6L �(x)) [25]. Each closure operator � is uniquely
determined by the set of its .xpoints, which is its image �(L): �(L) is a complete lattice
with respect to 6L, but, in general, it is not a complete sublattice of L, since the join
in �(L) might be diEerent from ∨L: �(L) is a complete sublattice of L iE � is additive.
X ⊆L is the set of .xpoints of a closure operator on L iE X is a Moore family of L,
i.e., �L ∈X and X is completely meet-closed (i.e., for any non-empty Y ⊆X , ∧LY ∈X ).
For any X ⊆L, we denote by (X ) the Moore closure of X , i.e., the least subset of L
containing X , which is a Moore family of L. We denote by 〈Moore(L);�;�;�; {�}; L〉
the complete lattice of all Moore families of L. The ordering � is the inverse of set
inclusion (⊇); � is the most abstract Moore family which contains set union, and �
is simply set intersection. The equivalence between Galois insertions, closure operators
and Moore families is well known [3]. However, closure operators and Moore families
are often more practical and concise than Galois insertions to reason about abstract
domains, being independent from representation choices for domain objects [7]. Any
Galois insertion 〈L; �; A; �〉 is uniquely determined (up to isomorphism) by the closure
operator � ◦ �, and, conversely, any closure operator uniquely determines a Galois in-
sertion (up to isomorphism). The complete lattice of all abstract domains (identi.ed
up to isomorphism) on L is therefore isomorphic to Moore(L). The order relation on
Moore(L) corresponds to the ordering used to compare abstract domains with regard
to their precision: If A and B are abstractions of L, then A is more concrete than B
iE A � B as Moore families. In the following, given a Moore family X , we denote by
�X the corresponding closure operator.

2.3. Logic programming

Let V be a denumerable 1 set of variables. We .x a .rst-order language L, with
variables ranging in V. Term is the set of terms of L. For any syntactic object
s; vars(s) denotes the set of its variables. A term t is ground if vars(t)= ∅.

1 A set A is denumerable if |A | =!.
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The set of idempotent substitutions [26], i.e., .nite mappings from V to terms in L,
is denoted by Sub. If $ and % are substitutions, dom($) denotes the set {v∈V | $(v) != v},
which is always .nite by de.nition, and % ◦ $ denotes the substitution �v:$(%(v)). Ob-
jects in Sub are partially ordered by instantiation: a6b iE ∃$∈ Sub: a= b ◦ $. If we add
to Sub an extra element ( as least element, we obtain a complete lattice 〈Sub(;∨;∧; ); (〉
where ∨ is most speci.c anti-instance, ∧ is usual uni.cation and ) is the empty substi-
tution. Note that uni.cation ∧ in Sub is a partial operation and it becomes total when
considering the complete lattice Sub(. Substitutions are lifted to terms in the usual way.

2.4. Intuitionistic logic and Heyting algebras

Let L be a complete lattice and a; b∈L. The pseudo-complement (or intuitionistic
implication) of a relatively to b, if it exists, is the unique element a→ b∈L such that
for any x∈L; a∧L x6Lb iE x6La→ b. Relative pseudo-complements, when they exist,
are uniquely given by a→ b=

∨
L {c | a∧L c6Lb}. A complete lattice L is a complete

Heyting algebra (cHa) if it is relatively pseudo-complemented, that is a→ b exists for
every a; b∈L. In particular, any cHa L is distributive, i.e., for all a; b; c∈L it holds that
(a∨L b)∧L c=(a∧L c)∨L (b∧L c). From a logical point of view, an Heyting algebra L
is a set equipped with three operations (connectives) ∧;∨;→ and constants ⊥;� which
satisfy the following equations for every a; b; c∈L:

a → a = �; a ∧ ⊥ = ⊥; (1)

(a → b) ∧ b = b; a ∧ (a → b) = a ∧ b; (2)

a → (b ∧ c) = (a → b) ∧ (a → c); (a ∨ b) → c = (a → c) ∧ (b → c): (3)

Meet, join and relative pseudo-complement of Heyting algebras precisely correspond to
conjunction, disjunction and intuitionistic implication of intuitionistic logic (see [3]). In
the following, in order to keep distinct classic and intuitionistic implication, we always
denote by ⇒ the classic one and by → the intuitionistic one.
An example of cHa is the complete lattice 〈˝↓(Sub);6;∨;∧; Sub; ∅〉. The ordering

6 is set inclusion and the logical operations ∨ and ∧ correspond to ∪ and ∩ operations
(set union and set intersection). Given a; b∈˝↓(Sub), the intuitionistic implication
a→ b=

∨{c∈˝↓(Sub) | a∧ c6b} is also given by [3]

a → b = {$ ∈ Sub | ∀*6$ * ∈ a ⇒ * ∈ b}:

Example 1. Let x; y; w∈V be variables, X = {$∈ Sub | vars($(x))= ∅} and Y = {$∈
Sub | vars($(y))= ∅}.

X → Y = {$ ∈ Sub | ∀*6$ * ∈ X ⇒ * ∈ Y}
= {$ ∈ Sub | ∀*6$ vars(*(x)) = ∅ ⇒ vars(*(y)) = ∅}:

Given a binary functor f, the substitution {x\f(y; w)} belongs to X →Y , while {y\
f(x; w)} does not.
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3. Domains re�nements

Domain re=nements have been introduced in [10] in order to formalize enhancing
operators on abstract domains. The idea is to describe the class of operators which,
given an abstract domain A, return an abstract domain more concrete than A. More
formally, a mapping F :Moore(L)→Moore(L) is a domain re.nement if it is monotone
and reductive (i.e., F(A)�A for any A∈Moore(L)). In this section, we brieKy recall
the de.nitions of some re.nement operators which will be used in the following.

3.1. Reduced product

The reduced product [7] of abstract domains corresponds to the meet operation (�)
of closure operators. Given two abstract domains X and Y , the reduced product of X
and Y , denoted by X �Y , is the most abstract domain which includes both X and Y ,
i.e., X �Y =f (X ∪ Y ).

3.2. Disjunctive completion

The disjunctive completion [7] of an abstract domain A is the most abstract domain
which includes A and is a complete (join-)sublattice of L, i.e., abstract joins coincide
with concrete ones. The disjunctive completion of A is de.ned as the most abstract
domain which is an additive closure and includes A (cf. [7, 15]):

(A) = �{X ∈ Moore(L) |X � A and �X is additive}:

Proposition 2. If L is a cHa and A is =nite; (A)= {∨LX |X ⊆A}.

Proof. L is distributive, since it is a cHa. Being a .nite abstraction of L; {∨LX |X ⊆A}
is also distributive (both abstract meet and abstract join coincide with the concrete
ones). This assures us that {∨LX |X ⊆A} is a Moore family.

3.3. Heyting completion

Heyting completion [17] is a re.nement operator which has been recently introduced
to logically interpret the Cousot and Cousot’s reduced cardinal power re.nement [7].
In this section we recall the de.nition and some basic results on Heyting completion
re.nement from [17, 18]. The aim of this re.nement is to enhance domains to rep-
resent relational information. The idea is to enrich an abstract domain by adding all
the relative pseudo-complements (intuitionistic implications) built from every pair of
elements in the given domain. From a logical point of view, the new domain is the
collection of intuitionistic formulas built from the connectives ∧ and →, without nested
implications.
For the sake of simplicity, we recall the de.nition only in the case where the concrete

domain L is a cHa. Given two abstract domains A and B, the Heyting completion of
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A wrt B, denoted by A f→B, is captured by the most abstract Moore family containing
all the relative pseudo-complements (without nesting)

A f→B = ({a → b ∈ L | a ∈ A; b ∈ B}):
Heyting completion re.nement is argumentwise monotone and reductive on the second
argument, i.e., B f→A�A.
We recall some basic algebraic properties of Heyting completion with respect to

other domain operations. In particular, we consider reduced product (�) and disjunctive
completion ( ) of abstract domains. In what follows paper, A; B; C ∈Moore(L).

Proposition 3 (Giacobazzi and Scozzari [18]). Let L be a cHa.
(1) A f→ (B�C)= (A f→B)� (A f→C);
(2) (A�B) f→C =A f→ (B f→C);
(3) (A) f→B=A f→B if A is =nite.

The main feature of Heyting completion is the reduction of the approximation error
introduced in the abstract computations by using the meet operation. The next proposi-
tion shows a key property of abstract domain obtained by Heyting completion in terms
of the achieved precision of the meet operation.

Proposition 4 (Giacobazzi and Scozzari [18]). Let L be a cHa. B�A f→A if and only
if for any x; y∈L �A(�A(x)∧y)= �A(�A(x)∧ �B(y)).

The previous result formalizes the intuition that, given two concrete objects a; b∈L,
if a belongs to the abstract domain A, i.e., �A(a)= a, then using �B(b) instead of b
does not aEect the precision of the abstract meet, when the result is observed in A,
since �A(a∧ b)= �A(a∧ �B(b)). The idea is that, whenever at least one object belongs
to A, then we can approximate the other one in any domain more concrete than A f→A
without introducing approximation errors in computing abstract meets.

4. Properties of the concrete domain

Since logic programs compute substitutions and groundness is a property closed by
instantiation, the most natural choice for concrete domain is ˝↓(Sub). Most of the
works about domains for groundness analysis and, in general, for properties closed by
instantiation, use ˝↓(Sub) 2 as concrete domain. A formal explanation of this choice,
with respect to the more general ˝(Sub), can be found in [13], where it is proved that
˝↓(Sub) is “concrete enough” for performing groundness analysis. In other words,
groundness can be observed on a semantics computed on ˝↓(Sub) without losing
precision with respect to a more concrete semantics on ˝(Sub).

2 More complex domains are used in [5] (a combination of ˝↓(Sub) with sets of variables), and in [22]
(the so-called ex-equations).



F. Scozzari / Theoretical Computer Science 277 (2002) 149–184 159

We show a list of properties of this lattice which will be often used throughout
the paper. It is well known that ˝↓(Sub) is a cHa, where meet and join are pre-
cisely set intersection and set union. Moreover, ˝↓(Sub) is completely distributive,
that is (possibly in.nite) joins distribute over (possibly in.nite) meets. These proper-
ties are very useful in order to precisely characterize the intuitionistic implication on
˝↓(Sub). Given a; b∈˝↓(Sub), the general de.nition of implication de.nes a→ b as∨{c∈˝↓(Sub) | a∧ c6b}. Since ˝↓(Sub) is completely distributive, it can be simpli-
.ed in [3]

a → b = {$ ∈ Sub | ∀*6$ * ∈ a ⇒ * ∈ b}:
Let us .rst recall two basic properties of implication which allows us to decompose
complex implications. Let a∈˝↓(Sub) and {bi}i∈I ⊆˝↓(Sub). Then the following two
equalities hold [3]:

a → ∧
i∈I

bi =
∧
i∈I

(a → bi);

( ∨
i∈I

ai

)
→ b =

∧
i∈I

(ai → b):

Moreover, by exploiting the above characterization of intuitionistic implication in
˝↓(Sub) we can state the following result on the decomposition of implications.

Theorem 5. Let %∈ Sub and b∈˝↓(Sub).

(↓ %) → b = {$ ∈ Sub | $ ∧ % ∈ b}:3

Proof. Let $∈↓ %→ b. By de.nition on implication, ∀*6$ it holds *6%⇒ *∈ b. If
$ and % do not unify, there is nothing to prove. Otherwise, it holds $∧ %6$ and
$∧ %6%, therefore $∧ %∈ b since $∈↓ %→ b.
Let $ be such that $∧ %∈ b and let *6$. If *6% then *6$∧ %. Since $∧ %∈ b

and b is downward closed, also *∈ b.

5. Groundness: Def and Pos

Many domains have been proposed in order to study groundness of logic programs.
If Var is the (.nite) set of variables of interest, the simplest one is G=˝(Var), due
to Jones and SHndergaard [21], where each V ⊆Var denotes the set of substitutions
which ground every variable in V . The domain G can be equivalently de.ned as a
domain of formulas by considering the set of formulas built from Var∪{�} by using
the connective ∧, quotiented with respect to (classic) logical equivalence (KL). Since

3 Note that uni.cation ∧ in Sub is a partial operation. We shall abuse the notation and denote by
$∧ % ∈ b the statement if $∧ % is de=ned then $∧ %∈ b.
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each abstract domain must contain �, in the following, for simplicity of notation, we
shall identify Var with Var⊆{�}. If we denote by Form(A; ◦) the set of formulas
built from A by using the connective ◦, then

G = Form(Var;∧)=KL;

where a formula v1 ∧ · · · ∧ vn represents the set {v1; : : : ; vn} and � stands for the
empty set. This domain is certainly the most intuitive one and represents exactly the
property we want to analyze, since it is built from the de.nition of groundness itself.
Unfortunately, G is not very useful for groundness analysis, since it fails in capturing
the groundness relations between diEerent variables.
Other domains, based on (classic) propositional logic, have been proposed in order

to enrich G. The domain Def [2] is built by considering all the classic propositional
formulas whose models are closed under intersection (the so-called de=nite formulas).
Def has also been characterized as the set of formulas which are conjunctions to
de.nite clauses, always quotiented with respect to (classic) logical equivalence.

Def =

{∧
i∈I

( ∧
j∈J

xji ⇒ yj

)
|∀i ∈ I; j ∈ J x j

i ; y
j ∈ Var

}
=KL

:

The most widely used domain for groundness analysis is the domain Pos [23, 5, 2]. Pos
is able to characterize both pure groundness, i.e., whether a variable is instantiated to
ground terms during the program execution, and the relations between the groundness
of diEerent program variables, providing in this sense a clear example of relational
analysis. Pos is the set of (classic) propositional formulas built from Var, by using
the connectives ∧;∨; ⇒: Pos can be de.ned in diEerent ways [5, 2]:

Pos = Form(Var;∧;∨;⇒)=KL = Form(Var;∧;⇒)=KL:

We can relate the three domains to the concrete domain ˝↓(Sub) by using the same
concretization function. The interpretation of the connectives is the classical one: 46 
if and only if  is a logical consequence of 4. We say that I ⊆Var is a model for
4, denoted by I |=4, if 4 is true in the interpretation which assigns true to all the
variables in I and false to the other variables [2]. For the sake of simplicity, we write
$ grounds 4 to denote {x∈Var | vars($(x))= ∅} |=4, for $∈ Sub. The concretization
function is given by [5].

�Sub(4) = {$ ∈ Sub | ∀%6$ % grounds 4}:
As usual, we shall abuse the notation and call G; Def and Pos the corresponding
isomorphic images, subsets of ˝↓(Sub): �Sub(G); �Sub(Def ) and �Sub(Pos).

6. Implicational groundness analysis

The .rst step toward the automatic construction of domains is to isolate the property
to analyze and to look for the simplest domain which describes the property. In the case
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of groundness analysis this is clear: the basic groundness property says if a variable
is ground or not. If we .x a .nite set Var of variables of interest, big enough to
analyze the program, the most abstract domain which describes the groundness of all
variables in Var is by de.nition (Var). It contains � and all possible conjunctions of
variables in Var. This domain is exactly the domain G=˝(Var) proposed by Jones
and SHndergaard [21]. Therefore, we shall use G as the basis to reconstruct the other
domains.
On the side of domain reconstruction for groundness analysis, a .rst example has

been shown by Giacobazzi and Ranzato in [4]. They proved that the abstract domain
Def is the reduced cardinal power of G, i.e., Def can be seen as the space of monotone
functions between elements in G. The .rst result about implicational domains was
proved in [17]. The authors, exploiting the previous characterization of Def , proved
that Def is precisely the Heyting completion of G, i.e.,

Def = G
f→G: (4)

In this section we also show that Pos can be obtained by using the Heyting completion
operator, starting from the domain G. In particular, we prove that Pos=(G f→G)
f→G. Therefore by Eq (4), Pos=Def f→G. In order to prove it, we need to better
understand the relations among the operations of Pos and the operations of ˝↓(Sub).
Since Pos is a Moore family of ˝↓(Sub), the meet operation (∧) on Pos must be the
restriction of the meet operation on ˝↓(Sub), which is set intersection. It follows that
for every family of formulas {4i}i∈I ⊆Pos it clearly holds

∧
i∈I

�Sub(4i) = �Sub

( ∧
i∈I

4i

)
: (5)

As proved in [11], the join operation (∨) of Pos is not the restriction of the concrete
one on ˝↓(Sub), which is set union. Nevertheless, if we consider variables only, the
join operation on Pos corresponds to the concrete join on ˝↓(Sub).

Lemma 6. Let {yj}j∈J ⊆Var.

∨
j∈J

�Sub(yj) = �Sub

( ∨
j∈J

yj

)
:

Proof.

�Sub

(∨
j∈J

yj

)
=

{
$ ∈ Sub | ∀%6$: % grounds

∨
j∈J

yj

}

=

{
$ ∈ Sub | $ grounds

∨
j∈J

yj

}

= {$ ∈ Sub | ∃j ∈ J: $ grounds yj}
=
∨
j∈J

{$ ∈ Sub | $ grounds yj}
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=
∨
j∈J

{$ ∈ Sub | ∀%6$: % grounds yj}

=
∨
j∈J

�Sub(yj):

A similar result also holds for the implication. In general, the classic implication ⇒
does not coincide with the intuitionistic one. If we consider implications between a
conjunction of variables and a disjunction of variables only, then they are isomorphic.

Lemma 7. Let X =
∧

i∈I xi and Y =
∨

j∈J yj with xi; yj ∈ Var.

�Sub(X ⇒ Y ) = �Sub(X ) → �Sub(Y ):

Proof.

�Sub(X ⇒ Y )

= {$ ∈ Sub | ∀%6$: % grounds X ⇒ Y}
= {$ ∈ Sub | ∀%6$: % grounds X ⇒ % grounds Y}
= {$ ∈ Sub | ∀%6$: (∀i ∈ I % grounds xi) ⇒ (∃j ∈ J % grounds yj)}
= {$ ∈ Sub | ∀%6$: (∀i ∈ I % ∈ �Sub(xi)) ⇒ (∃j ∈ J % ∈ �Sub(yj))}
= {$ ∈ Sub | ∀%6$: % ∈ �Sub(X ) ⇒ % ∈ �Sub(Y )}
= �Sub(X ) → �Sub(Y ):

The last step holds because of the explicit representation for the element a→ b, i.e.,
a→ b= {$ ∈ Sub | ∀%6$ %∈ a⇒ %∈ b}.

The idea is to .nd a normal form for elements in Pos where disjunction is allowed
between variables only, and (classic) implication is allowed between a conjunction and
a disjunction of variables only. It is well known that every (classic) formula can be
put in conjunctive normal form, i.e., it can be written as conjunction of disjunctions.
Moreover, every disjunction is a clause. Therefore we can write it as a unique impli-
cation, by putting all the negative variables on the left and the positive variables on
the right.

Lemma 8. Each formula 4∈Pos is equivalent to a formula

∧
k∈K

(∧
i∈I

xi; k ⇒
∨
j∈J

yj;k

)

in Pos for suitable xi; k ; yj; k ∈Var.

Proof. Since Pos is a Boolean algebra, every formula can be put in disjunctive normal
form (as conjunction of disjunctions) where every disjunction contains both variables
and negated variables, i.e., formulas of kind x⇒⊥. Therefore we have only to prove
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that every disjunction can be transformed into our normal form. By exploiting the
identity: (

∨
j∈J yj)∨

∨
i∈I (xi ⇒⊥)= (

∧
i∈I xi)⇒ (

∨
j∈J yj) we obtain the result.

This result helps us to characterize the isomorphic image �Sub(Pos) of Pos in the
concrete domain ˝↓(Sub). The idea is to obtain the concretization of each abstract for-
mula by simply replacing the abstract operations with the concrete ones. In some sense,
this correspondence may seem counter-intuitive, since the concrete domain ˝↓(Sub) is
not a Boolean algebra, as the next example shows.

Example 9. In a Boolean algebra (a∧ b)⇒ c=(a⇒ c)∨ (b⇒ c) holds. Let x; y; z ∈
Var; X = �Sub(x); Y = �Sub(y) and Z = �Sub(z). Consider in ˝↓(Sub) the formula

(X ∧ Y ) → Z = {$ ∈ Sub | ∀*6$ * ∈ X ∧ Y ⇒ * ∈ Z}:
We show that (X →Z)∨ (Y →Z) is strictly contained in (X ∧Y )→Z . In fact; the
substitution {z\f(x; y)} belongs to (X ∧Y )→Z but not to (X →Z) nor to (Y →Z).

The idea is to transform each formula in Pos in normal form and then to exploit
the isomorphism given by Lemmata 6 and 7, as shown in the next example.

Example 10. Let x∨ (x⇔y) be a formula in Pos. We look for its concretization
�Sub(x∨ (x⇔y)). First we transform x∨ (x⇔y) in normal form, which always exists
by Lemma 8.

x ∨ (x ⇔ y) = x ∨ ((x ⇒ y) ∧ (y ⇒ x))

= (x ∨ (x ⇒ y)) ∧ (x ∨ (y ⇒ x)) = (x ∨ ¬x ∨ y) ∧ (x ∨ ¬y ∨ x)

= x ∨ ¬y ∨ x = y ⇒ x

By using Lemma 7, we transform y ⇒ x and obtain �Sub(y ⇒ x)= �Sub(y)→ �Sub(x),
which is a formula in ˝↓(Sub).

Therefore, we have a constructive method to transform formulas in Pos into for-
mulas in ˝↓(Sub) by simply replacing variables with their concretizations and ab-
stract operations with the corresponding concrete ones. Hence, for a generic element
in Pos 4=

∧
k∈K (

∧
i∈I xi; k ⇒ ∨

j∈J yj; k), the concretization �Sub(4) of 4 is precisely∧
k∈K (

∧
i∈I �Sub(xi; k) →

∨
j∈J �sub(yj; k)), as proved by the following theorem.

Theorem 11.

�Sub(Pos) =

{ ∧
k∈K

(∧
i∈I

Xi; k →
∨
j∈J

Yj; k

)
|Xi; k ; Yj; k ∈ �Sub(Var)

}
:
4

4 Note that Xi; k ; Yj; k denote sets of substitutions.
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Proof. By Lemma 8, we know that

Pos =

{ ∧
k∈K

(∧
i∈I

xi;k ⇒
∨
j∈J

yj;k

)
|xi;k ; yj;k ∈ Var

}
:

�Sub

( ∧
k∈K

(∧
i∈I

xi;k ⇒
∨
j∈J

yj;k

))
(by Eq: (5))

=
∧
k∈K

�Sub

(∧
i∈I

xi;k ⇒
∨
j∈J

yj;k

)
(by Lemma 7)

=
∧
k∈K

(
�Sub

(∧
i∈I

xi;k

)
→ �Sub

(∨
j∈J

yj;k

))
(by Eq: (5) and Lemma 6)

=
∧
k∈K

(∧
i∈I

�Sub(xi;k) →
∨
j∈J

�Sub(yj;k)

)
:

Hence, we have that

�Sub(Pos) =

{ ∧
k∈K

(∧
i∈I

�Sub(xi;k) →
∨
j∈J

�Sub(yj;k)

)
|xi;k ; yj;k ∈ Var

}

=

{ ∧
k∈K

( ∧
i∈I

Xi;k →
∨
j∈J

Yj;k

)
|Xi;k ; Yj;k ∈ �Sub(Var)

}
:

Since Pos is isomorphic to �Sub(Pos) and Theorem 11 allows us to describe concrete
objects in �Sub(Pos) as formulas, from now on, we identify Pos with its concretization
�Sub(Pos).
Our aim is to describe the domain Pos by using the Heyting completion re.nement

only. Therefore, we look for a normal form for concrete objects which involves meet
and intuitionstic implication only and it does not contain any disjunction. Note that,
in the concrete formulas of Theorem 11, disjunctions are allowed between variables
only. The last step is then to .nd a representation in ˝↓(Sub) for unions of variables
in terms of intuitionistic implications. First of all, we prove that every concrete double
implication can be rearranged as a disjunction and a (single) implication.

Lemma 12. Let X =
∧

i∈I xi; Y =
∨

j∈J yj and Z =
∨

k∈K zk ; where xi; yj; zk ∈ �Sub(Var).

(X → Y ) → Z = (X ∨ Z) ∧ (Y → Z):

Proof. Since ˝↓(Sub) is a cHa, the following inclusions trivially hold:
• (X ∨ Z) ∧ (Y →Z)⊆(X →Y )→Z ,
• (X →Y )→Z ⊆Y →Z .
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We have to prove that (X →Y )→Z ⊆X ∨ Z . Let $∈ (X →Y )→Z and assume, for
contradiction, that $ =∈ X and Z . Therefore $ =∈ Y (otherwise, from $ ∈ Y →Z it would
follow $∈Z).
Let V =

⋃
i∈I vars($(xi)) ∪

⋃
j∈J vars($(yj)), where, by abusing the notation, we

identify a concrete object x∈ �Sub(Var) with the corresponding variable in Var. Let n
be a new variable, not in V. Consider the substitution * so de.ned: ∀u∈Var

*(u) =
{

n if u ∈ V\dom($);
u otherwise:

Note that dom(*) ∩ dom($)= ∅. Therefore the substitution $ ◦ * is well de.ned.
• ∀u∈Term *(u) is ground iE u is ground, since * transforms variables in variables
without aEecting the groundness.

• ∀v∈V\dom($); vars(*(v))= {n}. By de.nition of *.
• ∀i∈ I , it holds:

◦ if vars($(xi))= ∅ then vars($ ◦ *(xi))= ∅,
◦ if vars($(xi)) != ∅ then vars($ ◦ *(xi))= {n},
◦ since $ =∈ ∧i∈I xi, there exists i∈ I such that vars($(xi)) != ∅, and thus vars($◦

*(xi))= {n}.
Therefore,

⋃
i∈I vars($ ◦ *(xi))= {n}.

• since $ =∈ ∨j∈J yj; ∀j ∈ J vars($(yj)) != ∅ and thus vars($ ◦ *(yj))= {n}.
We prove now that $ ◦ *∈ ∧i∈I xi →

∨
j∈J yj.

$ ◦ * ∈ ∧
i∈I

xi →
∨
j∈J

yj

⇔ ∀%6$ ◦ * % ∈ ∧
i∈I

xi ⇒ % ∈ ∨
j∈J

yj

⇔ ∀%6$ ◦ * $ ◦ * ◦ % ∈ ∧
i∈I

xi ⇒ $ ◦ * ◦ % ∈ ∨
j∈J

yj [$ ◦ * ◦ % = %]

⇔ ∀%6$ ◦ * ∀i ∈ I $ ◦ * ◦ % ∈ xi ⇒ ∃j ∈ J $ ◦ * ◦ % ∈ yj

⇔ ∀%6$ ◦ * ∀i ∈ I vars($ ◦ * ◦ %(xi)) = ∅ ⇒
∃j ∈ J vars($ ◦ * ◦ %(yj)) = ∅

⇔ ∀%6$ ◦ * (∀i ∈ I ∀v ∈ vars($ ◦ *(xi)) vars(%(v)) = ∅) ⇒
∃j ∈ J ∀v ∈ vars($ ◦ *(yj)) vars(%(v)) = ∅

⇔ ∀%6$ ◦ *
(
∀v ∈ ⋃

i∈I
vars($ ◦ *(xi)) vars(%(v)) = ∅

)
⇒

∃j ∈ J ∀v ∈ vars($ ◦ *(yj)) vars(%(v)) = ∅
⇔ ∀%6$ ◦ * ∀v ∈ {n} vars(%(v)) = ∅ ⇒

∃j ∈ J ∀v ∈ {n}vars(%(v)) = ∅ [vars($ ◦ *(yj)) = {n}]
⇔ ∀%6$ ◦ * vars(%(n)) = ∅ ⇒ vars(%(n)) = ∅:

Therefore $ ◦ *∈ ∧i∈I xi →
∨

j∈J yj. Moreover $ ◦ * =∈ Z since $ =∈ Z by hypothesis.
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Thus $ ◦ * =∈ (X →Y )→Z , and therefore $ =∈ (X →Y )→Z , which is a contradiction.
It follows that either $∈X or $∈Z , i.e., $∈X ∨ Z .

The previous lemma can be generalized to deal with conjunctions of implications.
Such a result helps us to decompose complex formulas with disjunctions and implica-
tions into double implications and therefore to derive a transformation from formulas
in Pos into formulas in ˝↓(Sub) which allows ∧ and → only. In particular, note that
implication is used with at most two levels of nesting. This suggests to construct Pos
by applying twice the Heyting completion operator.

Lemma 13. Let xi; k ; yj; k ; zk ∈ �Sub(Var); Xk =
∧

i∈I xi; k ; Yk =
∨

j∈J yj; k and Z =
∨

k=1::n zk .
It holds:

(
n∧

k=1
(Xk → Yk)

)
→ Z =

(
n∨

k=1
Xk ∨ Z

)
∧
((

n∧
k=1

Yk

)
→ Z

)

∧ ∧
G⊂{1::n}

(( ∧
k∈G

Yk

)
→
( ∨

k∈ PG

Xk ∨ Z

))

where PG = {1::n}\G.

Proof. The proof is by induction on n. For n=1 the thesis boils down to prove
(X →Y )→Z =(X ∨ Z) ∧ (Y →Z), which is the result in Lemma 12. Let us assume
it for n− 1 and prove for n.

(
n∧

k=1
(Xk → Yk)

)
→ Z

= (Xn → Yn) →
(

n−1∧
k=1

(Xk → Yk)
)

→ Z [by Ind: Hypothesis]

= (Xn → Yn) →
{(

n−1∨
k=1

Xk ∨ Z
)
∧
((

n−1∧
k=1

Yk

)
→ Z

)

∧ ∧
G⊂{1::n−1}

(( ∧
k∈G

Yk

)
→
( ∨

k∈ PG

Xk ∨ Z

))}

=
(
(Xn → Yn) →

(
n−1∨
k=1

Xk ∨ Z
))

∧
(
(Xn → Yn) →

((
n−1∧
k=1

Yk

)
→ Z

))

∧
(
(Xn → Yn) →

∧
G⊂{1::n−1}

(( ∧
k∈G

Yk

)
→
( ∨

k∈ PG

Xk ∨ Z

)))

[by Lemma 12]
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=
((

Xn ∨
n−1∨
k=1

Xk ∨ Z
)
∧
(
Yn →

(
n−1∨
k=1

Xk ∨ Z
)))

∧
((

n−1∧
k=1

Yk

)
→ ((Xn ∨ Z) ∧ (Yn → Z))

)

∧ ∧
G⊂{1::n−1}

(
(Xn → Yn) →

(( ∧
k∈G

Yk

)
→
( ∨

k∈ PG

Xk ∨ Z

)))

=
(

n∨
k=1

Xk ∨ Z
)
∧
(
Yn →

(
n−1∨
k=1

Xk ∨ Z
))

∧
((

n−1∧
k=1

Yk

)
→ (Xn ∨ Z)

)

∧
(

n−1∧
k=1

Yk → (Yn → Z)
)
∧ ∧

G⊂{1::n−1}

(( ∧
k∈G

Yk

)

→
(
(Xn → Yn) →

( ∨
k∈ PG

Xk ∨ Z

)))

=
(

n∨
k=1

Xk ∨ Z
)
∧
(
Yn →

(
n−1∨
k=1

Xk ∨ Z
))

∧
((

n−1∧
k=1

Yk

)

→ (Xn ∨ Z)) ∧
((

n∧
k=1

Yk

)
→ Z

)

∧ ∧
G⊂{1::n−1}

(( ∧
k∈G

Yk

)
→
((

Xn ∨
∨
k∈ PG

Xk ∨ Z

)

∧
(
Yn →

( ∨
k∈ PG

Xk ∨ Z

))))

=
(

n∨
k=1

Xk ∨ Z
)
∧
(
Yn →

(
n−1∨
k=1

Xk ∨ Z
))

∧
(

n−1∧
k=1

Yk → (Xn ∨ Z)
)
∧
((

n∧
k=1

Yk

)
→ Z

)

∧ ∧
G⊂{1::n−1}

(( ∧
k∈G

Yk →
(
Xn ∨

∨
k∈ PG

Xk ∨ Z

))

∧
( ∧

k∈G
Yk →

(
Yn →

( ∧
k∈ PG

Xk ∨ Z

))))

=
(

n∨
k=1

Xk ∨ Z
)
∧
(
Yn →

(
n−1∨
k=1

Xk ∨ Z
))

∧
((

n−1∧
k=1

Yk

)

→ (Xn ∨ Z)) ∧
((

n∧
k=1

Yk

)
→ Z

)
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∧ ∧
G⊂{1::n−1}

((( ∧
k∈G

Yk

)
→
( ∨

k∈ PG∪{n}
Xk ∨ Z

))

∧
(( ∧

k∈G∪{n}
Yk

)
→
( ∨

k∈ PG

Xk ∨ Z

)))

=
(

n∨
k=1

Xk ∨ Z
)
∧
((

n∧
k=1

Yk

)
→ Z

)
∧ ∧

G⊂{1::n}

(( ∧
k∈G

Yk

)

→
( ∨

k∈ PG

Xk ∨ Z

))
:

We .rst exploit this result to prove that Pos is closed for the Heyting completion
operator.

Theorem 14. Pos=Pos f→Pos.

Proof. Since the Heyting completion operator is reductive on the second argument, it
holds that Pos f→Pos�Pos. For the other direction, by Theorem 11, every element
in Pos is of the form

∧
k∈K (Xk →Yk) where Xk =

∧
I∈I xi; k and Yk =

∨
j∈J yj; k . By

construction, any element in Pos f→Pos is of the form

∧
m∈M

(( ∧
k∈K

(Xm
k → Ym

k )
)

→
( ∧

a∈A
(Wm

a → Zm
a )
))

;

where W m
a =

∧
b∈B wm

b;a and Zm
a =

∨
c∈C ym

c;a. Pos being a Moore family, it suSces to
prove that for each m∈M , every object (

∧
k∈K (X

m
k →Ym

k ))→ (
∧

a∈A(W
M
a →Zm

a )) is
in Pos. Moreover

( ∧
k∈K

(Xm
k → Ym

k )
)

→
( ∧

a∈A
(Wm

a → Zm
a )
)

=
∧
a∈A

(( ∧
k∈K

(Xm
k → Ym

k )
)

→ (Wm
a → Zm

a )
)

=
∧
a∈A

( ∧
k∈K

(Xm
k → Ym

k ) ∧Wm
a

)
→ Zm

a :

Again, it suSces to prove that for each a ∈ A, every element of the form (
∧

k∈K (X
m
k →

Ym
k )∧Wm

a )→Zm
a is in Pos. Moreover by writing W m

a =
∧

b∈B wm
b; a=

∧
b∈B(�→wm

b; a),
we only need to prove that every formula of the form

∧
k∈K (Xk →Yk)→Z is in

Pos.
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By Lemma 13, it holds

∧
k∈K

(Xk → Yk) → Z

=
( ∧

k∈K
Xk ∨ Z

)
∧
(( ∧

k∈K
Yk

)
→ Z

)

∧ ∧
G⊂K

(( ∧
k∈G

Yk

)
→
( ∨

k∈ PG

Xk ∨ Z

))
:

Note that, by distributivity of ˝↓(Sub) and Theorem 11, all formulas
∨

k∈K Xk ∨Z;
(
∧

k∈K Yk)→Z and (
∧

k∈G Yk)→ (
∨

k∈ PG Xk ∨Z) belong to Pos. Therefore, the con-
junction also belongs to Pos.

We are now in the position to prove the main theorem of this section, that is Pos
is the double Heyting completion of G.

Theorem 15. Pos=(G f→G) f→G.

Proof. By Theorem 14, Pos=(Pos f→Pos) f→Pos� (G f→G) f→G.
For the other direction, by Theorem 11, every element in Pos is a conjunction of

formulas of the form
∧

i∈I xi →
∨

j∈J yj, where xi; yj ∈ �Sub(Var). By Lemma 13, it
holds ( ∧

j∈J
(yj → ⊥)

)
→ ⊥

=

( ∧
j∈J

(
yj →

∧
v∈Var

v
))

→ ∧
u∈Var

u

)

=
∧

u∈Var

( ∧
j∈J

∧
v∈Var

(yj → v)

)
→ u) [by Lemma 13]

=
∧

u∈Var

((∧
j∈J

yj ∨ u

)
∧
( ∧

v∈Var
v → ∧

u∈Var
u
)

∧ ( ∧
v∈Var

v →
( ∧

j∈J
yj ∨ u

)))

=
∧

u∈Var

(( ∧
j∈J

yj ∨ u

)
∧ (⊥ → ⊥) ∧∧

(
⊥ →

( ∨
j∈J

yj ∨ u

)))

=
∧

u∈Var

( ∧
j∈J

yj ∨ u

)
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=
∧
j∈J

yj ∨
∧

u∈Var
u

=
∧
j∈J

yj ∨ ⊥ =
∧
j∈J

yj:

It follows that∧
i∈I

xi →
∧
j∈J

yj

=
∧
i∈I

xi →
(( ∧

j∈J
(yj → ⊥)

)
→ ⊥

)

=

( ∧
i∈I

xi ∧
∧
j∈J

(yj → ⊥)
)

→ ⊥:

By de.nition of Heyting completion,
∧

i∈I xi ∧
∧

j∈J (yj →⊥)∈G
f→G and therefore

(
∧

i∈I xi∧(
∧

j∈J (yi →⊥)))→⊥∈ (G f→G) f→G. Thus Pos⊆ (G f→G) f→G, which con-
cludes the proof.

By Eq. (4), we can immediately derive the relations between the domains Pos and
Def .

Corollary 16. Pos=Def f→G=Def f→Def.

Proof. By Eq. (14), we obtain Pos=Def f→G. For the other equation:

Def f→Def (by Eq: (4))

= (G f→G) f→ (G f→G) (by (2) in Proposition 3)

= ((G f→G) � G) f→G (by monotonicity)

= (G f→G) f→G:

For Var= {x; y}, the domains G; Def and Pos are depicted below.

The .rst important consequence of Theorem 15 is that domain Pos is constructed by
using the domain G and the logical properties of the concrete domain only. We de not
need to “invent” the domain, to prove that it is actually an abstraction of ˝↓(Sub),
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nor to prove that it re.nes G, since all these properties hold by construction. In our
framework, Pos arises as the natural re.nement of G and Def. Moreover, we get a
normal form for elements in �Sub(Pos). This result allows us to see Pos into ˝↓(Sub)
and to directly deal with �Sub(Pos). In fact, when we use a formula in Pos, actually
we use an equivalence class with respect to (classic) logic equivalence (KL). In our
formalization, we do not need to use equivalence classes any longer. Moreover, the
normal form of concrete formulas is indeed very natural and preserves the intuitive
meaning of abstract formulas.

7. Optimality of groundness analysis

7.1. Which optimality for Pos?

Usually, in abstract domains, some points are used to represent the result of the
analysis, while the others are used during the computation only. In Pos, the objects
which represent the .nal result of groundness analysis are those in G only, since
the others do not provide basic groundness information. From Eqs. (1)–(3), we note
that only axioms (1) and (2) produce a result which belongs to G (i.e., formulas with
conjunctions only). This suggests that an abstract domain, to be optimal, should contain
all and only those formulas which have an implicational form, since implications only
can be reduced to formulas in G. Therefore, to obtain an optimal domain, we have
to add in the abstract domain all and the implications only. This concept is precisely
captured by the notion of implicational domain equation.
An abstract domain X is closed for A with respect to Heyting completion if it is

the most abstract solution of the implicational domain equation

X = A � (X f→X );

where A is a given abstract domain. The solution, which always exists, is the most
abstract domain X which is more concrete than A and is closed for Heyting completion.
Moreover, it turns out to be the most re.ned domain, built from A, which we can obtain
by using the Heyting completion re.nement.

7.2. Pos is closed for G

The question which naturally arises is: Which is the most abstract solution to the
equation

X = G � (X f→X ) (6)

or, in other words, which is the most abstract domain which is more precise than G

and closed with respect to Heyting completion? In the previous section we have shown
that Pos=(G f→G) f→G and Pos f→Pos=Pos. It easily follows that Pos f→G=Pos,
and therefore Pos is the most abstract solution of Eq. (6), as shown by the next
theorem.
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Theorem 17. Pos is the most abstract solution to the equation X =G� (X f→X ).

Proof. By Theorem 15, Pos=(G f→ G) f→ G and therefore, by (2) in Proposition 3,
we have that Pos f→Pos=Pos f→G. Moreover, by Theorem 14, Pos=Pos f→Pos,
and thus Pos f→G=Pos. Note that, by Theorem 15, Pos is clearly the most abstract
domain with this property, and therefore the most abstract solution of Eq. (6).

The theorem states that we cannot further re.ne Pos by using the Heyting comple-
tion re.nement and therefore it yields a representation result for elements in Pos. It
precisely states that an element in ˝↓(Sub) belongs to Pos if and only if it can be
written by using (concrete) meets and implications only, starting from the objects in
G. Hence, it completely characterizes the concrete image of Pos, not only the abstract
objects. It is worth noting that, diEerent from previous characterizations of Pos [2, 5],
all these results hold on the concrete domain. In addition, our construction provides
a characterization of the abstract disjunction: a disjunctive formula belongs to Pos if
and only if it can be written by using ∧ and → only. It would be impossible to state
a similar result with classic propositional formulas, since it is well known that each
formula can be written by means of ∧ and ⇔ only.
This result allows us to answer the question “why Pos is considered optimal without

being disjunctive”, also from an intuitive point of view. We know that a disjunctive
formula belongs to Pos if and only if it can be put in implicational form. From a logic
point of view, the elements useful for the analysis are implications only (as they can
be reduced by modus ponens). Since a good domain should contain all and only those
joins which are indeed useful, we would only include those joins that can be reduced,
which, in turn, are exactly the joins that Pos contains. This explains the result in [12]
that Pos is complete with respect to (Pos), i.e., the domains Pos and (Pos) have
the same precision with respect to groundness analysis.

7.3. On disjunctive completion of Pos

We proved that we cannot further re.ne Pos by Heyting completion and [12] showed
that it is superKuous to use (Pos) instead of Pos. We may try to re.ne Pos by dis-
junctive completion and then to re.ne it by Heyting completion. We now show that,
even combining disjunctive completion and Heyting completion, we still obtain the do-
main (Pos), when starting from G. Formally, we look for the solution of the equation

X = (Pos) � (X f→X ):

We show that also (Pos) is closed with respect to Heyting completion. Before prov-
ing this result, we need a technical lemma to precisely describe the objects in Pos.

Lemma 18. Let xi; yj ∈ �Sub(Var); for i∈ I and j∈ J .

$ ∈ ∧
i∈I

xi →
∨
j∈J

yj ⇔ ∃j ∈ J vars($(yj))⊆
⋃
i∈I

vars($(xi)):
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Proof. First note that, by de.nition, it holds

$ ∈ ∧
i∈I

xi →
∨
j∈J

yj

⇔ ∀*6$ * ∈ ∧
i∈I

xi ⇒ * ∈ ∨
j∈J

yj

⇔ ∀*60
⋃
i∈I

vars(*(xi)) = ∅ ⇒ ∃j ∈ J vars(*(yj)) = ∅:

For contradiction, assume that ∀j∈ J it holds vars($(yj))*
⋃

i∈I vars($(xi)). It follows
that

∀j ∈ J vars($(yj))\
⋃
i∈I

vars($(xi)) != ∅

⇒ ∀j ∈ J ∃wj ∈ vars($(yj))\
⋃
i∈I

vars($(xi)):

Let *1 = $ ◦ {u\a | u∈ ⋃i∈I vars($(xi))} where a is a constant of the language. Then,
∀i∈ I it holds *1 ∈ xi. In fact

*1(xi) = $ ◦
{
u\a | u ∈

⋃
i∈I

vars($(xi))

}
(xi)

=

{
u\a | u ∈

⋃
i∈I

vars($(xi))

}
($(xi)):

Therefore, vars(*1(xi))= ∅ and *1 ∈
∧

i∈I xi. But ∀j∈ J; *1 =∈yj since vars(*1(yj))=
vars({u\a | u∈ ⋃i∈I vars($(xi))}($(yj))) and there always exists wj ∈ vars($(yj))\⋃

i∈I vars($(xi)).
The other direction follows from the fact that if vars($(yj))⊆

⋃
i∈I vars($(xi)) then

∀*6$ vars(*(yj))⊆
⋃

i∈I vars(*(xi)).

Theorem 19. (Pos) = (Pos) f→ (Pos):

Proof. By (3) in Proposition 3, (Pos) f→ (Pos)=Pos f→ (Pos). Moreover, by
Proposition 2, each object in (Pos) is a disjunction of elements in Pos. Therefore,
it suSces to prove that for any xi; yj; wk

m; z
k
n ∈ �Sub(Var) it holds that( ∧

i∈I
xi →

∨
j∈J

yj

)
→ ∨

k∈K

( ∧
m∈M

wk
m → ∨

n∈N
zkn

)

=
∨
k∈K

(( ∧
i∈I

xi →
∨
j∈J

yj

)
→
( ∧

m∈M
wk

m → ∨
n∈N

zkn

))
:
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By Lemma 18 we have that

$ ∈
( ∧

i∈I
xi →

∨
j∈J

yj

)
→ ∨

k∈K

( ∧
m∈M

wk
m → ∨

n∈N
zkn

)

⇔ ∀*6$

(
∃j ∈ J vars(*(yj))⊆

⋃
i∈I

vars(*(xi))

)

⇒
(
∃k ∈ K ∃n ∈ N vars(*(zkn))⊆

⋃
m∈M

vars(*(wk
m))

)

⇔
(
∃j ∈ J vars($(yj))⊆

⋃
i∈I

vars($(xi))

)

⇒
(
∃k ∈ K ∃n ∈ N vars($(zkn))⊆

⋃
m∈M

vars($(wk
m))

)

⇔ ∃k ∈ K ((∃j ∈ J vars($(yj))⊆
⋃
i∈I

vars($(xi)))

⇒
(
∃n ∈ N vars($(zkn))⊆

⋃
m∈M

vars($(wk
m)))

)

⇔ ∃k ∈ K (∀*6$ (∃j ∈ J vars *(yj))⊆
⋃
i∈I

vars(*(xi)))

⇒
(
∃n ∈ N vars((*(zkn))⊆

⋃
m∈M

vars(*(wk
m)))

)

⇔ $ ∈ ∨
k∈K

(( ∧
i∈I

xi →
∨
j∈J

yj

)
→
( ∧

m∈M
wk

m → ∨
n∈N

zkn

))

which concludes the proof.

Therefore, being disjunctive, (Pos) is also the greatest solution of the following
equation:

X = G � (X f→X ) � (X ):

Intuitively, it means that (Pos) is the most concrete domain we can obtain by dis-
junctive completion and Heyting completion re.nements starting from G, and, in view
of the result of completeness of Pos with respect to (Pos), it formally con.rms that
Pos is de.nitely the best domain for groundness analysis.
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8. Optimality in the literature

The result that Pos is closed with respect to Heyting completion helps us to better
understand the properties of the abstract uni.cation of Pos with respect to Def ’s.
In the classic literature of abstract interpretation, many notions of optimality have
been proposed in order to compare abstract domains (cf. [7, 5, 16]). In any abstract
domain, abstract meet is always the best correct approximation of the concrete one by
construction. So we do not need to distinguish between abstract and concrete meet.
Moreover, since uni.cation is exactly a meet operation [26], it follows that abstract
uni.cation is always the best correct approximation of the concrete one, by simply
choosing the meet operation as abstract uni.cation (Corollary 6:6 in [22]). Therefore,
for both domains Pos and Def , abstract uni.cation is the best correct approximation
of concrete uni.cation, i.e., for each A; B∈˝↓(Sub) it holds

�Pos(A) ∧ �Pos(B) = �Pos(�Pos(A) ∧ �Pos(B));

�Def(A) ∧ �Def(B) = �Def(�Def(A) ∧ �Def(B)):

On the contrary, Pos and Def are not complete for uni.cation, i.e., it does not hold
either �Pos(A)∧�Pos(B)= �Pos(A∧B) or �Def (A)∧�Def (B)= �Def (A∧B), 5 as shown
in the next example.

Example 20. Let $= {X \f(Y; a)} and %= {X \f(a; Y )}. It holds that

�Pos(↓ $∧ ↓ %) = �Def(↓ $∧ ↓ %) = X ∧ Y;

�Pos(↓ $) ∧ �Pos(↓ %) = �Def(↓ $) ∧ �Def(↓ %) = X ↔ Y:

We propose a new notion of optimality which is able to discriminate between Pos and
Def , that is a characterization which is stronger than best correct approximation and
weaker than completeness. The idea is to consider uni.cations between an abstract and
a concrete object. We shall prove that Pos satis.es the equality:

�Pos(�Pos(A) ∧ B) = �Pos(A) ∧ �Pos(B);

while Def does not.
Since Def=G

f→G, by Proposition 4, Def enjoys the following property:

�G(�G(A) ∧ B) = �G(�G(A) ∧ �Def(B)):

Analogously, since Pos=Def f→ Def , it holds that

�Def(�Def(A) ∧ B) = �Def(�Def(A) ∧ �Pos(B)):

5 A similar (negative) result for Pos ∪ {∅} already appears in [5].
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In particular, they are the most abstract domains which satisfy the above equalities.
In addition, since Pos is closed for Heyting completion, by Proposition 4, the following
equality holds:

�Pos(�Pos(A) ∧ B) = �Pos(A) ∧ �Pos(B):

Note that the domain Def does not satisfy this property, as proved in the next example.

Example 21. Let $= {X \a}; %= {Y\a} and <= {X \Y}. We have that

�Def((↓ $∨ ↓ %) ∧ (↓ <)) = �Def(X ∧ Y ) = X ∧ Y;

�Def(�Def(↓ $∨ ↓ %) ∧ (↓ <)) = �Def(Sub ∧ (↓ <)) = �Def(↓ <) = X ⇔ Y:

It is worth noting that Pos is the most abstract domain which contains G and satis.es
the above property. In this way we obtain a precise characterization of Pos, which
depends on the domain G only. The next theorem shows this result.

Corollary 22. Pos is the most abstract domain which contains G and enjoys the
following property: ∀A; B∈˝↓(Sub)

�Pos(�Pos(A) ∧ B) = �Pos(A) ∧ �Pos(B):

Proof. By Theorem 14 and Proposition 4, it follows that �Pos(�Pos(A)∧B)= �Pos(A)∧
�Pos(B). Moreover, by Theorem 17; Pos is the most abstract domain which contains
G and is closed with respect to Heyting completion. Therefore, it is the most abstract
domain which contains G and satis.es the above equality.

Recall that the meet operation is precisely the uni.cation. Therefore, Pos represents
the most abstract domain where abstract uni.cation is complete, provided that at least
one of the arguments belongs to Pos. The importance of this characterization is that it
allows us to discriminate between the precision of abstract uni.cation in the domains
Pos and Def . In fact, for both domains, abstract uni.cation is the best correct approx-
imation of the concrete uni.cation and, in addition, neither Pos nor Def are complete
for uni.cation. On the contrary, the previous equality precisely captures the threshold
between the two domains. Moreover, this is not only a result of diEerentiation, but
a complete characterization of Pos since it turns out that Pos is the most abstract
domain which satis.es this equality, which could be taken as an alternative de.nition
of Pos.

9. Reachability analysis

Some authors (cf. [5, 24, 2]) consider a slightly diEerent de.nition of the domain
Pos, by including also the empty set of substitutions as least element. Given a
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domain A, we denote by A⊥ the domain A∪{∅}, which is always a Moore family.
For Var= {x; y}, the domain Pos and Pos⊥ are depicted below.

The domain Pos⊥ is used to perform reachability analysis. When a .xpoint
semantics is computed, the starting value is usually the least element of the domain.
In case the semantics of a program is empty, the concrete semantics is ∅, while the
corresponding abstract element in Pos is the conjunction of all the variables of inter-
est. The abstract domain cannot distinguish between programs with empty semantics
and programs whose answer solutions are all ground. In order to make this distinction
clear and, therefore, to add an extra precision to the domain, Pos⊥ is used. When the
abstract semantics is ∅, we conclude that no predicate has a solution. In some sense,
no solution is “reached” during the computation.
We show that our reconstruction of Pos applies to Pos⊥ as well, by consider-

ing the domain G⊥=G∪{∅} as starting domain. This domain can be seen as the
reduced product of G and the two-points domain {�; ∅}, which is the basic domain
for reachability analysis. Note that G⊥ is the most abstract domain which encodes
groundness and reachability analysis. The next theorem shows that Pos⊥ can be ob-
tained by G⊥ with three steps of the Heyting completion operator and that Pos⊥ is
still closed.

Theorem 23. The following equations hold.
• G⊥= (Var∪{∅}):
• Def⊥=G⊥

f→G⊥.
• Pos⊥=(G⊥

f→G⊥)
f→G⊥.

• Pos⊥=Pos⊥
f→Pos⊥.

Proof. G⊥=f (Var∪{∅}) trivially holds by de.nition of G⊥.
Recall that the least element ⊥ of Pos is

∧
Var. We .rst show that ⊥→∅= ∅. The

proof is for contradiction. Suppose there exists a substitution $∈⊥→∅. By de.nition,
∀*6$ *∈⊥⇒ *∈∅, that is ∀*6 $ * =∈⊥. But given any substitution $, there always
exists an instance which grounds all the variables in Var, since Var is .nite. There-
fore ⊥→∅= ∅. It follows that, for each a∈Pos; a→∅6⊥→∅= ∅, that is a→∅= ∅.
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Moreover for each a∈Pos; ∅→ a=�. It follows that
• G⊥

f→G⊥ ⊆Def⊥.
• (G⊥

f→G⊥)
f→G⊥ ⊆Pos⊥.

• Pos⊥
f→Pos⊥ ⊆Pos⊥.

We prove the other inclusions by monotonicity.
• Pos⊥ ⊆Pos⊥

f→Pos⊥ trivially holds.
• Def⊥=Def ∪{∅}=(G f→G)∪{∅}⊆ (G⊥

f→G⊥)∪{∅}=G⊥
f→G⊥.

• Pos⊥=Pos∪{∅}=((G f→G) f→G)∪{∅}⊆ ((G⊥
f→G⊥)

f→G⊥)∪{∅}=(G⊥
f→G⊥)

f→G⊥.

As a consequence, an analogous result of Corollary 22 holds for the domain Pos⊥;
as shown in the next corollary.

Corollary 24. Pos⊥ is the most abstract domain which contains G⊥ and enjoys the
following property: ∀A; B∈˝↓(Sub)

�Pos⊥(�Pos⊥(A) ∧ B) = �Pos⊥(A) ∧ �Pos⊥(B):

Proof. The proof is analogous to the one for Corollary 22.

10. Program-independent domains

In the previous sections, we have .xed a .nite set of variables V ⊂f V, where V is
denumerable, and shown how to automatically build the domains GV

⊥ , Def V
⊥ and PosV⊥.

This naturally induces an ordering on the abstract domains for groundness analysis built
from diEerent sets of variables. A question which naturally arises is if it is possible
to construct a Pos-like abstract domain which is independent from the .xed variables.
We show that the answer is positive and this domain is exactly the reduced product
of all domains PosV⊥ for each .nite set V . Since all operators used in the construction
process are monotone, the ordering is simply the set theoretical one on underlying sets
of variables.

Proposition 25. Let V ⊆W ⊂f V.
• GW

⊥ �GV
⊥ .

• Def W
⊥ �Def V

⊥ .
• PosW⊥ �PosV⊥.

Proof. Straightforward from the fact that all operators used in the de.nitions are
monotone.

Moreover, for the basic case of the domain G, the following property holds.

Proposition 26. Let V;W ⊂f V. GV
⊥ �GW

⊥ =GV∪W
⊥ .
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Proof.

GV
⊥ � GW

⊥ = (V ∪ {∅}) � (W ∪ {∅})
= (V ∪W ∪ {∅})
= GV∪W

⊥ :

The idea is to exploit the ordering on these domains to construct program-independent
domains, which are suitable for each program of any dimension and are still based on
the same concrete domain ˝↓(Sub). In this section we show that this is always possible
and that the new domains still enjoy the same properties of the corresponding .nite
domains.
The basic idea is to consider the reduced product of all domains for any .nite set

of variables. Clearly, such domains are able to deal with any variable in V.
We de.ne the domain G!, Def ! and Pos! as follows:

G! = �V ⊂f VGV ;

Def ! = �V ⊂f VDef V ;

Pos! = �V ⊂f VPosV :

We show that all the relations proved in the .nite case still hold. We start, as before,
from the basic domain G! and reconstruct the other two as Heyting completion and
double Heyting completion. As before, we let a variable v denote the set of substitutions
which ground v. First note that, all domains contain the element ⊥ obtained as the
in.nite conjunction of all variables in V.

Proposition 27.
∧
V= ∅.

Proof. By de.nition, we have that
∧
V= {$∈Sub | ∀v∈V $∈ v}= {$∈Sub | ∀v∈V

vars($(v))= ∅}. Again by de.nition, there exists no substitution which grounds an
in.nite set of variables. Since |V| is in.nite, it implies that ∧V= ∅.

Corollary 28. The following properties hold:
• G!=�V ⊂f V GV

⊥ .
• Def !=�V ⊂f V Def V

⊥ .
• Pos!=�V ⊂f V PosV⊥.

Proof. By de.nition, all domains contain all variables v∈V and are closed by possibly
in.nite meets. Therefore they contain

∧
V.

Before proving the properties and relations among the new domains, we show that
they do not contain any in.nite conjunction diEerent from ⊥, that is any possibly
in.nite conjunction either reduces to a .nite one or is equivalent to ⊥. This allows
us to keep on using a .nitary propositional logic instead of an in.nitary one. We .rst
prove that G! can be built by using only .nite formulas and the empty set.
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Proposition 29. G!= {∧V |V ⊂f V}∪ {∅}.

Proof. One direction is trivial, that is G! ⊇{∧V |V ⊂f V}∪ {∅}. Let x∈G!. Then
there exists a family of variables vi ∈V for i∈ I such that x=

∧
i∈I vi. If |{vi}i∈I | is

.nite, then there exists W ⊂f V such that
∧

i∈I vi =
∧

vi∈W vi and the thesis trivially fol-
lows. Assume |{vi}i∈I | to be in.nite. Then

∧
i∈I vi = {$∈Sub | ∀i ∈ I $∈ vi}= {$∈Sub |

∀i∈ I vars($(vi))= ∅}. As |{vi}i∈I |, is in.nite, by de.nition of substitution, there exists
no substitution which grounds an in.nite set of variables. Therefore x= ∅.

This result allows us to establish an isomorphism between the domain G! and
f̋(V), analogously to the .nite case. As suggested by Proposition 29, in order to ob-

tain the isomorphism, we only need to add to f̋(V) a least element ⊥, by extending
the ordering in the obvious way.

Corollary 30. G! is isomorphic to f̋(V)∪{⊥}.

Proof. Straightforward from Proposition 29 by simply representing subsets as conjunc-
tions and mapping the empty set of substitutions to ⊥.

It is worth noting that G! is not isomorphic to ˝(V), since the latter one contains
distinct in.nite sets of variables, all of which should be reduced to the empty set
of substitutions. Therefore we obtain a Galois connection with the concrete domain,
and not a Galois insertion. As a consequence, both domains G!;Def ! and Pos!

can be reconstructed from the corresponding .nite ones without introducing in.nite
conjunctions nor in.nite implications.

Proposition 31. The following properties hold.
(1) G!=

⋃
V⊂fV

GV
⊥ .

(2) Def !=
⋃

V⊂fV
Def V

⊥ .
(3) Pos!=

⋃
V⊂fV

PosV⊥ .

Proof (Sketch):
(1) G!=

⋃
V⊂fV

GV
⊥ is straightforward by Proposition 29.

(2) Let ai ∈
⋃

V⊂fV
Def V

⊥ for i∈ I . We prove that
∧

i∈I ai ∈
⋃

V⊂fV
Def V

⊥ . If
∧

i∈I ai

is equivalent to either a .nite conjunction of implications or � we have nothing
to prove. Otherwise, we claim that

∧
i∈I ai =⊥. In fact, by de.nition, a substitu-

tion can involve only a .nite set of variables. For contradiction, if there exists a
substitution $∈∧i∈I ai, it would follow that either $ binds a variable to a term
which contains in.nite variables, i.e., an in.nite term, or $ grounds an in.nite
number of variables. This is because

∧
i∈I ai is not equivalent to a .nite formula.

But $ would not be a substitution, by de.nition. Therefore Def !=
⋃

V⊂fV
Def V

⊥
holds.

(3) Analogous to the previous point.
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The last characterization says that when constructing G! starting from GV
⊥ , we can

simply take the union of all such domains and this is actually a Moore family, i.e., we
do not need to add in.nite conjunctions in order to obtain an abstract domain. This
proves that when dealing with G!; Def ! and Pos!, we do not have to worry about
in.nite formulas and we can use a .nitary logic to describe abstract objects. We now
reconstruct the relations between the new domains. We .rst need a technical Lemma
which allows us to combine such domains.

Lemma 32. Let Ai; B∈Moore(˝↓(Sub)) for i∈ I . If �i∈I Ai =
⋃

i∈I Ai then (�i∈I Ai)
f→B= �i∈I (Ai

f→B).

Proof. By monotonicity of Heyting completion, it holds �i∈I (Ai
f→B)⊆ �i∈I ((�i∈I Ai)

f→B)= (�i∈I Ai)
f→B.

For the other inclusion, we show that for all a∈ �i∈I Ai and b∈B it holds a→b∈
�i∈I (Ai

f→B). By Hypothesis, �i∈I Afi =
⋃

i∈I Ai. Therefore, there exists j∈ I such that

a∈Aj. Thus a → b∈Aj
f→B. By monotonicity, a → b∈ �i∈I (Ai

f→B).

Theorem 33. The following properties hold.
(1) G!= (V).
(2) Def !=G! f→G!.
(3) Pos!=(G! f→G!) f→G!.
(4) Pos!=Pos! f→Pos!.

Proof.
(1) G!= �V⊂fV GV

⊥
= �V⊂fV (V ∪{∅})
= (∪V⊂fV V ∪ {∅})
= (V∪{$}) (by Proposition 27)
= (V).

(2) Def != �V⊂fV DefV

= �V⊂fV(G
V f→GV )

⊆�V⊂fV(G
! f→G!)

= G! f→G!.
By monotonicity of Heyting completion, it holds

G! f→G! = (�V ⊂f V GV ) f→(�W ⊂f V GW )

= �W ⊂f V((�V ⊂f V GV ) f→GW )

= �W ⊂f V �V ⊂f V(GV f→GW )

⊆�W ⊂f V �V ⊂f V((GV � GW ) f→(GW � GV ))

⊆�W ⊂f V �V ⊂f V(GV∪W f→GV∪W )



182 F. Scozzari / Theoretical Computer Science 277 (2002) 149–184

⊆�W ⊂f V �V ⊂f V(DefV∪W )

= �V ⊂f V(DefV ):

(3) Analogous to Point (2) above.
(4) By monotonicity of Heyting completion, Pos! ⊆Pos! f→Pos! holds. For the

other inclusion

Pos! f→Pos! = (�V ⊂f V PosV ) f→(�W ⊂f V PosW )

= �W ⊂f V((�V ⊂f V PosV ) f→PosW )

= �W ⊂f V �V ⊂f V(PosV f→PosW )

⊆�W ⊂f V �V ⊂f V(PosV∪W f→PosV∪W )

= �W ⊂f V �V ⊂f V(PosV∪W )

= �V ⊂f V(PosV ):

Our approach in constructing a unique, program-independent domain diEers from
[5, 22] mainly in the choice of the concrete domain. In [5], the authors consider a
diEerent concrete domain: (˝(Sub)× f̋(V))∪{�c;⊥c}. Our results show that, even
keeping the simple concrete domain ˝↓(Sub), we can construct program-independent
domains. Moreover, our approach allows us to compare diEerent abstract domains for
diEerent sets of variables, while they are incomparable in the other approach. In [22], a
still diEerent concrete domain is used, i.e., sets of ex-equations. Intuitively, ex-equations
are existentially quanti.ed conjunctions of basic term equations. The whole SLD res-
olution theory is then lifted to ex-equations, by extending the usual de.nitions of
uni.cation and semantics to this domain. It is known from [26] that the lattice of
idempotent substitutions is isomorphic to the lattice of term equations. By de.nition,
ex-equations are more expressive, and therefore more concrete, than simple equations.
As a consequence, sets of ex-equations are more concrete than ˝(Sub), and thus than
˝↓(Sub). But, as shown by our construction, ˝↓(Sub) is concrete enough to formalize
program-independent groundness analysis.

11. Conclusions

In this paper we have reconstructed the domain Pos in a completely automatic
way, by using the domain G and the properties of the concrete domain only. With
our formalization, we reobtain the standard properties of Pos simply by construction.
We show that we can get rid of positive formulas and equivalence classes in the
de.nition of Pos and use directly the operations which naturally arise from the concrete
domain. Moreover, we show a result of optimality by proving that Pos contains exactly
all and only the elements really useful to the analysis, from a computational point of
view. We .nd an alternative equational de.nition of Pos in terms of the properties
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of the abstract uni.cation and show that this characterization precisely captures the
threshold between the domains Pos and Def . This result provides a constructive proof
that Pos is a well-built domain from both the formal and the logical point of view.
Finally, we propose a new, program-independent domain for groundness analysis, which
still enjoys all the properties of the standard domain Pos.
In our opinion, the main feature of the construction we present, is that it can easily

be applied to other kind of analyses of logic programs, since it depends only on the
properties of the concrete domain. We trust that many other analyses can be naturally
formalized in this way, in particular, analyses of properties closed under instantiation,
such as type analysis, where the concrete domain is always ˝↓(Sub).
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